JPS6297367A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS6297367A
JPS6297367A JP61123501A JP12350186A JPS6297367A JP S6297367 A JPS6297367 A JP S6297367A JP 61123501 A JP61123501 A JP 61123501A JP 12350186 A JP12350186 A JP 12350186A JP S6297367 A JPS6297367 A JP S6297367A
Authority
JP
Japan
Prior art keywords
insulating film
electrode
substrate
transistor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61123501A
Other languages
Japanese (ja)
Other versions
JPH0340509B2 (en
Inventor
Fujio Masuoka
富士雄 舛岡
Hisakazu Iizuka
飯塚 尚和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61123501A priority Critical patent/JPS6297367A/en
Publication of JPS6297367A publication Critical patent/JPS6297367A/en
Publication of JPH0340509B2 publication Critical patent/JPH0340509B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To implement high integration density, by making the thickness of an insulating film directly beneath a contact region of a second conductor layer and an external wiring, which constitute a gate electrode, larger than the thickness of a second insulating film. CONSTITUTION:An electrode 43 is provided on an insulating film 42. Then a thick insulating film 50 is deposited. The part on the electrode 43 is made to remain. The surface of a substrate at a gate part is exposed, and a gate oxide film 47 is formed. At a part of the electrode 43 neighboring the MOS transistor, the thick insulating film 50 becomes thin. When data is written in the memory cells in (i) rows and (j) columns in this constitution, a voltage of -5 volts is applied to a substrate 41, and a voltage of +12 volts is applied to the electrode 43. Then, an inverted layer 44 is formed on the surface of the substrate 41. When a voltage of +12 volts is applied to an address selecting line or a column line 53, the potential of a gate electrode 48 becomes +12 volts. Thus the transistor is turned ON. Then the data is written in a memory element 45 from a digit line 46. Then, the column line 53 is made to be 0 volt and the transistor is turned OFF. Then the data is accumulated on a capacitor element 45. Thus, the reading and the writing can be performed at a high speed.

Description

【発明の詳細な説明】 本発明は、半導体記憶装置に係わり、特にダイナミック
メモリセルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory device, and particularly to a dynamic memory cell.

この種の半導体記憶装置として、1個のトランジスタで
1個のメモリセルを構成したものが仰られている。これ
は、第1図に平面図で示した如き構成を有し1等価回路
は罫2因の如くなる。構造の概略を1セルについて説明
する。半導体基板例えばP型Si基板に、互いに離隔し
てれ 領域(LIJ。
As this type of semiconductor memory device, one in which one memory cell is formed by one transistor is said to be one. This has a configuration as shown in the plan view in FIG. 1, and one equivalent circuit consists of two lines. The outline of the structure will be explained for one cell. A semiconductor substrate, such as a P-type Si substrate, has regions (LIJ) spaced apart from each other.

(12)が設けられこの両領域間にチャンネル部(13
)が形成されている。チャンネル部上には、絶縁膜を介
して多結晶S i lit (14)が設けられている
。この多結晶Si層(14)は、ゲート電極となる。こ
の多結晶8M層(14)上には別の絶縁膜が設けられ。
(12) is provided between the two areas, and a channel portion (13) is provided between the two areas.
) is formed. Polycrystalline Si lit (14) is provided on the channel portion with an insulating film interposed therebetween. This polycrystalline Si layer (14) becomes a gate electrode. Another insulating film is provided on this polycrystalline 8M layer (14).

所定開孔部(15)を介して、All0列ライン(16
)と接続される。前記n+領領域11)、(12)ゲー
ト電極(14)とで構成されるMOS)ランジスタが番
地選択用として使用される。
All0 column line (16
) is connected. A MOS transistor consisting of the n+ region 11), (12) and gate electrode (14) is used for address selection.

一方、半導体基板上には、絶縁膜を介して第2の多結晶
Si層(17)が設けられ、このSi層(17)と基板
との間で、容量素子(18)が形成されている。
On the other hand, a second polycrystalline Si layer (17) is provided on the semiconductor substrate via an insulating film, and a capacitive element (18) is formed between this Si layer (17) and the substrate. .

さらに、前記n 領域(11)は例えば拡散層で形成さ
れ、ディジットライン(19)として働ら〈。
Furthermore, the n-region (11) is formed of a diffusion layer, for example, and serves as a digit line (19).

