JPS6297205A - High specific inductive capacity system dielectric porcelaincompound - Google Patents

High specific inductive capacity system dielectric porcelaincompound

Info

Publication number
JPS6297205A
JPS6297205A JP60238337A JP23833785A JPS6297205A JP S6297205 A JPS6297205 A JP S6297205A JP 60238337 A JP60238337 A JP 60238337A JP 23833785 A JP23833785 A JP 23833785A JP S6297205 A JPS6297205 A JP S6297205A
Authority
JP
Japan
Prior art keywords
dielectric
temperature
porcelaincompound
high specific
inductive capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60238337A
Other languages
Japanese (ja)
Other versions
JPH0680564B2 (en
Inventor
横江 宣雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60238337A priority Critical patent/JPH0680564B2/en
Publication of JPS6297205A publication Critical patent/JPS6297205A/en
Publication of JPH0680564B2 publication Critical patent/JPH0680564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁器コンデンサ、特に低温焼成ができる積層型
磁器コンデンサの高誘電率系誘電体磁器組成物に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high dielectric constant dielectric ceramic composition for a ceramic capacitor, particularly a laminated ceramic capacitor that can be fired at a low temperature.

〔従来技術〕[Prior art]

従来、一般に積層型磁器コンデンサは表面に内部電極が
塗布されたシート状のBaTi0z(チタン酸バリウム
)を主成分とする誘電体を複数枚積層するとともに各シ
ートの内部電極を交互に並列に一対の外部接続用電極に
接続し、これを焼結一体化することにより形成されてい
る。このような積層型磁器コンデンサは近年のエレクト
ロニクスの進展に伴い電子部品の小型化が急速に進行し
、広範な電子回路に使用されるようになってきている。
Conventionally, multilayer ceramic capacitors generally consist of laminating a plurality of sheet-like dielectric materials whose main component is BaTi0z (barium titanate), each coated with internal electrodes on the surface, and the internal electrodes of each sheet are alternately arranged in parallel to form a pair of dielectrics. It is connected to an external connection electrode and is formed by sintering and integrating it. Such laminated ceramic capacitors have come to be used in a wide range of electronic circuits as electronic components have rapidly become smaller with the recent advances in electronics.

しかしながら、この従来のBaTi0:+を主成分とす
る誘電体材料は1250℃〜1350℃の高温で焼成す
る必要があり、この材料を積層型磁器コンデンサの誘電
体として使用した場合、内部電極は前記誘電体の焼成温
度にて溶融することなく、かつ酸化することがない高価
な貴金属であるパラジウム(融点1555℃)またはそ
の合金が使用されることから、特に静電容゛量が大きい
ものでは内部電極数が大となりコスト高となるため、上
記従来の積層型磁器コンデンサは容量効率が高く、その
低誘電的特性に優れかつ高信幀性にあるにも拘わらず価
格面がその進展に大きな障害となっていた。従って銀(
融点960℃)、銅(融点1083℃)などの安価な金
属を内部電極として使用するためには、低温とりわけ9
50℃以下で焼結する高誘電率の誘電体材料が強く望ま
れていた。
However, this conventional dielectric material mainly composed of BaTi0:+ needs to be fired at a high temperature of 1250°C to 1350°C, and when this material is used as the dielectric of a multilayer ceramic capacitor, the internal electrodes are Because palladium (melting point: 1555°C), an expensive precious metal that does not melt or oxidize at the dielectric firing temperature, or its alloy is used, it is difficult to use the internal electrodes, especially for those with large capacitance. The number of conventional multilayer ceramic capacitors is large, resulting in high costs.Despite the above-mentioned conventional multilayer ceramic capacitors having high capacitance efficiency, excellent low dielectric properties, and high reliability, price is a major obstacle to their progress. It had become. Therefore, silver (
In order to use inexpensive metals such as copper (melting point 960°C) and copper (melting point 1083°C) as internal electrodes, it is necessary to
There has been a strong desire for a dielectric material with a high dielectric constant that can be sintered at temperatures below 50°C.

近年、高誘電率系誘電体において、1000℃以下の低
温で焼結できる磁器組成物としていくつかの提案がなさ
れている。それらは低温で焼結できる強誘電体として、
Pb(FetzzNb1/2)Oz、Pb(Fez/z
W1/3)03、Pb(Mg1/2W 1/2)(h、
Pb(Zn+zJbzzz)Oz、Pb(Mg+7zN
bzzz)Oi、Pb(Ni+/zNbzzz)Oz、
およびpbTi(hのうち二成分または三成分を組合せ
、室温における所望の誘電特性を得ようとしたものであ
る。
In recent years, several proposals have been made for high permittivity dielectric materials as ceramic compositions that can be sintered at low temperatures of 1000° C. or lower. As ferroelectric materials, they can be sintered at low temperatures.
Pb(FezzzNb1/2)Oz, Pb(Fez/z
W1/3)03, Pb(Mg1/2W1/2)(h,
Pb(Zn+zJbzzz)Oz, Pb(Mg+7zN
bzzz)Oi, Pb(Ni+/zNbzzz)Oz,
This is an attempt to obtain desired dielectric properties at room temperature by combining two or three components of pbTi (h) and pbTi (h).

