【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【発明の目的】[Object of the invention]
[産業上の利用分野] 本発明は、酵母を含む試料、例えば細菌と酵母を含む
食品中又は酵母を利用する食品製造工程における発酵媒
体中の酵母の生菌数を迅速・簡便に測定する方法に関す
る。 [従来の技術] (1) 背景 食品の品質管理上問題になるのは微生物汚染による品
質の劣化や食中毒である。従来の検査では、食中毒予防
の見地から主として病原細菌に注意が注がれてきたが、
今後は、非病原性の酵母にも検査体制を強化する必要が
ある。特に糖質を多く含む原料や食品は、保存中乃至運
搬中に酵母による発酵が進行し、発酵で生じた炭酸ガス
により容器が膨張したり又はアルコール等により風味が
劣化したりする。 (2) 従来技術の問題点 ところが、食品会社における一般の微生物検査におい
ては、大腸菌群で24時間以上を、カビ・酵母類では5日
を要する。最近開発された微生物の酵母活性測定法でも
6〜7時間を要し、作業も簡便ではない。 また、培養を要しない顕微鏡による生菌数の測定法で
も、溶液中の菌の濾過濃縮→タンニン酸処理→水
洗→染色→水洗→顕微鏡観察という6段階の作業
が必要であって、決して簡単な操作ではない。 以上類似した問題は、酒類等の酵母を利用する食品製
造工程における工程管理についても起こるが、上述のよ
うに、微生物検査には繁雑な無菌操作、培養等が必要で
あるため、どうしても操作が繁雑となり、効率化しにく
い性格をもっている。 [発明が解決しようとする課題] 以上の事情に鑑み、本発明は、新規な酵母生菌数の測
定方法を開発することによって、酵母生菌数検査におい
て、(1)作業時間の短縮、(2)多検体処理、(3)
検査精度の向上及び(4)熟練不要という利点を持つ簡
易迅速方法を提供するのを目的とする。[Industrial Application Field] The present invention provides a method for quickly and simply measuring the viable cell count of yeast in a sample containing yeast, for example, a food containing bacteria and yeast or in a fermentation medium in a food production process using yeast. About. [Prior Art] (1) Background Problems in quality control of foods are deterioration of quality due to microbial contamination and food poisoning. Conventional testing has focused primarily on pathogenic bacteria from the perspective of food poisoning prevention,
In the future, it is necessary to strengthen the inspection system for non-pathogenic yeast. In particular, raw materials and foods containing a large amount of carbohydrates undergo fermentation by yeast during storage or transport, and the container expands due to carbon dioxide gas generated by the fermentation, or the flavor deteriorates due to alcohol or the like. (2) Problems of the prior art However, in general microbiological tests in food companies, it takes 24 hours or more for coliform bacteria and 5 days for molds and yeasts. Even a recently developed method for measuring the yeast activity of microorganisms requires 6 to 7 hours, and the operation is not simple. In addition, the method of measuring the number of viable cells using a microscope that does not require cultivation requires a six-step operation of filtration and concentration of bacteria in the solution → tannic acid treatment → washing with water → staining → washing with water → microscopic observation. Not an operation. Similar problems also occur in the process control in the food manufacturing process using yeasts such as alcoholic beverages, but as described above, microbial testing requires complicated aseptic operations, culture, etc. It has the character that it is difficult to be efficient. [Problems to be Solved by the Invention] In view of the circumstances described above, the present invention has developed a novel method for measuring the number of viable yeast cells, whereby (1) shortening the working time, 2) Multi-sample processing, (3)
It is an object of the present invention to provide a simple and quick method having an advantage of improving inspection accuracy and (4) requiring no skill.