このようなメモリセルにおいて1番地選択用MO8)ラ
ンジスタのゲート電極と、前記容量素子の一方の電極と
なる多結晶Siとの分離が必要な友め、セル面積が大と
なってしまう、又1列ラインとゲート電極との接触をと
る几めのコンタクトホールの占める面積も無駄となって
い友、これらは、集積度の低下或いはメモリセル面積の
増加となり、最近の半導体の高集積化の方向と相反する
ものである。
In such a memory cell, it is necessary to separate the gate electrode of the 1st address selection MO transistor from the polycrystalline Si serving as one electrode of the capacitive element, which increases the cell area. The area occupied by the contact holes that make contact between the column lines and the gate electrodes is wasted, and these lead to a decrease in the degree of integration or an increase in the area of memory cells, which is a problem with the recent trend toward higher integration of semiconductors. They are contradictory.

本発明は、上記点に鑑みてなされたものでその目的とす
る所は、高集積密度の半導体記憶装置を提供するもので
ある。
The present invention has been made in view of the above points, and an object thereof is to provide a semiconductor memory device with high integration density.

本発明の他の目的は、メモリセルの占有面積に比較して
メ゛モリ容敬の犬な半導体記憶装置を提供するものであ
る。
Another object of the present invention is to provide a semiconductor memory device with a smaller memory footprint compared to the area occupied by memory cells.

本発明のさらに他の目的は、高速読み出しの可能な半導
体記憶装置を提供するものである。
Still another object of the present invention is to provide a semiconductor memory device capable of high-speed reading.

以下1本発明の詳細を図面を用いながら説明する。第3
図は本発明装置の一実施例を示す平面図であり、第4図
は第3図の■−■線による断面図を示す。
The details of the present invention will be explained below with reference to the drawings. Third
The figure is a plan view showing an embodiment of the apparatus of the present invention, and FIG. 4 is a sectional view taken along the line ■--■ in FIG. 3.

まず、構造について説明すると、半導体基体として例え
ば比較的高抵抗の一1シリコン基板(41)が用意され
る。この基板の一部上に絶縁膜例えば二酸化シリコン(
42〕を介して、第1電極(43)が設けられている。
First, to explain the structure, for example, a relatively high resistance silicon substrate (41) is prepared as a semiconductor substrate. An insulating film such as silicon dioxide (
42], a first electrode (43) is provided.

絶縁膜としては、  8i0. 、Si、N、。As the insulating film, 8i0. ,Si,N,.

A J z O3等を適宜組み合わせた積1体を用いて
もよい、この第1電極(43)は、多結晶Si″′c溝
成した。
This first electrode (43) may be made of a polycrystalline Si″'c groove, which may be used in a suitable combination of AJzO3 and the like.

その製造は通常のCV D (Chemical Va
pour Deposi −1ion)法によって行な
った。勿論Mo、W、AA!等の金属材料で構成しても
かまわない。第1’@極(43)に半導体基板rl)に
対し正の電圧を印加することにより、基板表面にn型反
転層(44)を形成する。このn型反転1m (44)
と前記@l電極(43)を両電極とし九キャパシタ(4
5)が構成される。
Its production is by the usual CVD (Chemical Va
This was carried out by the pour deposition method. Of course Mo, W, AA! It may be made of metal materials such as. By applying a positive voltage to the first'@-pole (43) with respect to the semiconductor substrate (rl), an n-type inversion layer (44) is formed on the substrate surface. This n-type inversion 1m (44)
and the @l electrode (43) as both electrodes, and a nine capacitor (4
5) is constructed.

一方、このn型反転層(44)と離隔して基板内にn+
領領域46ンが設けられている。n+領領域46)は、
例えば通常の拡散法によって形成し九。このn+領領域
46)は1紙面に対して垂直な方向に延びており、ディ
ジットラインとして使用される。
On the other hand, an n+
There are 46 territorial areas. The n+ region 46) is
For example, it can be formed by the usual diffusion method. This n+ region 46) extends in a direction perpendicular to one paper surface and is used as a digit line.

勿論、n+領領域46)の製法は熱拡散以外でもよく又
、導電性物質で構成してもよい。
Of course, the n+ region 46) may be manufactured by a method other than thermal diffusion, or may be made of a conductive material.

