JPH03112495A - Detection of microorganism floating in air - Google Patents

Detection of microorganism floating in air

Info

Publication number
JPH03112495A
JPH03112495A JP25068889A JP25068889A JPH03112495A JP H03112495 A JPH03112495 A JP H03112495A JP 25068889 A JP25068889 A JP 25068889A JP 25068889 A JP25068889 A JP 25068889A JP H03112495 A JPH03112495 A JP H03112495A
Authority
JP
Japan
Prior art keywords
amount
filter
air
microorganisms
atp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25068889A
Other languages
Japanese (ja)
Inventor
Masanori Toto
雅典 東都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP25068889A priority Critical patent/JPH03112495A/en
Publication of JPH03112495A publication Critical patent/JPH03112495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To simply and rapidly detect microorganisms floating in air by filtering specimen air by a filter having specific very small hole diameter and measuring the amount of adenosine-3-phosphate (ATP) caught on a filter. CONSTITUTION:In detecting microorganisms such as bacteria or fungi floating in air, specimen air is filtered by using a filter having <=2mum hole diameter, organisms existing in air are caught on the filter and the amount of ATP in the caught microorganisms is measured. The amount of ATP measured when specimen air is filtered by using the filter having 2mum hole diameter is an amount derived from fungi. The value obtained by subtracting the amount of ATP measured when specimen air is filtered by using the filter having 2mum hole diameter from the amount of ATP measured when specimen air is filtered by using a filter having <=0.45mum hole diameter is the amount of ATP derived from bacteria.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は食品、飲料、医薬品等の製造またはこれらの充
填、包装に係わる工場、半導体製造工場、あるいは厨房
施設、病院等における環境空気中に浮遊している微生物
を、微生物由来のアデノシン−3−リン酸(以下単にA
TPと略記する)の計測に基づいて検出する方法に関す
るものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to factories involved in the production of foods, beverages, pharmaceuticals, etc. or their filling and packaging, semiconductor manufacturing factories, kitchen facilities, hospitals, etc. Floating microorganisms are treated with microorganism-derived adenosine-3-phosphate (hereinafter simply A).
The present invention relates to a detection method based on measurement of TP (abbreviated as TP).

〈従来の技術〉 前記工場や施設、あるいは病院等においては、製品に対
する雑菌汚染や患者に対する細菌感染を防止する目的か
ら、工場内やクリーンルーム内、あるいは手術室、集中
治療室内等の室内の空気を常に清浄に保つことが必要で
あり、そのため、これらの環境空気中に浮遊している微
生物の量を常に把握することが重要な業務となっている
<Conventional Technology> In the factories, facilities, hospitals, etc., the air inside the factories, clean rooms, operating rooms, intensive care units, etc. is controlled to prevent bacterial contamination of products and bacterial infection of patients. It is necessary to keep the environment clean at all times, so it is important to constantly monitor the amount of microorganisms floating in the air.

空気中に浮遊している微生物としては、真菌(主に黴)
および細菌が代表的であり、このような微生物量の把握
には、従来から種々の分析方法が用いられている。
Microorganisms floating in the air include fungi (mainly mold)
and bacteria are typical examples, and various analytical methods have been used to determine the amount of microorganisms.

たとえば、寒天培地を拡げたシャーレを、測定すべき環
境空気中に所定時間放置して培地上に落下する微生物を
捕集した後(落下法)、あるいは検体空気をポンプによ
って吸引するとともに吸引した空気をシャーレ上に拡げ
た寒天培地上に吹き付けることによって検体空気中の微
生物を付着、捕集した後(吸引法)、培地を35℃にて
24〜72時間培養し、その後培地上に形成されたコロ
ニーを、たとえばその大きさによって真菌と細菌とに区
別するとともにそれぞれの個数を計数するという方法が
採用されている。
For example, after leaving a Petri dish with an agar medium spread out in the ambient air to be measured for a predetermined period of time and collecting microorganisms that fall onto the medium (dropping method), or after sucking the sample air with a pump and using the sucked air. After attaching and collecting microorganisms in the sample air by spraying them onto an agar medium spread on a petri dish (suction method), the medium was cultured at 35°C for 24 to 72 hours, and then the microorganisms formed on the medium were A method has been adopted in which colonies are classified into fungi and bacteria based on their size, and the number of each colony is counted.

