JPS6296646A - Alloy member for pump shaft sleeve and bearing - Google Patents

Alloy member for pump shaft sleeve and bearing

Info

Publication number
JPS6296646A
JPS6296646A JP23711985A JP23711985A JPS6296646A JP S6296646 A JPS6296646 A JP S6296646A JP 23711985 A JP23711985 A JP 23711985A JP 23711985 A JP23711985 A JP 23711985A JP S6296646 A JPS6296646 A JP S6296646A
Authority
JP
Japan
Prior art keywords
alloy
weight
shaft sleeve
bearing
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23711985A
Other languages
Japanese (ja)
Other versions
JPH0610320B2 (en
Inventor
Matsuo Higuchi
樋口 松夫
Yasuhiro Saito
斉藤 恭寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23711985A priority Critical patent/JPH0610320B2/en
Publication of JPS6296646A publication Critical patent/JPS6296646A/en
Publication of JPH0610320B2 publication Critical patent/JPH0610320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To obtain an alloy member for pump shaft sleeve and bearing excellent in corrosion resistance and wear resistance by limiting the grain size of hard phase and the kind and composition of binding phase in an alloy member. CONSTITUTION:An alloy is composed of a hard phase of tungsten carbide with 1-3mu grain size and a binding metal phase comprising 5-12wt% of the whole alloy, in which the binding metal phase consists of Ni, Co and Cr and the amounts of Ni and Cr are regulated to 50-90wt% and 1-10wt%, respectively, based on the total of the whole binding metals. Further, porosity of alloy and Rockwell hardness (scale A) at ordinary temp. are also regulated to <=1% and >=88, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、海水、汚水、雨水の揚水用ポンプの軸スリー
ブおよび軸受用の合金部材であり超硬合金の応用部品で
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is an alloy member for shaft sleeves and bearings of pumps for pumping up seawater, sewage, and rainwater, and is an application part of cemented carbide.

〔従来技術の問題点〕[Problems with conventional technology]

従来よりポンプ軸受を構成する材料としては、主として
ゴムあるいはカーボン含有鉄系焼結合金が使われてきた
。しかしながら、これらの材料では、ポンプ軸に取りつ
けるスリーブと軸受との接触面が摩耗しやすく、しかも
接触による発熱で焼付が生じたり、海水中での腐食が起
こったりしてポンプ寿命が短いという問題があった。更
には、水への砂やスケールの混入など制限して用いられ
ていた。
Conventionally, rubber or carbon-containing iron-based sintered alloys have been mainly used as materials for constructing pump bearings. However, with these materials, the contact surface between the sleeve attached to the pump shaft and the bearing is prone to wear, and the heat generated by contact can cause seizure, corrosion in seawater, and short pump life. there were. Furthermore, it was used with restrictions such as mixing sand and scale into the water.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これら問題点を解決するポンプ軸スリーブおよび軸受が
必要とされていた。従来から用いられてきている材料の
欠点は、耐摩耗性が劣り、しかも耐食性が不足していた
事である。しかも、これらの使用条件は数多くあり、過
酷な条件で耐え得るものはなかった。
There is a need for a pump shaft sleeve and bearing that solves these problems. The disadvantages of conventionally used materials are that they have poor wear resistance and lack corrosion resistance. Moreover, there are many conditions for these uses, and there is no one that can withstand the harsh conditions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を解消すべく開発されたものであり
、その要旨とするところは粒度が1〜3μmの炭化タン
グステンの硬質相と、5〜12重量%の結合金属相を有
し、該結合金属相がNi、GoおよびCrからなり、N
iは全結合金属相の50重量%以上で9帽1%以下、し
かもCrは全結合金属相の1重量%以上で10重量%以
下からなり、更に気孔率が5%以下常温におけるロンフ
ラニル硬さ(Aスケール)HRAが88以上を有するこ
とを特徴とするポンプ軸スリーブおよび軸受用超硬合金
製部材である。
The present invention was developed to solve the above object, and its gist is that the present invention has a hard phase of tungsten carbide with a particle size of 1 to 3 μm and a binder metal phase of 5 to 12% by weight. The binding metal phase consists of Ni, Go and Cr, and N
i is 50% by weight or more and 9% by weight or less of the total bonded metal phase, and Cr is 1% by weight or more and 10% by weight or less of the total bonded metal phase, and the porosity is 5% or less Ronfuranil hardness at room temperature. (A scale) This is a pump shaft sleeve and a cemented carbide member for bearings, characterized by having an HRA of 88 or more.