【発明の構成】Configuration of the Invention
[課題を解決するための手段] (1) 概要 本発明に係る酵母の生菌数測定法は、細菌と酵母の共
存物にキノンを添加し、発生する過酸化水素の量から生
存酵母菌体数を測定することを特徴とする。 以下、発明方法の原理その他、本発明の構成に関連す
る事項につき項分けして説明する。 (2) 原理 細菌、酵母及びカビ類は、いずれも細胞内のNAD
(P)H(還元型ニコチン酸アミドアデニンジヌクレオ
チド(リン酸))やATP(アデノシントリリン酸)をエ
ネルギー源として生命維持を行っているが、これらの微
生物に酸化型キノンを添加すると、酵母のみが過酸化水
素を生成する。この過酸化水素の生成機構は、外部から
添加した酸化型キノンが、細胞中のNAD(P)H:キノン
酸化還元酵母によって還元された後、溶存酸素と反応し
て酸化水素の生成をもたらすと考えられる。 これに反し、細菌類には外部の酸化型キノンを還元す
る膜酵素が欠けているか又はキノンを再酸化する系が存
在するのかいずれかであると考えられる。例えば、大腸
菌・バチルス・プロテウス等の細菌類と比較して、酵母
は100倍近くもの過酸化水素生成能力を持っている。ま
た0.5mMのメナジオンの存在下では、細菌類は1分間程
度で過酸化水素の生成を停止してしまうが、酵母は持続
的な過酸化水素生成をもたらす。従って、酵母との細菌
類との間におけるこのような生化学的差異を利用するこ
とにより、細菌類と酵母の混合物から特異的に酵母のみ
の生菌数を測定することができる。 (3) キノン 本発明において、キノンは細胞膜界面における水素原
子のキャリヤとして働き、細胞外の溶存酸素を過酸化水
素に変化させる。ここに使用されるキノンとしては、ベ
ンゾキノン、ナフトキノン、ジフェノキノン、アントラ
キノン等のキノン類及びそれらの誘導体を包含するが、
キノン基以外の易酸化性部分を有しないものが好まし
い。上記の代表的なキノン類は全て発明目的に利用でき
るが、生理物質である点で特に好適と思われるのは、ビ
タミンK3として知られる2−メチル−1,4−ナフノキノ
ン(メナジオン)である。 (4) 過酸化水素の定量 本発明において、還元型キノンの生成は公知の種々の
分析技術により測定できるが、現時点で指摘と思われる
のは、過酸化水素として定量する方法である。反応系中
生成した過酸化水素は、例えばシュウ酸のアリールエス
テルのような励起源物質と反応して1,2−ジオキセタン
ジオンの如き励起物質に変化し、後者は、例えばペリレ
ンのようなπ電子に富む蛍光物質のエネルギー準位を高
めることにより、これを発光させる。励起源物質として
シュウ酸ジフェニルエステルを、蛍光物質としてペリレ
ンを使用したときの反応は下式により概示される。 反応系中のキノンは、酸化型から還元型、還元型から
酸化型へと循環的に変化し、過酸化水素生成触媒として
作用する。 以上の発光反応による過酸化水素の定量精度は、107
〜10-3モル/リットルであって、所要時間は約10秒であ
る。一方細胞による過酸化水素の生成所要時間は、個々
の細胞の生理状態に依存するが、酵母(10μg/ml)では
30秒で検出可能な過酸化水素が生成する。故に、計約40
秒以内に酵母の生細胞数を測定することが可能である。 [作用] 本発明によれば、酵母単独又は酵母と細菌類とが存在
する食品中に酵母の生菌数を簡便かつ迅速に測定でき
る。即ち、当初酵母の生菌数と過酸化水素生産能との間
の相関を検量線として求めてさえおけば、この検量線を
基礎にして多数の試料中の酵母生菌数の測定が可能であ
る。特に、過酸化水素の定量に発光反応を利用すれば、
簡単に自動測定が可能となる。 [実施例] 以下、実施例により発明実施の態様を述べるが、例示
は説明用のもので、発明思想の限定を意図ものではな
い。 実施例1(過酸化水素の定量) アセトニトリル100mlに、60mgのTCPO(ビス(1,4,6−
トリクロロフェニル)オキサレート)と10mgのピレンを
溶解し、これを発光反応液とした。このTCPO液1mlに試
験料1mlを混合し、5秒間の発光カウントを測定した。 実施例2(酵母生菌数の測定) 麦芽エキス1%、酵母エキス0.5%及びグルコース2
%を含む培養液(pH5.8)にパン酵母(IFO 2044)を加
え、28℃で12〜18時間培養した。 得られた培養液を、50mMイミダゾール・硝酸(pH7.
