JPS6293634A - Microbe counter - Google Patents

Microbe counter

Info

Publication number
JPS6293634A
JPS6293634A JP23376185A JP23376185A JPS6293634A JP S6293634 A JPS6293634 A JP S6293634A JP 23376185 A JP23376185 A JP 23376185A JP 23376185 A JP23376185 A JP 23376185A JP S6293634 A JPS6293634 A JP S6293634A
Authority
JP
Japan
Prior art keywords
air
atp
sample air
extracted
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23376185A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tawaki
田脇 康広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP23376185A priority Critical patent/JPS6293634A/en
Publication of JPS6293634A publication Critical patent/JPS6293634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To make it possible to rapidly measure the number of microbes in air without requiring culture, by collecting microbes contained in sample air and generating luminescent reaction in extracted ATP to detect light. CONSTITUTION:When an air pump 6 is operated, air flows through a sample air line 5 from an sample air suction port 1 and is filtered by the membrane filter (MF)11 grasped by a flange 4 to be exhausted through a sample air exhaust port 7. MF11 moves to a chemical liquid tank 14 at every one rotation of a roller 8 and adenosine triphosphate ATP in a microbial cell collected on MF11 is sufficiently contacted with a tris-EDTA buffer solution 15 and extracted. Extracted ATP advances onto the chemical solution tank 18 and reacted with a luciferin/luciferase reagent to generate bio-luminescent reaction. The light emitted at this time is condensed to a light condensing box and detected by a photomultiplier tube 23 through a condensing lens 22 and subjected to signal processing by a signal processing part 24 to quantity ATP.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気中の微生物を計測する微生物カウンターに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a microorganism counter for measuring microorganisms in the air.

従来の技術 従来、空気中の微生物数を計測する場合、落下法や衝突
法などで空気中の微生物を適切な培地に受け、その培地
を適切な条件で一定時間培養し、生成したコロニー数を
微生物数として計測していた。
Conventional technology Traditionally, when measuring the number of microorganisms in the air, microorganisms in the air are placed in an appropriate medium using the drop method or impact method, the medium is cultured under appropriate conditions for a certain period of time, and the number of colonies generated is counted. It was measured as the number of microorganisms.

発明が解決しようとする問題点 このように従来の空気中の微生物計測法では、培養とい
う過程が避けられないため、微生物数が判明するのは細
菌で24〜48時間程度、真菌で2〜7日程度を要して
いた。このため、食品工場や製薬工場など微生物制御が
必要な場所で、万一安全基準を越える微生物が発生した
としても、直ちに適切な措置がとられず、その結果、食
中毒や製品不良などが発生し問題となっていた。
Problems to be Solved by the Invention As described above, in the conventional method for measuring microorganisms in the air, the culture process is unavoidable, so the number of microorganisms can be determined for about 24 to 48 hours for bacteria and 2 to 7 hours for fungi. It took about a day. For this reason, even if microorganisms that exceed safety standards occur in places where microbial control is required, such as food factories and pharmaceutical factories, appropriate measures are not taken immediately, resulting in food poisoning and product defects. It was a problem.

本発明は、上記問題点に鑑み、迅速に空気中の微生物数
を計測することのできる微生物カウンターを提供するこ
とを目的としたものである。
In view of the above-mentioned problems, the present invention aims to provide a microorganism counter that can quickly measure the number of microorganisms in the air.