以下この発明をより詳細に説明する。This invention will be explained in more detail below.

本発明者らは耐食性、耐摩耗性を改善するために超硬合
金の粒度、結合金属相の種類や組成につき鋭意検討した
結果、本発明にいたったのである。
The present inventors have conducted intensive studies on the particle size of cemented carbide and the type and composition of the binder metal phase in order to improve corrosion resistance and wear resistance, and as a result, they have arrived at the present invention.

すなわち、硬質相である炭化タングステンの粒度は1μ
m未満であると硬質相の分散が悪く、硬度分布が悪く耐
摩耗性が低い領域ができる。3μm以上であると、今度
は炭化タングステンの分散量が小さくなるため、やはり
硬度が低下し耐摩耗性が劣る。全結合金属相量としては
、5重量%未満では焼結性が悪く気孔が発生し、耐摩耗
性が悪い。
In other words, the particle size of tungsten carbide, which is the hard phase, is 1μ.
If it is less than m, the hard phase will be poorly dispersed, resulting in a region with poor hardness distribution and low wear resistance. If it is 3 μm or more, the amount of tungsten carbide dispersed will be small, resulting in a decrease in hardness and poor wear resistance. If the total amount of bonded metal phase is less than 5% by weight, sinterability is poor, pores are generated, and wear resistance is poor.

12重量%を越えると硬度が低下し耐摩耗性が悪くなる
。更に望ましくは5〜10重量%の範囲が良好である。
If it exceeds 12% by weight, hardness decreases and wear resistance deteriorates. More preferably, the content is in the range of 5 to 10% by weight.

Niが全結合金属相の50重量%以上〜90重量%以下
で、しかもCrは1重量%以上で10重量%以下に限定
するのは、Niが50重量%未満であると水中にに含ま
れる塩分等に対する耐食性が悪り、90重量%を越える
と硬度および強度が低下し、耐摩耗性が落ちる。更にC
rは1重量%未満であると結合相の耐食性向上に寄与せ
ず、10重量%を越えると又耐食性が低下するとともに
硬度強度も下がり耐摩耗性も悪くなる。更に望ましくは
3重量%〜8重量%の範囲が良好である。
The reason why Ni is 50% by weight or more and 90% by weight or less of the total bound metal phase and Cr is limited to 1% by weight or more and 10% by weight or less is that if Ni is less than 50% by weight, it will be contained in water. Corrosion resistance against salt and the like deteriorates, and when it exceeds 90% by weight, hardness and strength decrease, and wear resistance decreases. Further C
If r is less than 1% by weight, it will not contribute to improving the corrosion resistance of the binder phase, and if it exceeds 10% by weight, the corrosion resistance will decrease, as well as the hardness and strength, and the wear resistance will deteriorate. More preferably, the range is from 3% by weight to 8% by weight.

これら硬質相の粒度および結合相の種類や組成を限定す
る事により、耐摩耗性、耐食性を有する超硬合金が可能
となる。更にポンプ軸スリーブや軸受部材として、前記
限定に加えて超硬合金の気孔率が1%以下、硬度として
、すなわちAスケールのロンフラニル硬度(HRA)で
88以上と限定する事により、軸スリーブおよび軸受の
寿命を飛痛的に向上させる事が本発明の概要である。
By limiting the particle size of these hard phases and the type and composition of the binder phase, a cemented carbide having wear resistance and corrosion resistance can be produced. Furthermore, in addition to the above limitations, shaft sleeves and bearings can be used as pump shaft sleeves and bearing members by limiting the porosity of the cemented carbide to 1% or less and the hardness, that is, 88 or more on the A scale Ronfuranil hardness (HRA). The outline of the present invention is to dramatically improve the lifespan of.