このn+領領域46)と前記反転層(44)との関上に
ゲート絶縁膜(47)を介して第2電極(4B)が設け
られている。ゲート絶縁膜(47)は1例えば100O
A厚さのSin、を用いた。勿論、他の絶縁材料を用い
てもよい、又Wc2電極(48)としては、多結晶S1
を用いたが、第1電極同様Mo、W、Aj等の金属材料
を用いても良い。この@2電極はゲート電極となるもの
であり、このゲート電極(48)、 rl”領域(46
)、反転li!(44)、絶縁膜(47)とでMOS)
2ンジスタ(49)が構成される。
A second electrode (4B) is provided between the n+ region 46) and the inversion layer (44) via a gate insulating film (47). The gate insulating film (47) is 1, for example, 100O.
A thickness of Sin was used. Of course, other insulating materials may be used, and as the Wc2 electrode (48), polycrystalline S1
However, like the first electrode, a metal material such as Mo, W, or Aj may also be used. This @2 electrode becomes a gate electrode, and this gate electrode (48) and rl” region (46
), inversion li! (44), insulating film (47) and MOS)
Two registers (49) are configured.

このMOS )ランジスタ(49)のゲート電極(48
)は、@l電極(43)上に絶縁膜(50〕を介し九状
態で延長されている。この絶縁膜(5o)は前記ゲート
絶縁膜(47ンに比し、両P3縁膜が同質の4合肉厚と
しておくことが望ましい。例えば厚さ8000Aとなし
九。この絶縁膜(50)の材料はA I20B 、 8
 i 、N、等を含むものでも勿論構わない。絶縁膜(
50)上に延在した第2@極(48)と前記第1電極(
43)とにはさまれた部分の容量(O3)が、前記トラ
ンジスタ(49)のゲート基板間容量<、Cs)に比し
小となるべく構成するのが高速動作上望ましい。
The gate electrode (48) of this MOS) transistor (49)
) is extended in nine states on the @l electrode (43) via an insulating film (50).This insulating film (5o) is different from the gate insulating film (47) in that both P3 edge films are of the same quality. It is desirable to have a thickness of 4. For example, the thickness is 8000A and 9.The material of this insulating film (50) is A I20B, 8
It goes without saying that it may include i, N, etc. Insulating film (
50) the second @ pole (48) extending above and the first electrode (
It is desirable for high-speed operation that the capacitance (O3) of the portion sandwiched between the transistor (43) and the transistor (43) is as small as possible compared to the gate-to-substrate capacitance <, Cs) of the transistor (49).

このためには、膜厚を厚く構成しても良いし。For this purpose, the film thickness may be increased.

誘電率の小なる物質で絶縁膜(5o)を構成してもよい
。ゲート電極(48)上は、保護絶縁映(5X)が被着
されておシ、この膜には所定開孔部(52)が設けられ
ている。そして、この開孔i (52)において列ライ
ンを構成する外部配# (53)とのコンタクトがとら
れる。開孔部(52)を設ける位置は1本発明において
特に重要であV、開孔部の少くとも一部が前記第1′W
i極(43)上に設けられることが肝要である。
The insulating film (5o) may be made of a substance with a low dielectric constant. A protective insulating film (5X) is deposited on the gate electrode (48), and a predetermined opening (52) is provided in this film. Contact is made through this opening i (52) with the external wiring (53) that constitutes the column line. The position where the aperture (52) is provided is particularly important in the present invention.
It is important that it be provided on the i-pole (43).

第41図では開孔部の全体を、前記第1電極上に配置し
たfIlを示している。このような実施例装置において
、メモリ容量部面積を従来同様300μrn!とじ友に
もかかわらずメモリセルの占有面積は従来装置−〜−程
度とすることが出来た。この結果ディジット線に酊随す
るを主容量が小となジS従来と同じセンスアンプを便用
しても感度は向上し。
FIG. 41 shows fIl in which the entire opening is placed on the first electrode. In the device of this embodiment, the area of the memory capacitor portion is 300μrn, which is the same as before! Despite the shortcomings, the area occupied by the memory cells can be reduced to about that of conventional devices. As a result, the main capacitance associated with the digit line is small, and the sensitivity is improved even if the same sense amplifier as the conventional one is used.