問題点を解決するための手段 この問題点を解決するために、本発明の微生物カウンタ
ーは、空気をサンプルエアとして吸引し、サンプルエア
に含まれる微生物を捕集する手段と、前記捕集手段によ
り捕集された微生物からATPを抽出する手段と、前記
ATP抽出手段により抽出されたATPにルミネッセン
ス反応を起こさせる手段と、前記ルミネッセンス反応の
結果として得られる光を検出する手段とを有したもので
あ親作  用 この構成によって、空気中の微生物数を計測する場合、
サンプルエア中に存在する微生物は、捕集手段により捕
集され、ATP抽出手段により体内のATPが取り出さ
れる。その抽出されたATPはルシフェリン・ルシフェ
ラーゼ系試薬と一定条件下でバイオルミネッセンス反応
を起こし発光する。この光を検出することにより、サン
プルエア中の微生物数を知ることができることとなる。
Means for Solving the Problem In order to solve this problem, the microorganism counter of the present invention includes means for sucking air as sample air and collecting microorganisms contained in the sample air, and a means for collecting microorganisms contained in the sample air. It has a means for extracting ATP from the collected microorganisms, a means for causing a luminescence reaction in the ATP extracted by the ATP extraction means, and a means for detecting light obtained as a result of the luminescence reaction. With this configuration, when measuring the number of microorganisms in the air,
Microorganisms present in the sample air are collected by the collection means, and ATP in the body is extracted by the ATP extraction means. The extracted ATP undergoes a bioluminescence reaction with a luciferin/luciferase reagent under certain conditions to emit light. By detecting this light, the number of microorganisms in the sample air can be determined.

実施例 以下、本発明の一実施例を図にもとづいて説明する。サ
ンプルエアライン6には、サンプルエア吸引口1、サン
プルエア流量調節弁2、フレキシブル継手3、フランジ
4、エアポンプ6、サンプルエア排気ロアが取付けられ
ている。す〉′プルエアライン5に接に接して設けられ
た突起部8aを有するローラー8がサンプルエア吸引口
1、サンプルエア排気口γ側にそれぞれ設けられている
EXAMPLE Hereinafter, an example of the present invention will be explained based on the drawings. A sample air suction port 1, a sample air flow rate control valve 2, a flexible joint 3, a flange 4, an air pump 6, and a sample air exhaust lower are attached to the sample air line 6. A roller 8 having a protrusion 8a provided in contact with the pull air line 5 is provided on the side of the sample air suction port 1 and the sample air exhaust port γ, respectively.

ローラー9とローラー10の間には孔径0.2μmで親
水性のメンブランフィルタ−11が張られており、ロー
ラー1oはベルト13によりモーター12に連結されて
いる。このメンブランフィルタ−11は途中フランジ4
内に挿入させている。フランジ4内を出たメンズフィル
ター11は第1薬液槽14に達し、その第1薬液槽14
中にはトリス(O,OSモルヒドロキシメチルアミンメ
タン)EDTA(エチレンジアミン四酢酸)緩衝液16
が貯えられ、ローラー16がメンブランフィルタ−(以
下MFと称す)11と接触することによりトリスEDT
A緩衝液16を十分にMFllに含浸させる。この第1
薬液槽14底部にはヒータ17が設けられている。第1
薬液槽14を出たMFllは第2薬液槽18に達し、そ
の第2薬液槽18中にはルシフェリン・ルシフェラーゼ
試iとマグネシウムイオンを含む浴液19が貯えられ、
ローラー20が回転しながらMFllと接触することに
よす、ルシフェリン・ルシフェラーゼ試薬とマグネシウ
ムイオンを含む溶液19を十分にMFll  に含浸さ
せることができる。この第2薬液槽18を出たMF 1
1 上でルミネッセンス反応し、それによる光を集める
だめの集光ボックス21を設け、集光ボックス21の上
部には集光レンズ、および集光レンズ22によって得ら
れた光を検出して電気的な信号を出す光電子増倍管23
を設け、この光電子増倍管23からの信号を処理する信
号処理部24を設けている。
A hydrophilic membrane filter 11 with a pore diameter of 0.2 μm is placed between the rollers 9 and 10, and the roller 1o is connected to a motor 12 by a belt 13. This membrane filter 11 has a flange 4 in the middle.
It is inserted inside. The men's filter 11 that has exited the flange 4 reaches the first chemical tank 14 .
Inside is Tris (O, OS mol hydroxymethylamine methane) EDTA (ethylenediaminetetraacetic acid) buffer solution 16
When the roller 16 contacts the membrane filter (hereinafter referred to as MF) 11, Tris-EDT is stored.
Thoroughly impregnate MFll with A buffer solution 16. This first
A heater 17 is provided at the bottom of the chemical tank 14 . 1st
The MFll that has exited the chemical solution tank 14 reaches the second chemical solution tank 18, and a bath solution 19 containing luciferin/luciferase test i and magnesium ions is stored in the second chemical solution tank 18.
By contacting the MFll while the roller 20 rotates, the MFll can be sufficiently impregnated with the solution 19 containing the luciferin/luciferase reagent and magnesium ions. MF 1 that has exited this second chemical tank 18
1. A light collecting box 21 is provided to collect the light generated by the luminescence reaction on the top of the light collecting lens, and a light collecting lens is provided on the upper part of the light collecting box 21, and the light obtained by the collecting lens 22 is detected and electrically generated. Photomultiplier tube 23 that outputs a signal
A signal processing section 24 for processing signals from the photomultiplier tube 23 is provided.