しかしながら、これらは比誘電率が大きい場合は、誘電
損失が大きかったり、あるいは絶縁抵抗が小さいなどの
欠点を有していた。更には、合成成分がいずれも強誘電
体であることからキュリ一温度およびキュリ一温度近く
の低い温度域での誘電損失が極めて大きいという原理的
な欠点を避けることができない。
However, these have disadvantages such as large dielectric loss or low insulation resistance when the relative dielectric constant is large. Furthermore, since all of the synthetic components are ferroelectrics, it is impossible to avoid the fundamental drawback that the dielectric loss is extremely large at the Curie temperature and in the low temperature range near the Curie temperature.

因みに特開昭52−21699号公報に開示された(S
rx Pb+−x Ti0z) a  (Pb(Mg1
/2W+/z)0:+) l−Aにおいて×=0〜0.
10. A=0.35〜0.50なる組成物が実用化さ
れ、上記組成物の誘電体粉末が市販されている。しかし
ながら、この組成系においては1000℃以下の低温度
で焼結でき、かつ優れた絶縁抵抗等を有する利点はある
ものの誘電損失が1.5χ程度であり、積層型磁器コン
デンサとして適用する場合、誘電損失が少なくとも1%
以下であるという条件を満足しない。
Incidentally, it was disclosed in Japanese Patent Application Laid-Open No. 52-21699 (S
rx Pb+-x Ti0z) a (Pb(Mg1
/2W+/z)0:+) In l-A, x=0 to 0.
10. A composition in which A=0.35 to 0.50 has been put into practical use, and dielectric powder of the above composition is commercially available. However, although this composition system can be sintered at a low temperature of 1000°C or less and has excellent insulation resistance, the dielectric loss is about 1.5χ, and when applied as a multilayer ceramic capacitor, the dielectric loss is about 1.5χ. loss of at least 1%
The following conditions are not satisfied.

〔発明の目的〕[Purpose of the invention]

本発明は前記欠点に鑑み種々の実験の結果案出されたも
ので、強誘電体であるPb(Fe+7□Nb+z□)0
3に対して、これと同一結晶構造のペロブスカイト構造
を有する低温度で焼結できる常誘電体であるBa(Cr
1/2Nb1/2)Ozを固溶させることによりPb(
Fe+7□Nb+z□)Olが本来有する誘電特性を改
質し誘電損失が小さく絶縁抵抗が大きい、更には比誘電
率の温度依存性が良好な優れた高誘電率系誘電体磁器組
成物を提供することにある。
The present invention was devised as a result of various experiments in view of the above-mentioned drawbacks.
3, Ba(Cr
Pb(
To provide an excellent high-permittivity dielectric ceramic composition that improves the dielectric properties originally possessed by Fe+7□Nb+z□)Ol and has low dielectric loss, high insulation resistance, and good temperature dependence of relative permittivity. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の高誘電率系誘電体磁器組成物は組成式が Pb
(F13+7z −11Sm X  Nb17g)03
で表される組成物において、×が0.021≦x≦0.
070の範囲にあることを特徴とするものである。
The high permittivity dielectric ceramic composition of the present invention has a composition formula of Pb
(F13+7z -11Sm X Nb17g)03
In the composition represented by 0.021≦x≦0.
It is characterized by being in the range of 0.070.

なお、×の範囲を上記の範囲に限定した理由は、磁器コ
ンデンサ、特に積層型磁器コンデンサとして要求される
誘電特性、即ち比誘電率が7500以上、誘電損失が1
.0θ%以下、絶縁抵抗が3.0 XIO”Ω・口以上
かつ比誘電率の温度依存性が良好であらねばならないと
いう誘電特性のいずれかを満足しないためであり、0.
021 < Xの場合、比誘電率が7500未満、かつ
比誘電率の温度依存性が大きく、X<0.070の場合
、比誘電率が7500未満、絶縁抵抗が3.OXIO”
Ω・口未満といずれも誘電特性を満足しないためである
The reason for limiting the range of x to the above range is that the dielectric properties required for a ceramic capacitor, especially a multilayer ceramic capacitor, are as follows: a relative dielectric constant of 7,500 or more, and a dielectric loss of 1.
.. This is because it does not satisfy any of the following dielectric properties: 0θ% or less, insulation resistance of 3.0XIO"Ω or more, and good temperature dependence of relative dielectric constant.
When 021 < OXIO”
This is because the dielectric properties are not satisfied if the resistance is less than Ω.