本発明の超硬合金の製造法として、真空非加圧焼結ホ7
)プレス、真空非加圧焼結からHIP処理、HIP焼結
のみ、いずれの方法でも前記限定内に入る超硬合金は、
ポンプ軸スリーブおよび軸受として良好な高寿命を示す
As a method for producing the cemented carbide of the present invention, vacuum non-pressure sintering
) Cemented carbide that falls within the above limits for any method, from pressing, vacuum non-pressure sintering to HIP treatment, HIP sintering only,
Shows good long life as pump shaft sleeve and bearing.

このようにして得られた超硬合金は、回転軸スリーブや
軸受の他に、水中で摺動する部品に応用しても効果があ
る。
The thus obtained cemented carbide is effective when applied to parts that slide in water, in addition to rotating shaft sleeves and bearings.

以下実施例によって説明する。This will be explained below using examples.

実施例1 平均粒度2μmのWC粉末にCo、Ni、Crを第1表
の如く、配合組成で配合し湿式混合粉砕を行った。
Example 1 WC powder with an average particle size of 2 μm was mixed with Co, Ni, and Cr in the composition shown in Table 1, and subjected to wet mixing and pulverization.

これを外径100+ua、内径801.高さloOms
+の円筒状に成型し、1350℃〜1400℃にて真空
焼結を行った後1380℃、1000ata+ Arで
HIP処理した。
This has an outer diameter of 100+ua and an inner diameter of 801. Height loOms
It was molded into a positive cylindrical shape, vacuum sintered at 1350°C to 1400°C, and then subjected to HIP treatment at 1380°C and 1000 ata+Ar.

合金配合組成特性と性能の関係を第1表に示した。Table 1 shows the relationship between alloy composition characteristics and performance.

性能は前記軸スリーブを、軸受にはセラミックを用い、
ポンプとして組み込んで約3smφの砂を加えた塩分5
%の海水中で回転数200rpa+で、回転可能時間を
把握した。
Performance is achieved by using the above-mentioned shaft sleeve and ceramic for the bearing.
Salt 5 which is incorporated as a pump and adds sand of about 3smφ
% of seawater at a rotation speed of 200 rpa+, the possible rotation time was determined.

第1表 実施例2 実施例1の陽2及び階■の組成のもので軸スリーブ、軸
受を作成した。この両者をポンプに組み込み、実施例1
と同様の性能把握を行った。
Table 1 Example 2 Shaft sleeves and bearings were made from the compositions of Example 1 (positive 2 and negative 2). Incorporating both into a pump, Example 1
We conducted a similar performance assessment.

−2と隘■の寿命比較を行った結果、本発明の隘2の寿
命が軸スリーブ軸受として用いても長い事がわかる。
As a result of comparing the lifespan of -2 and A2, it can be seen that A2 of the present invention has a long life even when used as a shaft sleeve bearing.

第2表Table 2

Claims (1)