また、最近では検体空気を孔径0.45μmフィルター
を用いて濾過して当該フィルター上に微生物を捕捉した
後、当該フィルターをフィルターごと培地上で培養し、
その後上述のようにして真菌と細菌の個数を計数すると
いった簡便法も採用されている。
In addition, recently, sample air is filtered using a 0.45 μm pore size filter to capture microorganisms on the filter, and then the filter is cultured on a medium together with the filter.
A simple method has also been adopted in which the number of fungi and bacteria is then counted as described above.

〈発明が解決しようとする問題点〉 しかしながら、上述のような従来の空気中浮遊微生物の
検出方法は、いずれも培地を用いて微生物の成育を行い
、その後培地上のコロニー数を計数するという方法であ
るから、培地プレートの調整やコロニー数の目視による
計数といった極めて専門的かつ煩雑な操作が必要であり
、しかも結果が判明するのは24時間以上も後になると
いう欠点があった。
<Problems to be solved by the invention> However, the conventional methods for detecting airborne microorganisms as described above all involve growing microorganisms using a medium and then counting the number of colonies on the medium. Therefore, extremely specialized and complicated operations such as adjusting the culture medium plate and visually counting the number of colonies are required, and the results are not known until 24 hours or more later.

一方、食品、飲料、医薬品、半導体製品等の製造工場、
あるいは病院等においては、その環境空気中に真菌、細
菌等の微生物がどの程度存在するかをいち早く知ること
は、製品の安全性や歩留まり向上の面で、あるいは細菌
感染防止の面で極めて重要なことであり、以前から簡単
かつ迅速な空気中浮遊微生物の検出法の出現が望まれて
いた。
On the other hand, manufacturing factories for food, beverages, pharmaceuticals, semiconductor products, etc.
In hospitals, etc., it is extremely important to know as early as possible the extent to which microorganisms such as fungi and bacteria are present in the ambient air, in order to improve product safety and yield, and to prevent bacterial infections. Therefore, there has long been a desire for a simple and rapid method for detecting airborne microorganisms.

本発明はかかる事情に鑑みてなされたものであり、上記
従来方法における操作の煩雑さを省略し、しかも微生物
がコロニーを形成するまでに要していた24〜72時間
という時間を極端に短縮する空気中浮遊微生物の検出法
を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and eliminates the complexity of operations in the conventional method described above, and furthermore, extremely shortens the time of 24 to 72 hours required for microorganisms to form a colony. The purpose is to provide a method for detecting airborne microorganisms.

〈問題点を解決するための手段〉 本発明は、空気中に浮遊している微生物を検出するにあ
たり、検体空気を孔径2μm以下のフィルターを用いて
濾過すること番こよって当該空気中に存在する微生物を
フィルター上に捕捉した後、捕捉した微生物中のアデノ
シン−3−リン酸の量を計測することを特徴とする空気
中浮遊微生物の検出法である。
<Means for solving the problem> The present invention, when detecting microorganisms floating in the air, filters sample air using a filter with a pore size of 2 μm or less, thereby detecting microorganisms present in the air. This is a method for detecting airborne microorganisms, which is characterized by capturing microorganisms on a filter and then measuring the amount of adenosine-3-phosphate in the captured microorganisms.

く作用〉 本発明の空気中浮遊微生物の検出法は、検体空気中に存
在する真菌や細菌等の微生物を孔径2μm以下のフィル
ターを用いて濾過、捕捉し、この捕捉した微生物の細胞
膜を、酸素、アニオン系界面活性剤等の溶菌剤を用いて
溶解して細胞中のATPを抽出し、更に抽出したATP
の量を生物発光現象を利用して定量し、当該ATP量に
基づいて検体空気中に存在する微生物量を検出するもの
である。
Effect> The method for detecting airborne microorganisms of the present invention involves filtering and capturing microorganisms such as fungi and bacteria present in the sample air using a filter with a pore size of 2 μm or less, and removing the cell membranes of the captured microorganisms from oxygen. , ATP in the cells is extracted by dissolving it using a lytic agent such as an anionic surfactant, and the extracted ATP is further extracted.
The amount of ATP is quantified using the bioluminescence phenomenon, and the amount of microorganisms present in the sample air is detected based on the amount of ATP.