以上のように構成された微生物カウンターについて以下
、その動作について説明する。
The operation of the microorganism counter configured as described above will be explained below.

エアポンプ6が運転されると、空気はサンプルエア吸引
口1からサンプルエア流量調節弁2で流量調節されなが
らサンプルエアライン6の中を流れ、フランジ4にはさ
まれたMFllで濾過され、サンプルエア排気ロアより
排出される。MFllの孔径は0.2 Sクロンでこれ
により空気中に浮遊する微生物をほぼ完全に捕集するこ
とができる。
When the air pump 6 is operated, air flows through the sample air line 6 from the sample air suction port 1 while being adjusted in flow rate by the sample air flow control valve 2, is filtered by the MFll sandwiched between the flanges 4, and the sample air is Exhausted from the exhaust lower. The pore size of MFll is 0.2 S chron, which makes it possible to almost completely capture microorganisms floating in the air.

MFllはローラー8が回転し、その突起部8aがサン
プルエアライン6に接触したときに7ランジ4はMFl
l から離れエアポンプ6は停止する。
When the roller 8 rotates and its protrusion 8a contacts the sample airline 6, the 7 langes 4
1 and the air pump 6 stops.

MFll から7ランジ4が離れている間に、モータ1
2が回転し、これがベルト13を介してローラー1oを
回転させ、これによりMFll が第1薬液槽14の方
に移動する。ローラー8の突起部8&がサンプルエアラ
イン6から離れると、MFllの移動は止まり、再び、
MFllは7ランジ4にはさ1れ、エアポンプ6が運転
されp過が続けられる。一方、移動したMFllは、ま
ず第1薬液槽14の上に止まるようにセットされる。フ
ランジ4にはさまれ空気をp過したMFllの上には、
空気中の微生物がほぼ100%捕集されているが、その
微生物体内のATP(アデノシン・ミリン酸)をトリス
EDTA緩衝液16と十分接触させることにより抽出で
きる。トリスEDTA緩衝液16はMFllの毛管現像
により十分に含浸される。またトリスEDTA緩衝液1
6けその活性度を高く保つためヒータ17により約10
0°Cに加温されている。抽出されたATPは、次に第
2薬液W118の上に進み、ルミネッセンス反応を行な
う。つまり、ルシフェリン・ルシフェラーゼ試薬とマグ
ネシウムイオンを含む溶液19が分子状酸素の存在下で
ATPと反応すると、発光現象を伴なう反応(ルミネッ
センス反応、あるいは、パイオルミネyセンス反応)を
起こす。これは、ATPが脱リン酸化されAMPとビロ
リン酸を生成し、ルシフェリン・ルシフェラーゼ・AM
Pと5合体となる。この複合体に分子状酸素が反応し、
オキジルシフェリンおよび炭酸ガスが生成し、AMPが
分離する。このとき、フォトンが放出され、ピークが5
62 nmの発光が起こるとされている。
While 7 lunge 4 is away from MFll, motor 1
2 rotates, which rotates the roller 1o via the belt 13, thereby moving the MFll toward the first chemical tank 14. When the protrusion 8 & of the roller 8 separates from the sample airline 6, the movement of the MFll stops and again.
The MFll is inserted into the 7-lunge 4, and the air pump 6 is operated to continue p-passage. On the other hand, the moved MFll is first set so as to stop on the first chemical liquid tank 14. On top of the MFll which is sandwiched between flanges 4 and passes air,
Almost 100% of the microorganisms in the air have been collected, and ATP (adenosine myric acid) within the microorganisms can be extracted by sufficiently contacting them with the Tris-EDTA buffer 16. Tris EDTA buffer 16 is thoroughly impregnated by capillary development of MFll. Also, Tris EDTA buffer 1
6 In order to keep the activity level of the mosquitoes high, the heater 17
It is heated to 0°C. The extracted ATP then advances onto the second chemical solution W118 and undergoes a luminescence reaction. That is, when the solution 19 containing the luciferin/luciferase reagent and magnesium ions reacts with ATP in the presence of molecular oxygen, a reaction accompanied by a luminescence phenomenon (luminescence reaction or pyoluminescence reaction) occurs. This is because ATP is dephosphorylated to produce AMP and birophosphate, and luciferin, luciferase, and AM
Combines with P and 5. Molecular oxygen reacts with this complex,
Oxyluciferin and carbon dioxide gas are produced and AMP is separated. At this time, photons are emitted and the peak is 5
It is said that 62 nm light emission occurs.

