JPS628455A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS628455A
JPS628455A JP60146556A JP14655685A JPS628455A JP S628455 A JPS628455 A JP S628455A JP 60146556 A JP60146556 A JP 60146556A JP 14655685 A JP14655685 A JP 14655685A JP S628455 A JPS628455 A JP S628455A
Authority
JP
Japan
Prior art keywords
electrode substrate
flow path
gas flow
thickness
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60146556A
Other languages
Japanese (ja)
Inventor
Koyo Otani
大谷 弘容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60146556A priority Critical patent/JPS628455A/en
Publication of JPS628455A publication Critical patent/JPS628455A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent crack of electrode substrate and improve reliability by forming the bottom part of gas flow path in the side of end portion of the first and second electrode substrates thicker than the side of center thereof. CONSTITUTION:The bottom part 9a of gas flow path 7 in the side of end part of first, second electrode substrates 8 (thickness t) is formed thicker than the center part thereof. Thereby, thickness t of the bottom part 9a of gas flow path 7 at the edge part of electrode substrate 8 is larger than the thickness t of bottom part 9a of other gas flow path 7 and a shearing stress by the largest shearing stress to be applied to the bottom part 9a of gas flow path 7 at the end part of electrode substrate 8 is alleviated. Thereby, crack of electrode substrate 8 can be prevented and reliability can also be improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to fuel cells.

〔発明の背景〕[Background of the invention]

第3図には燃料電池の従来例が示されている。 FIG. 3 shows a conventional example of a fuel cell.

同図に示されているように燃料′e池は一対のガス拡散
電極およびこれらの間に配設された電解質を有する単位
電池1a、この単位電池1aがセパレータ1bを介して
積層された電池本体をその積層方向から締付けるロッド
2.電池本体の側面に設けられ、電池本体に酸化剤ガス
および燃料ガスを給排するマニホルド3等を備えている
。なお同図において4は固定板、5はダミー電極、6は
電流引出し端子である。
As shown in the figure, the fuel cell has a unit cell 1a having a pair of gas diffusion electrodes and an electrolyte disposed between them, and a battery body in which the unit cells 1a are stacked with a separator 1b in between. 2. A rod that tightens from the stacking direction. The battery includes a manifold 3, etc., which is provided on the side surface of the battery body and supplies and discharges oxidant gas and fuel gas to and from the battery body. In the figure, 4 is a fixed plate, 5 is a dummy electrode, and 6 is a current extraction terminal.

そして一対のガス拡散電極は第4図にも示されているよ
うに一方の面に酸化剤ガス流路7al設。
As shown in FIG. 4, a pair of gas diffusion electrodes is provided with an oxidizing gas flow path 7al on one side.

け、他方の面に触媒(図示せず)全塗布した第1の電極
基板8aと、一方の面に燃料ガス流路7bを設け、他方
の面に触媒(図示せず)を塗布した第2の電極基板8b
とを有している。この第1゜第2の電極基板8a、8b
は夫々その触媒塗布面が電解質を介して対向し、ガス流
路7a、?bが直交するように配置される。なお、第1
.第2の電極基板8a、8bはその形状、構成が全く同
じなので、以下、第1.第2の電、翫基板3a、3bを
電極基板8、酸化剤ガス流路7a、燃料ガス流路7bを
ガス流路7と称する。なおまた同図において9はガス流
路7の底部である。
The first electrode substrate 8a has a catalyst (not shown) fully coated on the other surface, and the second electrode substrate 8a has a fuel gas passage 7b on one surface and has a catalyst (not shown) coated on the other surface. electrode substrate 8b
It has This first degree second electrode substrate 8a, 8b
have their catalyst-coated surfaces facing each other with an electrolyte interposed therebetween, and the gas flow paths 7a, ? b are arranged so that they are orthogonal. In addition, the first
.. Since the second electrode substrates 8a and 8b have exactly the same shape and configuration, the first electrode substrates 8a and 8b will be described below as follows. The second electrode substrates 3a and 3b are referred to as an electrode substrate 8, the oxidizing gas flow path 7a, and the fuel gas flow path 7b are referred to as a gas flow path 7. Furthermore, in the figure, 9 is the bottom of the gas flow path 7.