上記ATPIの定量方法は、発光素であるルシフェリン
の存在下、発光酵素であるルシフェラーゼを用いて、そ
の発光量を螢光光度計(光電子検出管)にて電気的に検
出し、これをATP量に換算することによって行う。
The above method for quantifying ATPI uses luciferase, which is a luminescent enzyme, in the presence of luciferin, which is a luminescent substance, and electrically detects the amount of luminescence using a fluorophotometer (photoelectron detection tube). This is done by converting to

また、本発明法によれば濾過に使用するフィルターの孔
径を適宜選択することにより、真菌と細菌を区別して検
出することも可能であり、具体的には孔径2μmのフィ
ルターを用いて計測したATP量を真菌由来のATP量
とし、また孔径0.45μm以下のフィルターを用いて
計測したATP量と孔径2μmのフィルターを用いて計
測したATP量との差を、細菌由来のATP量とするも
のである。
Furthermore, according to the method of the present invention, by appropriately selecting the pore size of the filter used for filtration, it is possible to distinguish between fungi and bacteria. Specifically, ATP measured using a filter with a pore size of 2 μm The amount of ATP derived from fungi is defined as the amount of ATP derived from bacteria, and the difference between the amount of ATP measured using a filter with a pore size of 0.45 μm or less and the amount of ATP measured using a filter with a pore size of 2 μm is defined as the amount of ATP derived from bacteria. be.

〈実施例〉 以下に実施例をもって本発明の詳細な説明する。<Example> The present invention will be described in detail below with reference to Examples.

去詣■上 NASA (米国航空宇宙局)規格でクラス10,00
0のクリーンルーム、および一般の化学実験室において
、孔径0.4μmのフィルターと孔径2μmのフィルタ
ーのそれぞれを用いて室内の空気(検体空気)100f
を吸引濾過し、空気中の微生物を捕捉した。次に、これ
らのフィルターをATP測定用の小試験管にとり、tM
sco−Microsure−100にセットし、溶菌
酵素液を添加した。数分後、ここにルシフェリン、ルシ
フェラーゼを添加し、螢光発光量(ATP量)を計測し
た。計測結果を第1表に示す。
Class 10,00 according to NASA (National Aeronautics and Space Administration) standards
In a 0.0 clean room and a general chemical laboratory, 100 f of indoor air (sample air) was collected using filters with a pore size of 0.4 μm and a filter with a pore size of 2 μm.
was suction-filtered to capture microorganisms in the air. Next, these filters are placed in a small test tube for ATP measurement, and tM
It was set in sco-Microsure-100, and a lytic enzyme solution was added. After several minutes, luciferin and luciferase were added thereto, and the amount of fluorescence (ATP amount) was measured. The measurement results are shown in Table 1.

また、孔径0.4μmのフィルターを用いて濾過した場
合のATP量(Aとする。但し、単位は×10−10μ
g)と、孔径2μmのフィルターを用いて濾過した場合
のATP量(Bとする。同じく単位はx l Q−11
18g)とから、次式によって検体空気1001中の真
菌の個数および細菌の個数を計算した。なお、計算に際
しては、細菌1個あたりのATP量として1.2Xto
−I0μgATP/ c e 11の値を用い、真菌1
個あたりのATP量として、60X10−10#gAT
P/cellの値を用いた。
In addition, the amount of ATP (A) when filtered using a filter with a pore size of 0.4 μm.However, the unit is ×10-10 μm.
g) and the amount of ATP when filtered using a filter with a pore size of 2 μm (denoted as B. Similarly, the unit is x l Q-11
18g), the number of fungi and bacteria in the sample air 1001 was calculated using the following formula. In addition, when calculating, the amount of ATP per bacterium is 1.2Xto
Using a value of −I0 μg ATP/ce 11, fungal 1
As the ATP amount per piece, 60X10-10#gAT
The value of P/cell was used.

細菌数= (A−B)/1.2・・・・・■真菌数=B
/60     ・・・・・■結果を第1表に示す。
Number of bacteria = (A-B)/1.2...■ Number of fungi = B
/60...■The results are shown in Table 1.

比較例として、検体空気1oozを孔径0.45μmの
メンブレンフィルターを用いて濾過し、次いで当該フィ
ルターをフィルターごと寒天培地上に乗せて35℃にて
48時間培養し、培養後のコロニーを計数する従来法(
簡便法)を実施した。
As a comparative example, the conventional method involves filtering 1 oz of sample air using a membrane filter with a pore size of 0.45 μm, then placing the filter together with the filter on an agar medium, culturing it at 35°C for 48 hours, and counting the colonies after culturing. Law (
A simple method) was carried out.