0)にて希釈した後、メナジオンを0.25mMになるように
加え、30℃で3分間インキュベートした後、この溶液1m
lにTCPO液1mlを加え、直ちに5秒間の発光カウントを測
定した。 第1図に示すように、103個/ml〜107個/mlの細胞数を
速やかに測定することができた。念のため大腸菌又は芽
胞杆菌を10倍量添加しても、その影響は見られなかっ
た。 なお、検出感度を更に高めたいときは、酵母懸濁液を
メンブレンフィルターを用いて濾過、濃縮し、該メンブ
レンを50mMイミダゾール・硝酸(pH7.0中に浸漬した
後、メナジオンを添加する方法を採ればよい。このよう
にして例えば酵母を100倍に濃縮すると、10個/mlの測定
ができる。 実施例3(酵母の過酸化水素生産能上昇法) 実施例2の条件で培養した酵母を、50mMイミダゾール
硝酸(pH7.0)中に25℃、3日間放置しておくと、酵母
の過酸化水素生産能力は低下するが、この系にグルコー
スを添加すると、速やかに過酸化水素生産能が回復す
る。これはグルコースの添加により酵母の解糖系が作動
し、十分なNAD(P)Hが生じたものと考えられる。従
って、この現象を利用して、グルコースを添加して過酸
化水素生産能を高めた後、過酸化水素生産量を能力を定
量することによって、検出感度を高めることができる。 即ち、18時間培養した酵母培養液を溶媒(50mMイミダ
ゾール・硝酸pH7.0)を用いて1.4×107個/mlの酵母懸濁
液を調製し、25℃で3日間放置した後、同容量のTCPO液
を加えて、直ちに発光カウントを測定した。 第2図に示すように、グルコース添加後、速やかに過
酸化水素生産能力が高まることが分かる。[Means for Solving the Problems] (1) Overview The method for determining the viable cell count of yeast according to the present invention comprises adding quinone to coexisting bacteria and yeast, and determining the amount of viable yeast cells based on the amount of hydrogen peroxide generated. It is characterized in that the number is measured. Hereinafter, the principles of the method of the present invention and other matters related to the configuration of the present invention will be described separately. (2) Principle Bacteria, yeasts and molds are all intracellular NADs
(P) Life is maintained using H (reduced nicotinamide amide adenine dinucleotide (phosphate)) and ATP (adenosine triphosphate) as energy sources, but when oxidized quinone is added to these microorganisms, only yeast Produces hydrogen peroxide. The mechanism of hydrogen peroxide production is that oxidized quinone added from the outside is reduced by NAD (P) H: quinone redox yeast in cells and then reacts with dissolved oxygen to produce hydrogen oxide. Conceivable. On the contrary, it is thought that bacteria either lack a membrane enzyme that reduces external oxidized quinone or have a system that reoxidizes quinone. For example, compared to bacteria such as Escherichia coli, Bacillus, and Proteus, yeast has nearly 100 times the ability to generate hydrogen peroxide. In addition, in the presence of 0.5 mM menadione, bacteria stop producing hydrogen peroxide in about one minute, while yeast produces sustained hydrogen peroxide production. Therefore, by utilizing such a biochemical difference between yeast and bacteria, it is possible to specifically measure the viable cell count of only yeast from a mixture of bacteria and yeast. (3) Quinone In the present invention, quinone acts as a carrier for hydrogen atoms at the cell membrane interface, and changes extracellular dissolved oxygen into hydrogen peroxide. The quinone used herein includes quinones such as benzoquinone, naphthoquinone, diphenoquinone and anthraquinone and derivatives thereof,
Those having no oxidizable portion other than the quinone group are preferred. Representative quinones mentioned above can be used in all invention purposes, the be particularly preferred in that they are physiologically substance is a 2-methyl-1,4-Nafunokinon known as vitamin K 3 (menadione) . (4) Quantification of Hydrogen Peroxide In the present invention, the production of reduced quinone can be measured by various known analytical techniques, but what seems to be pointed out at present is a method of quantifying hydrogen peroxide. Hydrogen peroxide generated in the reaction system reacts with an excitation source material such as an aryl ester of oxalic acid to change into an excitation material such as 1,2-dioxetanedione, and the latter is a π electron such as perylene. By increasing the energy level of the fluorescent material rich in light, it emits light. The reaction when diphenyl oxalate is used as the excitation source material and perylene is used as the fluorescent substance is schematically shown by the following formula. The quinone in the reaction system changes cyclically from the oxidized form to the reduced form and from the reduced form to the oxidized form, and acts as a catalyst for producing hydrogen peroxide. Quantitative accuracy of hydrogen peroxide by more luminescent reaction, 10 7
1010 −3 mol / l, and the required time is about 10 seconds. On the other hand, the time required for the production of hydrogen peroxide by cells depends on the physiological state of individual cells, but in yeast (10 μg / ml)