このように構成された燃料電池で複数個積層された単位
電池1aは、上述のようにロッド2でその積層方向から
締付けられるが、単位電池1aやセパレータ1b等には
その厚み方向に製作公差があるので、複数個を積層した
場合にその上面は水平にならず、鑞他基板8の周辺部に
対してその中央部側に凹凸が生じる。従ってこの状態で
ロッド2により固定板4を介して締付けられるので、電
極基板8には第5図にも示されているように、その端部
側のガス流路7に中央部側のガス流路7よシ大きな剪断
力Pが生じ、端部側に亀裂が生じることがある。このよ
うに亀裂が生じると、酸化剤ガスと燃料ガスとが亀裂を
介して混合し、正規の発電が期待できないのみならず、
燃焼あるいは爆発を起こし、燃料電池の機能を失ってし
まう不具合が生じる。なおこれに関するものとして特開
昭57−208077号公報がある。
The unit cells 1a, which are stacked with a plurality of fuel cells configured in this way, are tightened by the rods 2 from the stacking direction as described above, but the unit cells 1a, the separators 1b, etc. have manufacturing tolerances in the thickness direction. Therefore, when a plurality of solder plates are stacked, the upper surface thereof will not be horizontal, and unevenness will occur on the central side of the solder substrate 8 with respect to its peripheral area. Therefore, in this state, the rod 2 is tightened via the fixing plate 4, so that the electrode substrate 8 has gas flow from the center side to the gas passage 7 at the end side, as shown in FIG. A large shearing force P is generated on the path 7, and cracks may occur on the end side. When cracks occur in this way, oxidizing gas and fuel gas mix through the cracks, and not only can regular power generation not be expected.
This causes combustion or explosion, causing a problem that causes the fuel cell to lose its function. Regarding this, there is Japanese Unexamined Patent Publication No. 57-208077.

〔発明の目的〕 。[Object of the invention].

本発明は以上の点に鑑みなされたものであシ、電極基板
のV&裂を防止し、信頼性の向上を可能とした燃料電池
を提供することを目的とするもので)る。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a fuel cell that can prevent V& cracking of the electrode substrate and improve reliability.

〔発明の概要〕[Summary of the invention]

すなわち本発明は一対のガス拡散電極およびこれらの間
に配設され九′屯解質を有する単位電池、この単位電池
が積層された電池本体をその積層方向から締付けるロッ
ド、前記電池本体の側面に設けられ、前記電池本体にガ
スを給排するマニホルドを備え、前記一対のガス拡散’
dt iMは一方の面に酸化剤ガス流路を設け、他方の
面に触媒が塗布された第1の電極基板と、一方の面に燃
料ガス流路を設け、他方の面に触媒が塗布された第2の
電極基板とを有し、これら第1.第2の電極基板は夫夫
その触媒塗布面側が前記電解質を介して対向配置されて
いる燃料電池において1、前記第1.第2の電極基板の
端部側の前記ガス流路の底部の厚みが、中央部側のそれ
より大きく形成されたものであることを特徴とするもの
であシ、これによって第1.第2の電極基板の端部側の
ガス流路の底部の厚みが、中央部側の厚みよシ大きく形
成されるようになる。
That is, the present invention provides a pair of gas diffusion electrodes, a unit battery disposed between them and having a nine-ton solute, a rod for tightening the battery body in which the unit batteries are stacked in the stacking direction, and a rod attached to the side surface of the battery body. a manifold for supplying and discharging gas to and from the battery body;
dt iM has a first electrode substrate that has an oxidizing gas flow path on one side and a catalyst coated on the other side, and a first electrode substrate that has a fuel gas flow path on one side and has a catalyst coated on the other side. a second electrode substrate; The second electrode substrate is used in a fuel cell in which the catalyst-coated surfaces of the substrates are arranged opposite to each other with the electrolyte interposed therebetween. The second electrode substrate is characterized in that the thickness of the bottom of the gas flow path on the end side is larger than that on the center side. The bottom of the gas flow path on the end side of the second electrode substrate is formed to be thicker than the thickness on the center side.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。なお従来と
同じ部品には同じ符号を付したので説明を省略する。本
実施例では第1.第2の電極基板8の端部側のガス流路
7の底部9aの厚みtを、中央部側のそれより大きく形
成した。このようにすることによシミ極基板8の端部側
のガス流路7の底部9aの厚みtは、中央部側の厚みt
よシ大きく形成されるようになって、電極基板8の1裂
を防止し、信頼性の向上を可能とした燃料′電池を得る
ことができる。
The present invention will be explained below based on the illustrated embodiments. FIG. 1 shows an embodiment of the invention. Note that parts that are the same as those in the conventional system are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the first. The thickness t of the bottom 9a of the gas flow path 7 on the end side of the second electrode substrate 8 was formed to be larger than that on the center side. By doing this, the thickness t of the bottom 9a of the gas flow path 7 on the end side of the stain electrode substrate 8 is changed from the thickness t on the center side.
It is possible to obtain a fuel cell in which the electrode substrate 8 is formed in a larger size, thereby preventing the electrode substrate 8 from cracking and improving reliability.