【特許請求の範囲】[Claims] 炭化タングステンで粒度が1〜3μmの硬質相と合金全
体の5〜12重量%の結合金属相とからなる合金におい
て、該結合金属相がNi、CoおよびCrからなり、N
iが全結合金属総量の50重量%以上90%以下であり
、Crは全結合金属総量の1重量%以上10%以下であ
って、合金の気孔率が1%以下、常温でのロックウェル
硬さ(Aスケール)が88以上であることを特徴とする
ポンプ軸スリーブおよび軸受用合金部材。
In an alloy consisting of a hard phase of tungsten carbide with a particle size of 1 to 3 μm and a binder metal phase of 5 to 12% by weight of the entire alloy, the binder metal phase consists of Ni, Co and Cr, and N
i is 50% to 90% by weight of the total amount of all bonded metals, Cr is 1% to 10% by weight of the total amount of all bonded metals, the porosity of the alloy is 1% or less, and the Rockwell hardness at room temperature is An alloy member for a pump shaft sleeve and bearing, characterized in that the diameter (A scale) is 88 or more.
JP23711985A 1985-10-22 1985-10-22 Alloy members for pump shaft sleeves and bearings Expired - Lifetime JPH0610320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23711985A JPH0610320B2 (en) 1985-10-22 1985-10-22 Alloy members for pump shaft sleeves and bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23711985A JPH0610320B2 (en) 1985-10-22 1985-10-22 Alloy members for pump shaft sleeves and bearings

Publications (2)

Publication Number Publication Date
JPS6296646A true JPS6296646A (en) 1987-05-06
JPH0610320B2 JPH0610320B2 (en) 1994-02-09

Family

ID=17010690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23711985A Expired - Lifetime JPH0610320B2 (en) 1985-10-22 1985-10-22 Alloy members for pump shaft sleeves and bearings

Country Status (1)

Country Link
JP (1) JPH0610320B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144490A (en) * 2019-06-21 2019-08-20 燕山大学 A kind of compound copper bush of base steel and preparation method thereof
CN113915235A (en) * 2021-09-29 2022-01-11 安庆帝伯格茨缸套有限公司 Motor end cover shaft sleeve and preparation method thereof
KR102565487B1 (en) * 2023-05-23 2023-08-11 와이리퍼블릭 주식회사 Shoes for children

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144490A (en) * 2019-06-21 2019-08-20 燕山大学 A kind of compound copper bush of base steel and preparation method thereof
CN110144490B (en) * 2019-06-21 2020-11-17 燕山大学 Steel-based composite copper shaft sleeve and preparation method thereof
CN113915235A (en) * 2021-09-29 2022-01-11 安庆帝伯格茨缸套有限公司 Motor end cover shaft sleeve and preparation method thereof
KR102565487B1 (en) * 2023-05-23 2023-08-11 와이리퍼블릭 주식회사 Shoes for children

Also Published As

Publication number Publication date
JPH0610320B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
WO2008001789A1 (en) Cu-Ni-Sn COPPER BASE SINTERED ALLOY EXCELLENT IN WEAR RESISTANCE AND BEARING MEMBER MADE OF THE ALLOY
JPH0115579B2 (en)
JP2007515555A5 (en)
JPH11293368A (en) Copper sliding alloy
JPH0115584B2 (en)
JPS6296646A (en) Alloy member for pump shaft sleeve and bearing
JP5405725B2 (en) Sintered friction material
JPH0941069A (en) Wear resistant sintered oilless bearing low in mating attackability
JPH08170141A (en) Corrosion resistant cermet material excellent in wear resistance and toughness
JP2805923B2 (en) Iron-based sintered sliding material
JP2011132057A (en) Sintered compact
JPH0377868B2 (en)
JP2019077930A (en) Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material
JP2517675B2 (en) Sintered copper alloy for high load sliding
JPH0949047A (en) Wear resistant sintered alloy bearing low in counter part attackability
JPS5822305A (en) Fe base sintered and impregnated material excellent in resistance to corrosion and abrasion
JPH0115578B2 (en)
JPH0120223B2 (en)
JP4154643B2 (en) Cemented carbide square end mill with excellent chipping resistance with high-speed cutting.
JPS62133044A (en) Fe sintered material impregnated with cu
JPS6315985B2 (en)
JPS6092444A (en) Nonmagnetic sintered hard alloy
JP2004330455A (en) Toggle link bearing
JPH0676649B2 (en) Sintered trochoidal rotor for oil motor
JPH041061B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term