Detectable hydrogen peroxide is produced in 30 seconds. Therefore, about 40
It is possible to measure the number of viable yeast cells within seconds. [Action] According to the present invention, the viable cell count of yeast can be simply and rapidly measured in a food containing yeast alone or yeast and bacteria. That is, as long as the correlation between the number of viable yeast cells and the ability to produce hydrogen peroxide is initially determined as a calibration curve, the number of viable yeast cells in a large number of samples can be measured based on this calibration curve. is there. In particular, if the luminescence reaction is used for the determination of hydrogen peroxide,
Automatic measurement can be easily performed. [Examples] Hereinafter, embodiments of the present invention will be described with reference to examples. However, the examples are for explanation, and are not intended to limit the inventive concept. Example 1 (Quantitative determination of hydrogen peroxide) In 100 ml of acetonitrile, 60 mg of TCPO (bis (1,4,6-
Trichlorophenyl) oxalate) and 10 mg of pyrene were dissolved, and this was used as a luminescence reaction solution. 1 ml of the test material was mixed with 1 ml of this TCPO solution, and the luminescence count for 5 seconds was measured. Example 2 (Measurement of viable yeast cell count) Malt extract 1%, yeast extract 0.5% and glucose 2
Baker's yeast (IFO 2044) was added to a culture solution (pH 5.8) containing the same, and cultured at 28 ° C. for 12 to 18 hours. The obtained culture solution was diluted with 50 mM imidazole / nitric acid (pH 7.
After dilution at 0), menadione was added to a concentration of 0.25 mM, and the mixture was incubated at 30 ° C. for 3 minutes.
1 ml of the TCPO solution was added to 1 liter, and the luminescence count for 5 seconds was measured immediately. As shown in FIG. 1, the cell number of 10 3 cells / ml to 10 7 cells / ml could be measured quickly. As a precaution, even if E. coli or spore bacilli were added in a 10-fold amount, no effect was observed. If it is desired to further increase the detection sensitivity, the yeast suspension is filtered and concentrated using a membrane filter, and the membrane is immersed in 50 mM imidazole / nitric acid (pH 7.0, followed by adding menadione). In this way, for example, when the yeast is concentrated 100 times, it is possible to measure 10 cells / ml Example 3 (Method for increasing the ability of yeast to produce hydrogen peroxide) Leaving the yeast in 50mM imidazole nitrate (pH 7.0) at 25 ° C for 3 days reduces the capacity of yeast to produce hydrogen peroxide, but when glucose is added to this system, the ability to produce hydrogen peroxide is quickly restored. It is considered that the glycolysis of yeast was activated by the addition of glucose, and sufficient NAD (P) H was generated, and thus, by utilizing this phenomenon, glucose was added to produce hydrogen peroxide. After enhancing the performance, hydrogen peroxide By quantifying the ability of quantity, it is possible to increase the detection sensitivity. In other words, suspended 1.4 × 10 7 cells / ml of the yeast with 18-hr cultured yeast culture solvent (50 mM imidazole nitrate pH 7.0) A suspension was prepared, left at 25 ° C. for 3 days, added with the same volume of TCPO solution, and immediately measured for luminescence count, as shown in FIG. It can be seen that is increased.
【発明の効果】【The invention's effect】
以上説明した通り、本発明によれば、食品その他の検
体中における酵母の生菌数を簡便かつ迅速に測定するこ
とができるから、食品の品質管理における省力化並びに
酵母を利用した発酵工業における合理化に寄与しうる。As described above, according to the present invention, the number of viable yeast cells in food and other specimens can be measured easily and quickly, so that labor saving in quality control of food and rationalization in the fermentation industry using yeast can be achieved. Can contribute to
【図面の簡単な説明】[Brief description of the drawings]
第1図は、酵母の個数と過酸化水素発生量との関係を示
すグラフ、第2図は、放置酵母液に対するグルコース添
加後の時間の経過とグルコース過酸化水素発生量との関
係を示すグラフである。FIG. 1 is a graph showing the relationship between the number of yeasts and the amount of hydrogen peroxide generated, and FIG. 2 is a graph showing the relationship between the passage of time after the addition of glucose to the left yeast solution and the amount of glucose hydrogen peroxide generated. It is.