結果を同じく第1表に示す。The results are also shown in Table 1.

第1表 具l1ll!1IIIB/11i。Table 1 Ingredients l1ll! 1IIIB/11i.

去ll」l 一般の化学実験室において、濾過空気量を50[10(
1、および2001と変えた場合のATP量、細菌数、
および真菌数の変化を、実施例1の場合と同様にして調
べた。ATP量、細菌数、真菌数の測定結果を第2表に
、また濾過空気量(1)とATP検出量との関係を添付
図面に示す。
In a general chemistry laboratory, the amount of filtered air is set to 50 [10 (
1, and the amount of ATP when changing from 2001, the number of bacteria,
And changes in the number of fungi were examined in the same manner as in Example 1. The measurement results of the amount of ATP, the number of bacteria, and the number of fungi are shown in Table 2, and the relationship between the amount of filtered air (1) and the detected amount of ATP is shown in the attached drawing.

比較例として、前記簡便法によっても同様な試験を行い
、その結果を第2表に示す。
As a comparative example, a similar test was conducted using the above-mentioned simple method, and the results are shown in Table 2.

上記各実施例に示したように、空気中浮遊微生物のフィ
ルターによる濾過捕捉に際しては、濾過に使用するフィ
ルターの孔径によって捕捉し得る微生物の種類が異なり
、孔径0.45μm以下のフィルターによる濾過では細
菌および真菌の両方を捕捉したこととなり、また孔径2
μmのフィルターによる濾過では、細菌は捕捉されずほ
ぼ真菌のみを捕捉したこととなることがわかる。従って
、前記工場や病院等における環境管理に際して、空気中
に存在する真菌の量だけを把握すればよい場合(たとえ
ば、食品産業分野においてはこのような管理を行うこと
がある)は、孔径2μmのフィルターを用いて計測した
ATP量を管理指標として用いればよく、真菌および細
菌の両方を把握する必要がある場合は、孔径0.45μ
m以下のフィルターを用いて計測したATP量、あるい
は当該ATP量と孔径2μmのフィルターを用いて計測
したATPIとの両方を管理指標として用いればよい。
As shown in the above examples, when airborne microorganisms are captured by a filter, the types of microorganisms that can be captured differ depending on the pore size of the filter used for filtration. This means that both the pore size and the fungus were captured, and the pore size was 2.
It can be seen that filtration with a μm filter did not capture bacteria but only captured fungi. Therefore, when controlling the environment in factories, hospitals, etc., if it is only necessary to determine the amount of fungi present in the air (for example, this type of control is sometimes carried out in the food industry), a pore size of 2 μm is recommended. The amount of ATP measured using a filter can be used as a control index, and if it is necessary to monitor both fungi and bacteria, a pore size of 0.45μ can be used.
The amount of ATP measured using a filter with a diameter of 2 μm or less, or both the amount of ATP and the ATPI measured using a filter with a pore size of 2 μm may be used as a management index.

また、本発明方法によれば、孔径2μmのフィルターを
用いて検体空気を濾過した場合のATP量を基にして、
前記0式によって真菌の個数を求めることができ、孔径
0.45μm以下のフィルターを用いて濾過した場合の
ATPIと、孔径2μmのフィルターを用いて濾過した
場合のATP量とを基にして、前記0式によって細菌の
個数を求めることができ、その結果は上記各実施例に示
したように従来法による測定結果とよく一致している。
Furthermore, according to the method of the present invention, based on the amount of ATP when sample air is filtered using a filter with a pore size of 2 μm,
The number of fungi can be determined by the above formula 0, and based on the ATPI when filtered using a filter with a pore size of 0.45 μm or less and the ATP amount when filtered using a filter with a pore size of 2 μm, The number of bacteria can be determined using Equation 0, and the results are in good agreement with the measurement results using the conventional method, as shown in the above examples.

なお、真菌および細菌の両方を捕捉したい場合に用いる
フィルターの孔径は、0.45μm以下であればいくつ
でもよいが、孔径があまり小さいと検体空気を濾過する
際にフィルターの目詰まりが生じて好ましくなく、実用
上は孔径0.20μm以上のものを用いるとよい。
Note that when it is desired to capture both fungi and bacteria, the pore size of the filter used may be any size as long as it is 0.45 μm or less, but if the pore size is too small, the filter will become clogged when filtering the sample air, so it is not preferable. For practical purposes, it is preferable to use a material with a pore diameter of 0.20 μm or more.