〔実施例〕〔Example〕

次に本発明を実施例に基づき説明する。 Next, the present invention will be explained based on examples.

出発原料としてPb0z+FezO:+、NbzOs+
 およびSm、03を第1表の組成比となる様にそれぞ
れ秤量し、分散剤および分散媒とともにボールミルにて
湿式混合した後、この原料スラリーを乾燥し、950℃
の温度で3時間仮焼した。次いでこの仮焼物を粗砕後、
振動ミシレにて微粉砕し、得られた平均粒径0゜7〜0
.8μmの微粉末にポリビニルアルコールを重量で約1
.X添加して顆粒状に・造粒した後、約900Kg/c
dの圧力で直径約12mm 、厚さ1.ommの円板状
に成形した。この円板状成形体のポリビニルアルコール
を500℃にて焼失せしめた後、900℃〜950℃の
温度で2時間、酸素を含む雰囲気で焼成した。
Pb0z+FezO:+, NbzOs+ as starting materials
and Sm, 03 were weighed so as to have the composition ratios shown in Table 1, and wet mixed together with a dispersant and a dispersion medium in a ball mill. This raw material slurry was dried and heated to 950°C.
It was calcined for 3 hours at a temperature of . Next, after coarsely crushing this calcined material,
Finely pulverized with a vibrating mill, resulting in an average particle size of 0°7~0
.. Approximately 1 part by weight of polyvinyl alcohol is added to 8 μm fine powder.
.. After adding X and granulating it, approximately 900Kg/c
At a pressure of d, the diameter is about 12 mm and the thickness is 1. It was molded into an omm disc shape. After burning off the polyvinyl alcohol of this disc-shaped molded body at 500°C, it was fired in an oxygen-containing atmosphere at a temperature of 900°C to 950°C for 2 hours.

最後に、得られた円板状焼成体の上下両面に銀電極を8
00℃にて焼付けた。同様にして強誘電体であるPb(
FezzsW+zi)Ozに、同じ強誘電体であるpb
(Fe1/2Nbtzz)0+を固溶させた組成式がP
b(Fezz:+W1/l)X (Fe1/2Nb1/
2) 1−x 03で表され、X=0.5の誘電体磁器
組成物を比較例とした。こうして得た円板状のコンデン
サ試料の緒特性を第1表に示す。
Finally, 8 silver electrodes were placed on both the upper and lower surfaces of the obtained disc-shaped fired body.
Baked at 00°C. Similarly, Pb (
FezzsW+zi)Oz, pb which is the same ferroelectric material
The composition formula of (Fe1/2Nbtzz)0+ as a solid solution is P
b(Fezz:+W1/l)X (Fe1/2Nb1/
2) A dielectric ceramic composition represented by 1-x 03 and where X=0.5 was used as a comparative example. Table 1 shows the characteristics of the disc-shaped capacitor sample thus obtained.

但し、表中の比誘電率は1.0KHz、 1.OVrm
sの入力信号を用いてキャパシタンスブリッジにて測定
した室温での静電容量値と試料の寸法から計算した値を
示し、誘電損失(Tanδ)は室温での1.0KHz 
:1、OVrmsの人力信号における測定値を示す。ま
た絶縁抵抗は、絶縁抵抗計にて直流電圧250vを印加
して1分後の値と試料の寸法から体積抵抗率(Ω・am
 )を計算した値を示し、比誘電率の温度特性は、−3
0℃、+25℃、+85℃の各温度において上記と同様
の条件にて静電容量を測定し、+25℃での静電容量に
対する各温度での静電容量の変化率を算出し、ε−3゜
/ε2.およびε85/ ε25として示した。
However, the relative dielectric constant in the table is 1.0KHz, 1. OVrm
Shows the capacitance value at room temperature measured with a capacitance bridge using an input signal of s and the value calculated from the sample dimensions.
:1, indicates the measured value in the OVrms human input signal. Insulation resistance can be determined from the volume resistivity (Ω・am
), and the temperature characteristic of the relative dielectric constant is -3
Capacitance was measured at each temperature of 0℃, +25℃, and +85℃ under the same conditions as above, and the rate of change in capacitance at each temperature with respect to the capacitance at +25℃ was calculated, and ε- 3°/ε2. and expressed as ε85/ε25.

第1表から明らかなように、試料番号1は比誘電比率が
小さく、比誘電率の温度依存性が極めて大きく、試料番
号12は比誘電率が小さく、かつ絶縁抵抗が低くなって
いる。また比較例では誘電損失が極めて大きく、絶縁抵
抗も極めて低く、いずれも実用的な誘電特性が得られて
いない。
As is clear from Table 1, Sample No. 1 has a small dielectric ratio and extremely large temperature dependence of the dielectric constant, and Sample No. 12 has a small dielectric constant and low insulation resistance. Further, in the comparative example, the dielectric loss was extremely large and the insulation resistance was also extremely low, so that practical dielectric properties were not obtained in either case.

