JPS58129788A - Fused carbonate fuel cell layer body - Google Patents
Fused carbonate fuel cell layer bodyInfo
- Publication number
- JPS58129788A JPS58129788A JP57011851A JP1185182A JPS58129788A JP S58129788 A JPS58129788 A JP S58129788A JP 57011851 A JP57011851 A JP 57011851A JP 1185182 A JP1185182 A JP 1185182A JP S58129788 A JPS58129788 A JP S58129788A
- Authority
- JP
- Japan
- Prior art keywords
- interconnector
- bank
- sides
- fuel cell
- top surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/244—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の縞する技術分野〕
一枚のエンボス加工した金属薄板で形成されるインタコ
ネクタを使用する溶融炭酸塩燃料電池積層体4二関する
。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a molten carbonate fuel cell stack 42 that uses interconnectors formed from a single embossed sheet metal sheet.
一般に燃料電池は、第1図に示されるような単位セルを
複数スタック上(二積み重ねた積Ii1構造として用い
られる。スタックの隣接した単位セルのアノード1及び
カソード2にアノードガスとカソードガスが混合しない
よう(二供給し、かつ、隣接した単位セルを電気的に厘
列に接続するため、金属薄板からなるインタコネクタを
挿入するのが一般的である。なお第1図(二おける単位
セルの3は電解質タイル、4は集電体、5はガスマニホ
ールドを形成したインタコネクタである。In general, a fuel cell is used as a structure in which a plurality of unit cells are stacked (two stacked) as shown in Fig. 1. Anode gas and cathode gas are mixed at the anode 1 and cathode 2 of adjacent unit cells in the stack It is common to insert an interconnector made of a thin metal plate in order to supply two units of electricity and to electrically connect adjacent unit cells in rows. 3 is an electrolyte tile, 4 is a current collector, and 5 is an interconnector forming a gas manifold.
るインタコネクタの概略構成を示す斜視図である。FIG. 2 is a perspective view showing a schematic configuration of an interconnector.
インタコネクタは、通常ステンレス鋼で構成され、2板
の波型薄板11.12の間(=平薄板15をはさんで、
溶接することによって作成される。The interconnector is usually made of stainless steel, and is placed between two corrugated thin plates 11 and 12 (with a flat thin plate 15 in between).
Created by welding.
波型薄板12の上に平薄板15をのせ、この上(二液型
薄板11を波型薄板12の谷14の方向が波型薄板11
の谷13の方向と直交するようにのせ、波型薄板11゜
12が同時に平薄板15と接触する点を溶接する。Place the flat thin plate 15 on top of the corrugated thin plate 12, and place the two-component thin plate 11 on top of the corrugated thin plate 12 so that the direction of the troughs 14 of the corrugated thin plate 12 is
The corrugated thin plates 11 and 12 are placed perpendicular to the direction of the valley 13, and the points where the corrugated thin plates 11 and 12 contact the flat thin plate 15 are welded at the same time.
このインタコネクタでは、金属薄板3枚で構成しなけれ
ばならず、厚みが大きくなることや、スポット溶接が必
要でセルザイズが大きくなるにつれ、スポット溶接点が
急速(二多くなるという欠点があった。This interconnector had to be constructed from three thin metal plates, which had the disadvantage that the thickness increased, spot welding was required, and as the cell size increased, the number of spot welding points increased rapidly (two). .
(従来例 2)
また他の積層体としては一部を第3図(a)に示すもの
が知られている。即ち燃料電池は第3図(1))(−外
形を示す電解質層を形成する電解質タイル21をカソー
ド電極22.アノード電極乙で挾み、更に′磁極22.
23の外側に中間部両面(−1頁線状に配したガス通路
となる凹凸部を設けた一枚の隔離板5が配着3れて周囲
接面を気警(二接合して積層化し構成される。各電極2
2.23は電解質タイル21の寸法より小さく、電解質
タイル21の凹部かに納まシ、かつ隔離板5の凹凸部を
槽う寸法となっている。(Conventional Example 2) Another laminate is known, a part of which is shown in FIG. 3(a). That is, in a fuel cell, an electrolyte tile 21 forming an electrolyte layer shown in FIG.