反応式を示すと、 Mg” ルシフェリン+ルシフェラーゼ+ATP  )ルシフェ
リン・ルシフェラーゼ・AMPルシフェリン・ルシフェ
ラーゼ・AMP+02−〉オキジルシフェリン+ルシフ
ェラーゼ+AMP +Co2 +hνのようになる。
The reaction formula is as follows.

このときの発光を集光ボックス21で集め、集光レンズ
22を介して光電子増倍管23で検出し、信号処理部2
4で信号処理してやれば、ATP量を定量することがで
きる。
The light emitted at this time is collected by a condensing box 21, detected by a photomultiplier tube 23 via a condensing lens 22, and then sent to a signal processing unit 2.
If signal processing is performed in step 4, the amount of ATP can be quantified.

発明の効果 以上のように本発明によれば、サンプルエアに含まれる
微生物を捕集する手段と、捕集された微生物からATP
を抽出する手段と、ルミネッセンス反応を起こさせる手
段と、光を検出する手段を有することにより、培養を必
要とせずに空気中の微生物数を計測できるため、迅速に
微生物数を知ることができる。
Effects of the Invention As described above, according to the present invention, there is provided a means for collecting microorganisms contained in sample air, and a means for collecting ATP from the collected microorganisms.
By having a means for extracting , a means for causing a luminescence reaction, and a means for detecting light, the number of microorganisms in the air can be measured without the need for culturing, so the number of microorganisms can be quickly determined.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例による微生物カウンターを示す構
成図である。 4・・・・・・7ランジ、6・・・・・・エアポンプ、
11・・・・・・メンブランフィルタ−114・・・・
・・第1薬液槽、16・・・・・トリスEDTA緩衝液
、16 、20・・・・・ローラー、18・・・・・・
第2薬液槽、19・・・・・ルシフェリン・ルシフェラ
ーゼ試薬とマグネシウムイオンを含む溶液、23・・・
・・・光電子増倍管。
The figure is a configuration diagram showing a microorganism counter according to an embodiment of the present invention. 4...7 lunge, 6...air pump,
11...Membrane filter-114...
...First chemical tank, 16...Tris EDTA buffer, 16, 20...Roller, 18...
Second chemical tank, 19... Solution containing luciferin/luciferase reagent and magnesium ion, 23...
...Photomultiplier tube.

Claims (1)

【特許請求の範囲】[Claims] 空気をサンプルエアとして吸引し、サンプルエアに含ま
れる微生物を捕集する手段と前記捕集手段により捕集さ
れた微生物からATP(アデノシン・ミリン酸)を抽出
する手段と、前記ATP抽出手段により抽出されたAT
Pにルミネッセンス反応を起こさせる手段と、前記ルミ
ネッセンス反応の結果として得られる光を検出する手段
とからなる微生物カウンター。
a means for sucking air as sample air and collecting microorganisms contained in the sample air; a means for extracting ATP (adenosine myric acid) from the microorganisms collected by the collecting means; and extraction by the ATP extracting means. AT
A microorganism counter comprising means for causing a luminescence reaction in P, and means for detecting light obtained as a result of the luminescence reaction.
JP23376185A 1985-10-18 1985-10-18 Microbe counter Pending JPS6293634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23376185A JPS6293634A (en) 1985-10-18 1985-10-18 Microbe counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23376185A JPS6293634A (en) 1985-10-18 1985-10-18 Microbe counter