それに対し、本発明の請求範囲内の誘電体磁器組成物は
比誘電率が8250〜16760と十分大きく、誘電損
失(Tan  δ)も0.13〜0.57と小さく、絶
縁抵抗(Ω・C11)は5.8×101′〜3.3×1
012と非常に大きくかつ前述の比誘電率の温度特性も
良好でいずれも優れた誘電特性を有しているが、とりわ
け試料番号5乃至8がより望ましいことが理解される。
In contrast, the dielectric ceramic composition within the scope of the present invention has a sufficiently large dielectric constant of 8250 to 16760, a small dielectric loss (Tan δ) of 0.13 to 0.57, and a low insulation resistance (Ω・C11). ) is 5.8 x 101' to 3.3 x 1
012, and the above-mentioned relative dielectric constant temperature characteristics are also good, and all have excellent dielectric properties, but it is understood that sample numbers 5 to 8 are particularly desirable.

〔発明の効果〕〔Effect of the invention〕

本発明の請求範囲内の誘電体磁器組成物は、比誘電率、
誘電損失(Tan δ)、絶縁抵抗(Ω・cIn)、比
誘電率の温度特性のいずれの特性においても満足し得る
ものである。
The dielectric ceramic composition within the scope of the present invention has a relative dielectric constant,
All of the characteristics of dielectric loss (Tan δ), insulation resistance (Ω·cIn), and temperature characteristics of relative permittivity are satisfactory.

また、本発明において、焼成温度が900℃〜95θ℃
の範囲で焼成することができ、かつ焼結磁器の誘電特性
を全て満足するものであることがら、銀および銅などの
安価な金属を内部電極とする積層型磁器コイデンサの誘
電体磁器として十分実用性のあることが理解される。
Further, in the present invention, the firing temperature is 900°C to 95θ°C.
Since it can be fired within a range of It is understood that there is a gender.

出願人(663)  京セラ株式会社 稲盛和夫Applicant (663) Kyocera Corporation Kazuo Inamori

Claims (1)

【特許請求の範囲】 組成式が、 Pb(Fe_1_/_2_−_xSm_xNb_1_/
_2)O_3で表される組成物において、xが0.02
1≦x≦0.070の範囲にあることを特徴とする高誘
電率系誘電体磁器組成物。
[Claims] The compositional formula is Pb(Fe_1_/_2_-_xSm_xNb_1_/
_2) In the composition represented by O_3, x is 0.02
A high dielectric constant dielectric ceramic composition, characterized in that the dielectric ceramic composition is in the range of 1≦x≦0.070.
JP60238337A 1985-10-23 1985-10-23 High dielectric constant dielectric ceramic composition Expired - Lifetime JPH0680564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60238337A JPH0680564B2 (en) 1985-10-23 1985-10-23 High dielectric constant dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60238337A JPH0680564B2 (en) 1985-10-23 1985-10-23 High dielectric constant dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS6297205A true JPS6297205A (en) 1987-05-06
JPH0680564B2 JPH0680564B2 (en) 1994-10-12

Family

ID=17028701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60238337A Expired - Lifetime JPH0680564B2 (en) 1985-10-23 1985-10-23 High dielectric constant dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPH0680564B2 (en)

Also Published As

Publication number Publication date
JPH0680564B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
CN101410344A (en) Dielectric porcelain composition and electronic component
JPH0715856B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPS62256422A (en) Laminated type porcelain capacitor
JPS63103861A (en) Non-reductive dielectric ceramic composition
JPS6297205A (en) High specific inductive capacity system dielectric porcelaincompound
JPS62157603A (en) Nonreductive dielectric porcelain compound
JPS62100473A (en) High permittivity dielectric ceramic composition
JP2571386B2 (en) High dielectric constant dielectric porcelain composition
JPS6128619B2 (en)
JPS62216106A (en) Ferrodielectric porcelain compound
JPS6296361A (en) High permittivity dielectric ceramic composition
JPS62100472A (en) High permittivity dielectric ceramic composition
JP2789110B2 (en) High dielectric constant porcelain composition
JPS6121183B2 (en)
JPS62278163A (en) Non-reductive dielectric ceramic composition
JPS6234707B2 (en)
JPS60240006A (en) High dielectric ceramic compoment
JPS5849661A (en) High dielectric constant ceramic composition
JPS6049501A (en) Porcelain composition
JPS6230151B2 (en)
JPS59116174A (en) High permittivity ceramic composition
JPS62297260A (en) High permittivity ceramic composition
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPH0234448B2 (en)
JPS6135144B2 (en)