A separator plate 5 with concave and convex portions arranged in a line on both sides of the middle part (page 23) is placed on the outside of the 23, and a separator plate 5 is placed on both sides of the intermediate part (page 23) to protect the surrounding surface. Each electrode 2
2.23 is smaller than the size of the electrolyte tile 21, and has a size that fits into the recess of the electrolyte tile 21 and accommodates the uneven portion of the separator 5.
また電解質タイル21の対向する2辺に沿ってガス流通
用の貫通孔27が配列ちれ開けられてお9、積層化した
時には貫通孔d周囲に電解質タイル2]と隔離板5の間
i′″、ガス流通間隙を形成するための複数個の円錐突
部な有する間隔リング四が接面を気曽に取着δれる。In addition, through holes 27 for gas flow are arranged and opened along two opposite sides of the electrolyte tile 21. When stacked, the space between the electrolyte tile 2] and the separator 5 is spaced around the through hole d. A spacing ring 4 having a plurality of conical protrusions for forming a gas flow gap is attached to the contact surface to the air gap.
このよう(二構成されたもの(二おいては貫通孔27を
通して供給もれた燃料ガスA、酸化剤ガスBは間隔リン
グ四で交互に各流通間隙に送り込まれる。In this configuration (2), the fuel gas A and the oxidant gas B leaked through the through holes 27 are alternately fed into the respective flow gaps by the spacing ring 4.
敲化剤ガスBは第3図(a)における隔離板部の表面側
を、燃料ガスAは裏面側をそれぞれのガス通路を同一方
向に流れ各電極22.23に供給される。The abrasive gas B flows in the same direction through the gas passages on the front side of the separator part in FIG. 3(a), and the fuel gas A flows on the back side in the same direction, and is supplied to each electrode 22, 23.
上記構成の燃料電池(二おいては、′電解質タイルの周
辺部にカス流通の為比較的広幅(二わたる間隙を内部ガ
スマニホールドとして設けなければならず貫通孔周囲で
′@i、解質タイルを部分的に支λ−ることとなり電解
質タイルの破壊、電装の発生等の破損を招きや1−<、
特に積層数が増大するにしたがい多量のガスを流さねば
ならず寸法拡大とともに破損の旗が増大する。また電解
質タイル(=は貫通孔を開けなくてはならず加工工程を
複雑に1′る問題と、間隔リング部のガス流路の目詰り
発生等の問題がある。さらに* ′p!l質タイシタイ
ル部のガスマニホールド部位では電解質タイルi二亀裂
が発生した場合動作温度で燃料ガスと酸化剤ガスとの差
圧によって溶融した炭酸塩の保持の均衡が崩れ、ガスが
泡出し、交差混合が起りやすく、温度の上昇、下11m
よりこの交差混合はさらに顕著なものとなる問題がある
。またさら(′−電解質タイルの周辺にガスマニホール
ドを形成する為、電解質タイルの寸法に対する電極の存
在比が小チ<′電解質タイルの利用度合が少ないという
欠点を有している。A fuel cell with the above configuration (2) has a relatively wide gap around the electrolyte tile for gas flow (2 gaps must be provided as an internal gas manifold, and around the through-hole the electrolyte tile λ- may be partially supported, leading to damage such as destruction of the electrolyte tile and generation of electrical equipment.
In particular, as the number of laminated layers increases, a large amount of gas must flow, and as the size increases, the likelihood of damage increases. In addition, there are problems such as the need to drill through holes in electrolyte tiles, which complicates the processing process, and clogging of the gas flow path in the spacer ring. If two cracks occur in the electrolyte tile in the gas manifold section of the tie tile, the balance of retention of molten carbonate will be disrupted due to the differential pressure between the fuel gas and oxidizer gas at operating temperatures, causing gas to bubble and cross-mixing to occur. Easy, temperature rise, below 11m
There is a problem in that this cross-mixing becomes even more significant. Furthermore, since the gas manifold is formed around the electrolyte tile, the ratio of the electrodes to the size of the electrolyte tile is small.
本発明の目的は、一枚の金属薄板でインタコネクタを構
成するととも(二、外部マニホールド方式でガスを供給
できる溶融炭酸塩燃料゛電池積層体を提供すること(=
ある。The object of the present invention is to provide a molten carbonate fuel cell stack in which an interconnector is constructed from a single thin metal plate (2) and gas can be supplied using an external manifold method (=
be.