スピードも向上させることが出来友。You can also improve your speed.

第4図に示した記憶装置の製造方法の要点を説明する。The main points of the method for manufacturing the storage device shown in FIG. 4 will be explained.

絶縁膜(42)上に第1電極(43)を設けt後、肉厚
絶縁膜(50)(Il−例えばCVD法により被着する
。そして、第1電極(43)上は少くとも残し。
After providing the first electrode (43) on the insulating film (42), the thick insulating film (50) (Il--for example, by CVD method) is deposited, leaving at least the top of the first electrode (43).

M OS )ランジスタのゲート部基板表面を露出させ
る。そして、この状態で熱酸化法によってゲート酸化膜
(47〕を形成する。半1電極(43)のMOSトラン
ジスタに隣接する部分は、写真露光の関係から、一部肉
厚P!傾膜(50)が除去され之状聾で酸イヒされるた
め、肉薄となっている。
MOS) Expose the surface of the gate part substrate of the transistor. Then, in this state, a gate oxide film (47) is formed by thermal oxidation.The part of the half-electrode (43) adjacent to the MOS transistor has a partial thickness of P! ) was removed and treated with acid, making it thinner.

さて、このような構成のメモリセルは1例えば幅5図に
示す如きマトリクス配列されて用いられる。、図におい
て、  101,102等は個々のメモリセルを示し、
103等はセンスアンプを示している。今i行j列のメ
モリセル1に第4図に対応させて説明する。i行j列の
メモリセルに情報書き込むを行う場合を説明する。基板
(41)に−5Volt、第1電極(43)に+12V
oltを印加しておく。これにより、基板(41)表面
には自由電子が鋳起され反転層(44,1が形成される
。この状態で番地選択線或いは列ライン(53) VC
+12 Vol tを印加すると、前記トランジスタ(
49)のゲート電極(48)のオ位は+12Volff
i  となりトランジスタはオン状態となる。これによ
り、ディジ゛ントライン(46ンからデータが、メモリ
素子(45)に対して誉キ込まれる。
Now, the memory cells having such a configuration are used in a matrix arrangement as shown in FIG. 5, for example. , in the figure, 101, 102, etc. indicate individual memory cells,
103 etc. indicate a sense amplifier. The memory cell 1 in row i and column j will now be explained in correspondence with FIG. A case will be described in which information is written to the memory cell in the i-th row and the j-th column. -5 Volt to the substrate (41), +12 V to the first electrode (43)
Apply olt. As a result, free electrons are generated on the surface of the substrate (41) to form an inversion layer (44,1).In this state, the address selection line or column line (53) VC
When +12 Vol t is applied, the transistor (
The voltage level of the gate electrode (48) of 49) is +12 Volff
i and the transistor turns on. As a result, data is written into the memory element (45) from the digital line (46).

ついで1列ライン(53)をQValtとし、トランジ
スタがオフ状態となると、データは容量素上45ンに蓄
積される。
Then, when the first column line (53) is set to QValt and the transistor is turned off, data is stored on the capacitor.

このようなメモリセルをマトリクス配列し、大容量メモ
リを構成した場合、ディジット4 (46) ICはセ
ルのメモリ容量(45)に比較して大きな容量がついて
いる。この九め、メモリ情報全貌み出す時。
When such memory cells are arranged in a matrix to form a large capacity memory, the digit 4 (46) IC has a large capacity compared to the memory capacity (45) of the cell. At the ninth stage, it's time to reveal the entire memory information.

トランジスタ(49)のゲート電極(48ンに電圧を印
加してゲートを開くと、ディジット線の容量にメモリセ
ルの1荷がマスクされ、センスアンプでセンスするのが
離しい。従ってメモリセルの容量はディジットiの容量
に比して大とすることが望ましい。逆に言えば、メモリ
セルの容量が同一の場合。
When a voltage is applied to the gate electrode (48) of the transistor (49) to open the gate, one load of the memory cell is masked by the capacitance of the digit line, making it difficult for the sense amplifier to sense it.Therefore, the capacitance of the memory cell is preferably larger than the capacity of digit i.Conversely, if the capacities of the memory cells are the same.

ディジットaKft随するを生容量全小ならしめること
が出来れば感度、スピードを向上させることができる。
If the total raw capacity of the digit aKft can be made small, the sensitivity and speed can be improved.