更に、従来法においては検体空気を濾過した際にフィル
ター上での微生物の重積が生じ易く、よって測定誤差が
大きいため、上記第2表に見られるように濾過空気量と
、検出された細菌数とが比例しないというような現象も
生じるが、本発明法においては微生物重積の影響を全く
受けないので、添付図面に示したごとく濾過空気量とA
TPliとはほぼ比例関係にあり、従ってより精度の高
い微生物の検出を行うことができる。
Furthermore, in the conventional method, when sample air is filtered, microorganisms tend to accumulate on the filter, resulting in large measurement errors. Although there may be a phenomenon where the number is not proportional to the amount of air, the method of the present invention is not affected by microbial status at all, so the amount of filtered air and A are not proportional to each other as shown in the attached drawing.
There is a substantially proportional relationship with TPli, and therefore microorganisms can be detected with higher accuracy.

く効果〉 本発明によれば、従来法のような菌体の培養や、生菌コ
ロニーの目視による計数といった煩雑かつ専門的な操作
および精度の低い定量、更に培養に24時間以上もかか
り、定量値を迅速に得られないといった問題点がすべて
解決される。その結果として、食品製造に関わる工場お
よび厨房施設、医薬品工場、半導体工場、病院等におけ
る室内の環境管理は簡便で正確かつ迅速なものとなり、
ひいては食品、医薬品の安全性および半導体製品の歩留
まり向上に貢献し、また病院においては患者に対する衛
生管理をより確実なものとすることができ、よって経済
的にも衛生的にも極めて効果が大きいものである。
Effects> According to the present invention, conventional methods require complicated and specialized operations such as culture of bacterial cells and visual counting of viable bacterial colonies, and low precision of quantification, and culture takes more than 24 hours, making quantification difficult. All problems such as not being able to obtain values quickly are solved. As a result, indoor environmental management in food manufacturing factories and kitchen facilities, pharmaceutical factories, semiconductor factories, hospitals, etc. has become simpler, more accurate, and faster.
This will ultimately contribute to improving the safety of food and medicine and the yield of semiconductor products, and in hospitals, it will be possible to ensure better hygiene management for patients, making it extremely effective both economically and hygienically. It is.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明法による濾過空気量とATP測定値と
の関係を示したグラフであり、直線(イ)は孔径2μm
のフィルターを用いて検体空気を濾過した場合、直線(
ロ)は孔径0.4μmのフィルターを用いて検体空気を
濾過した場合である。 濾過空気量 (0
The attached drawing is a graph showing the relationship between the amount of air filtered by the method of the present invention and the measured ATP value, and the straight line (A) indicates the pore diameter of 2 μm.
When sample air is filtered using a filter of
B) is the case where the sample air was filtered using a filter with a pore size of 0.4 μm. Filtered air amount (0

Claims (1)

【特許請求の範囲】 1、空気中に浮遊している真菌や細菌等の微生物を検出
するにあたり、検体空気を孔径2μm以下のフィルター
を用いて濾過することによって当該空気中に存在する微
生物をフィルター上に捕捉した後、捕捉した微生物中の
アデノシン−3−リン酸の量を計測することを特徴とす
る空気中浮遊微生物の検出法。 2、検体空気を孔径2μmのフィルターを用いて濾過し
た場合に計測されるアデノシン−3−リン酸の量を、真
菌由来のアデノシン−3−リン酸量とする請求項1記載
の空気中浮遊微生物の検出法。 3、検体空気を孔径0.45μm以下のフィルターを用
いて濾過した場合に計測されるアデノシン−3−リン酸
の量から、検体空気を孔径2μmのフィルターを用いて
濾過した場合に計測されるアデノシン−3−リン酸の量
を差し引いた値を、細菌由来のアデノシン−3−リン酸
量とする請求項1記載の空気中浮遊微生物の検出法。
[Claims] 1. When detecting microorganisms such as fungi and bacteria floating in the air, the microorganisms present in the air are filtered by filtering the sample air using a filter with a pore size of 2 μm or less. 1. A method for detecting airborne microorganisms, which comprises capturing the microorganisms above and then measuring the amount of adenosine-3-phosphate in the captured microorganisms. 2. The airborne microorganism according to claim 1, wherein the amount of adenosine-3-phosphate measured when sample air is filtered using a filter with a pore size of 2 μm is the amount of adenosine-3-phosphate derived from fungi. detection method. 3. From the amount of adenosine-3-phosphate measured when the sample air is filtered using a filter with a pore size of 0.45 μm or less, the amount of adenosine measured when the sample air is filtered using a filter with a pore size of 2 μm 2. The method for detecting airborne microorganisms according to claim 1, wherein the amount of adenosine-3-phosphate derived from bacteria is determined by subtracting the amount of -3-phosphate.
JP25068889A 1989-09-28 1989-09-28 Detection of microorganism floating in air Pending JPH03112495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25068889A JPH03112495A (en) 1989-09-28 1989-09-28 Detection of microorganism floating in air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25068889A JPH03112495A (en) 1989-09-28 1989-09-28 Detection of microorganism floating in air