本発明は、上記目的を達成するため(=、一枚の金属薄
板の表裏に円錐台状(二突出した凸部を設け、上面の対
向する2辺に土手を設け、下面の対向する2辺で上面(
=土手のない2辺に土手を設け、かつ上面側の凸部は、
上面の対向する2辺の土手の長手方向に徐々に円状底部
の直径を減少させるとともに、下面側の凸BISは、下
面の対向する2辺の土手の長手方向に徐々に円状底部の
直径を減少させていくようにすることによって構成した
インクコネクタを使用した溶融炭酸塩燃料電池積地体で
ある。In order to achieve the above object, the present invention has two protruding convex portions on the front and back sides of a single thin metal plate, a bank on two opposing sides of the top surface, and two opposing sides of the bottom surface. on the top surface (
= Banks are provided on two sides without banks, and the convex part on the top side is
The diameter of the circular bottom gradually decreases in the longitudinal direction of the banks on the two opposing sides of the top surface, and the convex BIS on the bottom side gradually decreases the diameter of the circular bottom in the longitudinal direction of the banks on the two opposing sides of the bottom surface. This is a molten carbonate fuel cell stack using an ink connector constructed by decreasing the amount of molten carbonate.
次に本発明の1実施例を図面(二より説明する。 Next, one embodiment of the present invention will be explained from the drawings (see FIG. 2).
第4図は本発明の要部の斜視図で、符号(9)は単位セ
ルでインタコネクタ31を間に挿入して複数積層されて
いる。この積ノーされたものの積層面(−はそれぞれマ
ニホールドを形成する側板32が気密(二取着される。FIG. 4 is a perspective view of the main part of the present invention, in which a plurality of unit cells (9) are stacked with interconnectors 31 inserted between them. The side plates 32 forming the manifold are attached airtightly (2) on the laminated surfaces (-) of this laminated product.
なお単位セル30はアノード33.カソード35.電解
質タイル34で形成される。第5図は第4図で使用する
インタコネクタ31の斜視図で厚さ0.25 mmのS
US 316の金属薄板をオスメスの型にはさみ、上面
側、下面側(二円錐台状の凸部36.37を底部の最大
直径が2.3 mm最小直径がQ、5m〃+、突起の高
さが15mm、隣接する底部の中心間距離が37117
11で、上面側と下面側で凸部の底部の直径が直交する
方向(二順次小さくなるように形成されている。次に、
上面の凸部36の底部の直径が小8くなる方向に平行な
2辺に、単位セルの一方の電極積載用の肩部間を有する
厚さ2.1關のSUS 316の金属板を電子ビーム溶
接して土手39を形成し、上面の土手39を設けた2辺
と異なる2辺の下面に他方の電極積載用の肩部40を有
する厚さl、8rnrnのSUS 316の金属板を電
子ビーム溶接して土手41を形成しである。Note that the unit cell 30 has an anode 33. Cathode 35. It is formed of electrolyte tiles 34. Figure 5 is a perspective view of the interconnector 31 used in Figure 4.
Sandwich a US 316 metal thin plate between male and female molds, and measure the upper and lower sides (the biconical truncated protrusion 36.37 with a maximum diameter of 2.3 mm at the bottom and a minimum diameter of Q, 5 m + height of the protrusion). The length is 15mm, and the distance between the centers of adjacent bottoms is 37117
11, the diameter of the bottom of the convex portion is formed in a direction perpendicular to each other on the upper surface side and the lower surface side (the diameter decreases in the second order).Next,
A metal plate of SUS 316 with a thickness of 2.1 mm is placed on two sides parallel to the direction in which the diameter of the bottom of the convex portion 36 on the upper surface becomes smaller by 8 mm, and has a shoulder gap for loading one electrode of the unit cell. A bank 39 is formed by beam welding, and a metal plate of SUS 316 with a thickness l and 8rnrn, which has a shoulder 40 for loading the electrode on the lower surface of two sides different from the two sides on which the bank 39 is provided on the upper surface, is electronically welded. The bank 41 is formed by beam welding.