すなわち電極基板8の端部側のガス流路7の底部9aの
厚みtを、中央部側の厚みtよシ大きくしたが、−極基
板8の最も肩部のガス流路7の底部9aの厚みtのみを
、この他のガス流路7の底部9aの厚みtより大きく形
成した。このようにすることによシミ極基板8の最も端
部のガス流路7の底部9aの厚みtが、この他のガス流
路7の底部9aの厚みtよシ大きく形成されるようにな
って、電極基板8の最端部のガス流路7の底部9aにか
かる最も大きな剪断力による剪断応力が緩和されるよう
になシ、電極基板8の亀裂が防止でき、信頼性を向上で
きる。
That is, the thickness t of the bottom 9a of the gas passage 7 on the end side of the electrode substrate 8 is made larger than the thickness t on the center side, but the thickness t of the bottom 9a of the gas passage 7 on the shoulder-most part of the electrode substrate 8 is Only the thickness t was formed larger than the thickness t of the bottom portion 9a of the other gas flow path 7. By doing this, the thickness t of the bottom 9a of the gas flow path 7 at the end of the stain electrode substrate 8 is made larger than the thickness t of the bottom 9a of the other gas flow path 7. As a result, the shear stress due to the largest shear force applied to the bottom 9a of the gas flow path 7 at the end of the electrode substrate 8 is alleviated, thereby preventing cracks in the electrode substrate 8 and improving reliability.

第2図には本発明の他の実施例が示されている。Another embodiment of the invention is shown in FIG.

本実施例では電極基板8のガス流路7の底部9aの厚み
tl、電・1基板8の中央部側になるほど小さく、端部
側になるほど大きく形成した。このようにすることによ
り電極基板8のガス流路7の底部9aの厚みtは、電極
基板8の中央部側になるほど小さく、端部側になるほど
大きく形成されるようになって、電極基板8のガス流路
7の底部9aにかかる剪断応力を均一にすることができ
るようになり、前述の場合と同様な作用効果を奏するこ
とができる。
In this embodiment, the thickness tl of the bottom 9a of the gas flow path 7 of the electrode substrate 8 is formed so that it becomes smaller toward the center of the electrode substrate 8 and becomes larger toward the ends. By doing this, the thickness t of the bottom portion 9a of the gas flow path 7 of the electrode substrate 8 becomes smaller toward the center of the electrode substrate 8 and becomes larger toward the end portions of the electrode substrate 8. The shearing stress applied to the bottom 9a of the gas flow path 7 can be made uniform, and the same effects as in the case described above can be achieved.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は電極基板の亀裂が防止され、信頼
性が向上するようになって、電極基板の亀裂を防止し、
信頼性の向上を可能とした燃料電池を得ることができる
As mentioned above, the present invention prevents cracks in the electrode substrate, improves reliability, and prevents cracks in the electrode substrate.
A fuel cell with improved reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料電池の一実施例の電極基板の縦断
側面図、第2図は本発明の燃料電池の他の実施例の1を
甑基板の縦断側面図、第3図は従来の燃料電池の縦断側
面図、第4図は従来の燃料電池の電極基板の斜視図、第
5図は従来の燃料電池のガス流路にかかる剪断応力の分
布状態を示す電極基板の縦断側面図である。 1a・・・単位電池、1b・・・セパレータ、2・・・
ロッド、3・・・マニホルド、4・・・固定板、7・・
・ガス流路、7a・・・酸化剤ガス流路、7b・・・燃
料ガス流路、8・・・電極基板、8a・・・第1の電極
基板、8b・・・第2の電極基板、9a・・・ガス流路
の底部、P・・・剪断力。
FIG. 1 is a longitudinal sectional side view of an electrode substrate of one embodiment of the fuel cell of the present invention, FIG. 2 is a longitudinal sectional side view of an electrode substrate of another embodiment of the fuel cell of the invention, and FIG. 3 is a conventional FIG. 4 is a perspective view of the electrode substrate of a conventional fuel cell, and FIG. 5 is a longitudinal side view of the electrode substrate showing the distribution of shear stress applied to the gas flow path of the conventional fuel cell. It is. 1a...Unit battery, 1b...Separator, 2...
Rod, 3... Manifold, 4... Fixed plate, 7...
- Gas flow path, 7a... Oxidizing gas flow path, 7b... Fuel gas flow path, 8... Electrode substrate, 8a... First electrode substrate, 8b... Second electrode substrate , 9a... bottom of gas flow path, P... shearing force.