Publications (1)

Publication Number Publication Date
JPH03112495A true JPH03112495A (en) 1991-05-14

Family

ID=17211570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25068889A Pending JPH03112495A (en) 1989-09-28 1989-09-28 Detection of microorganism floating in air

Country Status (1)

Country Link
JP (1) JPH03112495A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789778B1 (en) * 1994-03-18 2001-05-30 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Cellular material detection apparatus and method
US20120295301A1 (en) * 2010-01-19 2012-11-22 Noe Miyashita Floating bacteria trapping device, floating bacteria counting method and floating bacteria counting system
JP2015144581A (en) * 2014-02-03 2015-08-13 株式会社日立製作所 Microorganism measuring system and control method for the same
CN106662576A (en) * 2014-07-28 2017-05-10 Lg电子株式会社 Airborne micro-organism measurement apparatus and measurement method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789778B1 (en) * 1994-03-18 2001-05-30 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Cellular material detection apparatus and method
US20120295301A1 (en) * 2010-01-19 2012-11-22 Noe Miyashita Floating bacteria trapping device, floating bacteria counting method and floating bacteria counting system
JP2015144581A (en) * 2014-02-03 2015-08-13 株式会社日立製作所 Microorganism measuring system and control method for the same
CN106662576A (en) * 2014-07-28 2017-05-10 Lg电子株式会社 Airborne micro-organism measurement apparatus and measurement method therefor

Similar Documents

Publication Publication Date Title
Lundholm Comparison of methods for quantitative determinations of airborne bacteria and evaluation of total viable counts
Li Evaluation of microbial samplers for bacterial microorganisms
EP2455455B1 (en) Optical method and device for detection and enumeration of microorganisms
Kanaani et al. Performance of UVAPS with respect to detection of airborne fungi
WO2011044234A2 (en) Rapid peptidoglycan-based assay for detection of bacterial contamination
Abbasi et al. The effect of incubation temperature and growth media on index microbial fungi of indoor air in a hospital building in Shiraz, Iran
US20140077100A1 (en) Microorganism detecting apparatus calibration method and microorganism detecting apparatus calibration kit
JP4551294B2 (en) Medium for recovery of microorganisms in the presence of antibiotics
JP4771184B2 (en) Airborne bacteria collection device, airborne bacteria measurement method, and airborne bacteria measurement system
Haas et al. Comparative study of impaction and sedimentation in an aerosol chamber using defined fungal spore and bacterial concentrations
CN104313118A (en) Antibacterial efficacy detection method of diatom antibacterial material
JP2002510501A (en) Detection of microorganisms in gas
JPH03112495A (en) Detection of microorganism floating in air
Hasegawa et al. A study of bacterial culturability during bioaerosol challenge test using a test chamber
Pogner et al. A novel laminar-flow-based bioaerosol test system to determine biological sampling efficiencies of bioaerosol samplers
Urquhart et al. Simplified technique for counting the number of bacteria in urine and other fluids
Robine et al. Survival of a Pseudomonas fluorescens and Enterococcus faecalis aerosol on inert surfaces
Shintani Validation study of rapid assays of bioburden, endotoxins and other contamination
CN106290272A (en) A kind of method of real-time detection Atmospheric particulates bio-toxicity
Vanhee et al. Enumeration of airborne bacteria and fungi using solid phase cytometry
MACHER et al. Personal size-separating impactor for sampling microbiological aerosols
Crook Methods of monitoring for process micro-organisms in biotechnology
Smither Use of a Coulter counter to detect discrete changes in cell numbers and volume during growth of Escherichia coli
JP5030015B2 (en) Microbe measurement system
Turano et al. Quantification methods in microbiology