ついで、土手39.41の電解質タイル34と接触する
面42.43fニアルミナコーティングを行なっである
。Next, the surface 42.43f of the bank 39.41 that comes into contact with the electrolyte tile 34 is coated with nialumina.
こうして形成されたインタコネクタ31を使って、有効
面積145cy4、積層数加枚の本発明に係る溶融炭酸
塩燃料電池積層体を構成した。Using the thus formed interconnector 31, a molten carbonate fuel cell stack according to the present invention having an effective area of 145 cy4 and an additional number of layers was constructed.
このように構成された本発明によれば以下の効果が得ら
れる。According to the present invention configured in this way, the following effects can be obtained.
■重量は(従来例1)の半分、(従来例2)とほぼ同じ
。■Weight is half of (Conventional Example 1) and almost the same as (Conventional Example 2).
■(従来例1)に較べ多数のスポット溶接を必要としな
い。(2) No need for a large number of spot welds compared to (Conventional Example 1).
■(従来例2)(二較べ外部マニホールド方式でガスを
供給できるので電解質タイルの周辺(−穴をあける必要
が々い。(Conventional Example 2) (Compared to the two, gas can be supplied using an external manifold method, so it is necessary to drill holes around the electrolyte tiles.)
■(従来例2)(−較べ、電極の存在していない面積の
割合が小さい。30cm角の電解質タイルを用いた際(
従来例2)では電極は24cmX28czであったのに
対し本発明では30 cTLX 2゛7 cmとなり、
電極の占める割合が74.7%から90チに向上した。■ (Conventional Example 2) (- Compared to this, the proportion of the area where no electrode exists is small. When using a 30 cm square electrolyte tile (
In conventional example 2), the electrode was 24 cm x 28 cz, whereas in the present invention, it was 30 cTL x 2゛7 cm,
The ratio of electrodes increased from 74.7% to 90cm.
■(従来例2)では、燃料ガス側と酸化剤ガス間E 0
.3 kg/Crrtの差圧をかけ、常温〜650°C
と熱ザイクルを3度繰返した際に顕著なガスの交差混合
が起ったが、本発明ではこれを5度行っても顕著な交差
混合は起らなかった。■ (Conventional example 2), E 0 between the fuel gas side and the oxidant gas
.. Applying a differential pressure of 3 kg/Crrt, room temperature to 650°C
When the thermal cycle was repeated three times, significant cross-mixing of gases occurred, but in the present invention, even when this was repeated five times, no significant cross-mixing occurred.
以上(二述べた様に本発明のインタコネクタは部品点数
が少なく、軽量な周囲に土手を設けた1枚の金属薄板で
構成されながら、電極の占める面積の割合が大きく、ま
た外部マニホールド方式で燃料ガス、酸化剤ガスを供給
できるので電解質タイルの周辺部に穴をあける必要がな
くな!llマだその製造工程が簡易化されるので、その
工業的価値は非常に犬である。As mentioned above (2), although the interconnector of the present invention has a small number of parts and is composed of a single lightweight thin metal plate with a bank around it, the area occupied by the electrodes is large, and it is an external manifold type interconnector. Since fuel gas and oxidizer gas can be supplied, there is no need to make holes around the electrolyte tile, and the manufacturing process is simplified, so its industrial value is extremely high.
1、燃料極、酸化剤積載用の土手は、折り曲げ構造で形
成してもよい。1. The fuel electrode and the bank for loading the oxidizer may be formed with a bent structure.
2、金属薄板はSUS 316で構成したが、材質はこ
れに限らない。鋼板にNiクラッドでもよい。2. Although the metal thin plate is made of SUS 316, the material is not limited to this. A steel plate may be coated with Ni.