この結果は前述の通りである。This result is as described above.

さらに、MOSトランジスタのゲート延在部と。Furthermore, a gate extension portion of a MOS transistor.

第1電極(43)との間の容量が小である几め、第6図
に等価回路で示す如く、メモリセルの寄生容量Cpij
も小となる。この之め1列ライン[j)の駆動能力が小
であっても使用が可能となった。又1列ラインをA1等
で構成し友としても、一般に分布抵抗を持ち、メモリセ
ルの容量とでC几時定数の遅れを生じる。このCが小と
なるため、高速度で読み出し、書き込みカニoT能とな
った。特に、大容量メモリシステムの実現には有力であ
る。
Since the capacitance between the first electrode (43) and the first electrode (43) is small, the parasitic capacitance Cpij of the memory cell is reduced as shown in the equivalent circuit in FIG.
will also be small. Therefore, even if the driving capacity of the first line [j] is small, it can be used. Furthermore, even if the first column line is made up of A1 or the like, it generally has distributed resistance and causes a delay of C time constant due to the capacitance of the memory cell. Since this C becomes small, high-speed reading and writing capabilities are achieved. In particular, it is effective in realizing large-capacity memory systems.

以上の実施例においては1反転領域(44ンを形成した
鳴曾全説明したが、予め、第1!極下にn+領領域形成
しておけば、特に、第1電極に反転電圧を印加する必要
はなくなる。又、nチャンネル素子でなく、pチャンネ
ル素子であっても本発明か適用されることは勿論である
In the above embodiment, one inversion region (44 N) was formed, but if an n+ region is formed in advance at the very bottom of the first electrode, an inversion voltage can be particularly applied to the first electrode. This is no longer necessary.Also, it goes without saying that the present invention can be applied to p-channel devices instead of n-channel devices.

【図面の簡単な説明】[Brief explanation of drawings]

m1図は、従来の1トランジスタ/lセルのメモリ装置
の概略平面図、第21閾(儂第1図に示し几装置の等価
回路図、第3図は本発明の一災施列装置を説明する定め
の平面図、第4図は第3図の■−vL線断面図、第5図
はメモリマ) 11クス配列を説明するための図、第6
図は本発明の詳細な説明する友めの等価回路図。 図において、 11.12・・・n+領領域13・・・チャンネル部。 14tx7・・・多結晶Si、15・・・開孔部、16
・・・列ライン、18・・・容置素子、41・・・p−
8t、42・S t O,,43−’@ l ’1K4
ff1.44−・・反Eli)、45・・・キャパシタ
、46・・・n十領域、47・・・ゲート絶縁膜、48
・・・第2電極、49・・・MOS )ランジスタ、5
0・−・相縁膜、51・・・採種絶縁膜、52・−・開
孔部、53・・・配線、101.102  ・・・メモ
リセル。 103・・・センスアンプ。 代理人 弁理士   則 近 yll  佑同    
 竹 花 喜久男
Figure m1 is a schematic plan view of a conventional 1-transistor/l-cell memory device, the equivalent circuit diagram of the 21st threshold (shown in Figure 1), and Figure 3 illustrates the one-disaster array device of the present invention. 4 is a sectional view taken along the line ■-vL in FIG. 3, and FIG. 5 is a diagram for explaining the memory matrix array.
The figure is a companion equivalent circuit diagram explaining the present invention in detail. In the figure, 11.12...n+ region 13...channel portion. 14tx7...Polycrystalline Si, 15...Opening part, 16
. . . Column line, 18 . . . Storage element, 41 . . . p-
8t, 42・S t O,, 43-'@ l '1K4
ff1.44--anti-Eli), 45... capacitor, 46... n+ region, 47... gate insulating film, 48
...Second electrode, 49...MOS) transistor, 5
0... phase edge film, 51... seeding insulating film, 52... opening portion, 53... wiring, 101.102... memory cell. 103...Sense amplifier. Agent Patent Attorney Noriyuki Yudo
Kikuo Takehana

Claims (1)