Claims (1)

【特許請求の範囲】[Claims] 1、一対のガス拡散電極およびこれらの間に配設された
電解質を有する単位電池、この単位電池が積層された電
池本体をその積層方向から締付けるロッド、前記電池本
体の側面に設けられ、前記電池本体にガスを給排するマ
ニホルドを備え、前記一対のガス拡散電極は一方の面に
酸化剤ガス流路を設け、他方の面に触媒が塗布された第
1の電極基板と、一方の面に燃料ガス流路を設け、他方
の面に触媒が塗布された第2の電極基板とを有し、これ
ら第1、第2の電極基板は夫々その触媒塗布面側が前記
電解質を介して対向配置されている燃料電池において、
前記第1、第2の電極基板の端部側の前記ガス流路の底
部の厚みが、中央部側のそれより大きく形成されたもの
であることを特徴とする燃料電池。
1. A unit battery having a pair of gas diffusion electrodes and an electrolyte disposed between them; a rod that tightens the battery body in which the unit batteries are stacked in the stacking direction; a rod provided on the side surface of the battery body; The main body is equipped with a manifold for supplying and discharging gas, and the pair of gas diffusion electrodes have an oxidant gas flow path on one surface, a first electrode substrate coated with a catalyst on the other surface, and a first electrode substrate coated with a catalyst on the other surface. A fuel gas flow path is provided, and a second electrode substrate is coated with a catalyst on the other surface, and the catalyst coated surfaces of the first and second electrode substrates are arranged facing each other with the electrolyte interposed therebetween. In fuel cells that
A fuel cell characterized in that the thickness of the bottom of the gas flow path on the end side of the first and second electrode substrates is larger than that on the center side.
JP60146556A 1985-07-05 1985-07-05 Fuel cell Pending JPS628455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60146556A JPS628455A (en) 1985-07-05 1985-07-05 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60146556A JPS628455A (en) 1985-07-05 1985-07-05 Fuel cell

Publications (1)

Publication Number Publication Date
JPS628455A true JPS628455A (en) 1987-01-16

Family

ID=15410337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60146556A Pending JPS628455A (en) 1985-07-05 1985-07-05 Fuel cell

Country Status (1)

Country Link
JP (1) JPS628455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105474A (en) * 1987-10-16 1989-04-21 Ishikawajima Harima Heavy Ind Co Ltd Cooling method for fuel cell
JP2005183358A (en) * 2003-11-25 2005-07-07 Toyota Motor Corp Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105474A (en) * 1987-10-16 1989-04-21 Ishikawajima Harima Heavy Ind Co Ltd Cooling method for fuel cell
JP2005183358A (en) * 2003-11-25 2005-07-07 Toyota Motor Corp Fuel cell

Similar Documents

Publication Publication Date Title
KR101388318B1 (en) Solid oxide fuel cell
EP1117142A4 (en) Fuel cell and method of manufacture thereof
JPH0888018A (en) Solid polymer fuel cell
US4942099A (en) Fuel cell
JPS628455A (en) Fuel cell
JPH03119665A (en) Fuel cell fastening device
JPH03110761A (en) High temperature type fuel battery
JP2982559B2 (en) Fuel cell
EP3471185B1 (en) Fuel cell stack and separator for fuel cell stack
JP6817108B2 (en) Electrochemical reaction structure
JPS58129788A (en) Fused carbonate fuel cell layer body
JPH0613091A (en) Plate solid electrolyte fuel cell
JPH0529000A (en) Fuel cell
JPH0982346A (en) Plate-like solid electrolyte fuel cell
JPH0151027B2 (en)
JPH0615403Y2 (en) Fuel cell
JPS63307670A (en) Laminated fuel cell
JPS6113573A (en) Laminated construction of fuel cell
JP2022146310A (en) electrochemical reaction single cell
JP2002280052A (en) Structure to uniformly apply load on each power generating cell of fuel cell
JPH0418433B2 (en)
JP2022146309A (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH0426068A (en) Fuel cell
JP2023119076A (en) Composite body
JPH09161835A (en) Platelike solid electrolyte fuel cell