Publications (1)

Publication Number Publication Date
JPS6293634A true JPS6293634A (en) 1987-04-30

Family

ID=16960158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23376185A Pending JPS6293634A (en) 1985-10-18 1985-10-18 Microbe counter

Country Status (1)

Country Link
JP (1) JPS6293634A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251063A (en) * 1988-08-12 1990-02-21 Hamamatsu Photonics Kk Detection of specific antigen or fine object having the same
JPH0265799A (en) * 1988-08-30 1990-03-06 Meidensha Corp Method for measuring intracellular substance
US5773710A (en) * 1994-03-18 1998-06-30 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Cellular material detection apparatus and method
JP2009017852A (en) * 2007-07-13 2009-01-29 Hitachi Plant Technologies Ltd Microorganism-measuring system
CN102191162A (en) * 2010-03-19 2011-09-21 南台湾环境科技股份有限公司 Real time detecting apparatus and method for microbial activity in air
KR101163641B1 (en) 2010-05-24 2012-07-06 연세대학교 산학협력단 airborne microbial measurement apparatus and measurement method using the microorganism dissolution system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251063A (en) * 1988-08-12 1990-02-21 Hamamatsu Photonics Kk Detection of specific antigen or fine object having the same
JPH0265799A (en) * 1988-08-30 1990-03-06 Meidensha Corp Method for measuring intracellular substance
US5773710A (en) * 1994-03-18 1998-06-30 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Cellular material detection apparatus and method
JP2009017852A (en) * 2007-07-13 2009-01-29 Hitachi Plant Technologies Ltd Microorganism-measuring system
CN102191162A (en) * 2010-03-19 2011-09-21 南台湾环境科技股份有限公司 Real time detecting apparatus and method for microbial activity in air
KR101163641B1 (en) 2010-05-24 2012-07-06 연세대학교 산학협력단 airborne microbial measurement apparatus and measurement method using the microorganism dissolution system

Similar Documents

Publication Publication Date Title
US5918259A (en) Cellular material detection apparatus and method
JP3228812B2 (en) How to measure viable cell count
US20070003997A1 (en) Method and apparatus for detecting bacteria
WO1992014838A1 (en) Method of determining viable count
PL189724B1 (en) Method of detecting presence and determining content of impurities and apparatus therefor 329009
JP2010193835A (en) Microbial detection apparatus, microbial detection method, and sample container used therein
CN106018508A (en) Novel high-sensitivity LM (listeria monocytogene) detection method based on aptamer modified porous alumina membrane
Dixon et al. The control and measurement of ‘CO2’during fermentations
JPS6293634A (en) Microbe counter
US8143019B2 (en) Portable microbiological testing device for gases
CN107271502A (en) A kind of photic electrochemical sensor and the method for determining DNA
KR102005674B1 (en) Method for measuring virus and mold in air
WO2006059359A1 (en) Measuring kit for microbe in liquid sample, and relevant measuring method and measuring apparatus
JP3998782B2 (en) Rapid measurement method of microbial count and filtration membrane used for it
WO2014061787A1 (en) Method for quantitative determination of biosubstance and instrument for quantitative determination of biosubstance
Karube Possible developments in microbial and other sensors for fermentation control
JP2824793B2 (en) Simultaneous automatic measurement of cell concentration and cell activity
JP2890128B2 (en) Yeast viable cell count method
JP3764711B2 (en) Tubular biodetection system
JPH05123186A (en) Determination of aerobic microorganism and apparatus therefor
KR20190083232A (en) Real-time bacteria measurement device by ATP detection
JPH03112495A (en) Detection of microorganism floating in air
JP2526638B2 (en) Method for quantifying microorganisms
JP3529453B2 (en) Method for selective detection of coliform bacteria
JPH0530997A (en) Measurement of cell number