【特許請求の範囲】[Claims] 1導電型の半導体基体と、この半導体基体の表面の第1
領域上に第1の絶縁膜を介して形成され前記第1領域に
対向したキャパシタ電極を構成する第1導電体層と、前
記第1領域から間隔をおいて前記半導体基体に形成され
かつ前記半導体基体と反対導電型でディジットラインを
構成する第2領域と、前記第1及び第2領域間の前記半
導体基体表面上に第2の絶縁膜を介して存在する第1部
分とこの第1部分より延在して前記第1導電体層上に第
3の絶縁膜を介して設けられる第2部分とを有するゲー
ト電極を構成する第2導電体層と、この第2導電体層上
を含む前記半導体基体上を被覆するとともに前記第2導
電体層の第2部分上に開口部を有する第4の絶縁膜と、
この第4の絶縁膜上に、存在し前記ゲート電極の第2部
分とは、前記開口部を通してコンタクトされ、かつ列ラ
インとなる外部配線とを具備し、前記第2導電体層と外
部配線とのコンタクト領域直下の絶縁膜の厚さが前記第
2の絶縁膜の厚さよりも大なることを特徴とする半導体
記憶装置。
1 conductivity type semiconductor substrate, and a first conductivity type semiconductor substrate on the surface of this semiconductor substrate.
a first conductor layer forming a capacitor electrode opposite to the first region and formed on the region via a first insulating film; and a first conductor layer formed on the semiconductor substrate at a distance from the first region and the semiconductor a second region having a conductivity type opposite to that of the substrate and forming a digit line; a first portion existing on the surface of the semiconductor substrate between the first and second regions via a second insulating film; a second conductive layer constituting a gate electrode having a second portion extending and provided on the first conductive layer via a third insulating film; a fourth insulating film that covers the semiconductor substrate and has an opening on the second portion of the second conductor layer;
The second portion of the gate electrode is provided on the fourth insulating film and is in contact with the second portion of the gate electrode through the opening, and includes an external wiring serving as a column line, and the second conductor layer and the external wiring are connected to each other. A semiconductor memory device characterized in that the thickness of the insulating film directly under the contact region is greater than the thickness of the second insulating film.
JP61123501A 1986-05-30 1986-05-30 Semiconductor memory device Granted JPS6297367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61123501A JPS6297367A (en) 1986-05-30 1986-05-30 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61123501A JPS6297367A (en) 1986-05-30 1986-05-30 Semiconductor memory device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14569580A Division JPS5660051A (en) 1980-10-20 1980-10-20 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS6297367A true JPS6297367A (en) 1987-05-06
JPH0340509B2 JPH0340509B2 (en) 1991-06-19

Family

ID=14862180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61123501A Granted JPS6297367A (en) 1986-05-30 1986-05-30 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6297367A (en)

Also Published As

Publication number Publication date
JPH0340509B2 (en) 1991-06-19

Similar Documents

Publication Publication Date Title
US4115795A (en) Semiconductor memory device
EP0031490B1 (en) One device field effect transistor ac stable random access memory array
US5220530A (en) Semiconductor memory element and method of fabricating the same
US6894304B2 (en) Apparatus and method for dual cell common electrode PCRAM memory device
US7411812B2 (en) Memory architecture and method of manufacture and operation thereof
JPH0337315B2 (en)
US4118794A (en) Memory array with larger memory capacitors at row ends
JPH0738066A (en) Junction field dynamic ram and preparation thereof
US4459684A (en) Nonvolatile JRAM cell using nonvolatile capacitance for information retrieval
US4571607A (en) Semiconductor device
JPS596516B2 (en) semiconductor storage device
US4115871A (en) MOS random memory array
US4185318A (en) Charge storage memory with isolation nodal for each bit line
JPS6297367A (en) Semiconductor memory device
USRE32236E (en) One device field effect transistor (FET) AC stable random access memory (RAM) array
KR100269207B1 (en) A single transistor type ferroelectric random access memory and an operating method thereof
KR100269208B1 (en) A thin film transistor ferroelectric random access memory with a common word line and an operating method thereof
JPS6297368A (en) Semiconductor memory device
JPS6220709B2 (en)
JPS61140171A (en) Semiconductor memory device
JPS60200566A (en) Semiconductor integrated circuit device
JPH04144282A (en) Semiconductor device
KR100322742B1 (en) A nondestructive read-out CMOS transistor ferroelectric memory and an operating method thereof
JPS6221273B2 (en)
JPS6220708B2 (en)