第1図は溶融炭酸塩燃料電池の基本構成を示す断面図、
第2図は従来例の1つに使用されるインタコネクタを示
す斜視図、第3図は他の従来例の要部を示す斜視図、第
4図は本発明に係る一実施例の要部を示す斜視図、第5
図は第4図のインタコネクタを示す斜視図である。
頷・・・単位セル、31・・・インタコネクタ36、3
7・・・凸部、 39.41・・・土手代理人
弁理士 則 近 憲 佑 (ほか1名)第 1
図
(ん)
ん
第4図
rFigure 1 is a sectional view showing the basic configuration of a molten carbonate fuel cell;
FIG. 2 is a perspective view showing an interconnector used in one of the conventional examples, FIG. 3 is a perspective view showing the main parts of another conventional example, and FIG. 4 is the main part of an embodiment according to the present invention. A perspective view showing the fifth
The figure is a perspective view showing the interconnector of FIG. 4. Nod...unit cell, 31...interconnector 36, 3
7...Convex, 39.41... Bank agent Patent attorney Noriyuki Chika (and 1 other person) 1st
Figure (n) Figure 4 r
Claims (1)
端薄板の表裏に円錐台状に突出した凸部を設け、上面の
対向する2辺(二土手を設け、下面の対向する2辺で上
面に土手のない2辺に土手を設け、かつ上面側の凸部は
、上面の対向する2辺の土手の長手方向C二徐々に円状
底部の直径を減少させると共に、また下面側の凸部は下
面の対向する2辺の土手の長手方向(二徐々(二円状底
部の直径を減少させていく様に構成した、一枚の金属薄
板をインタコネクタとし、このインタコネクタの上面と
下面と(二は互いに直交する方向に燃料ガスと酸化剤ガ
スを流す流路を形成した事を特徴とする溶融炭酸塩燃料
電池積層体。In a fuel cell that uses molten carbonized salt as an electrolyte, a truncated cone-shaped convex portion is provided on the front and back sides of one remaining thin plate, two opposing sides of the top surface (two banks are provided, and two opposing sides of the bottom surface are provided). A bank is provided on two sides without a bank on the top surface, and the convex part on the top surface side gradually decreases the diameter of the circular bottom in the longitudinal direction C2 of the bank on the two opposing sides of the top surface, and also on the bottom surface side. The convex part is an interconnector made of a single thin metal plate configured to gradually decrease the diameter of the two circular bottoms in the longitudinal direction of the banks on the two opposite sides of the bottom surface, and the top surface of this interconnector and A molten carbonate fuel cell stack, characterized in that a lower surface (2) is formed with a flow path through which a fuel gas and an oxidant gas flow in directions orthogonal to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57011851A JPS58129788A (en) | 1982-01-29 | 1982-01-29 | Fused carbonate fuel cell layer body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57011851A JPS58129788A (en) | 1982-01-29 | 1982-01-29 | Fused carbonate fuel cell layer body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58129788A true JPS58129788A (en) | 1983-08-02 |
Family
ID=11789219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57011851A Pending JPS58129788A (en) | 1982-01-29 | 1982-01-29 | Fused carbonate fuel cell layer body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58129788A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6226865U (en) * | 1985-07-31 | 1987-02-18 | ||
JPS62264564A (en) * | 1986-05-12 | 1987-11-17 | Ishikawajima Harima Heavy Ind Co Ltd | Stacked fuel cell |
JPH01320772A (en) * | 1988-06-23 | 1989-12-26 | Hitachi Ltd | Fuel cell |
JPH0515986U (en) * | 1991-08-16 | 1993-03-02 | 株式会社足立ライト工業所 | Pachinko machine winning ball discharge control device |
NL1001858C2 (en) * | 1994-12-08 | 1998-08-11 | Mtu Friedrichshafen Gmbh | Bipolar plate for fuel cells. |
US11255004B2 (en) | 2016-12-27 | 2022-02-22 | Honda Motor Co., Ltd. | Stainless steel |
-
1982
- 1982-01-29 JP JP57011851A patent/JPS58129788A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6226865U (en) * | 1985-07-31 | 1987-02-18 | ||
JPS62264564A (en) * | 1986-05-12 | 1987-11-17 | Ishikawajima Harima Heavy Ind Co Ltd | Stacked fuel cell |
JPH01320772A (en) * | 1988-06-23 | 1989-12-26 | Hitachi Ltd | Fuel cell |
JPH0515986U (en) * | 1991-08-16 | 1993-03-02 | 株式会社足立ライト工業所 | Pachinko machine winning ball discharge control device |
NL1001858C2 (en) * | 1994-12-08 | 1998-08-11 | Mtu Friedrichshafen Gmbh | Bipolar plate for fuel cells. |
US11255004B2 (en) | 2016-12-27 | 2022-02-22 | Honda Motor Co., Ltd. | Stainless steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5049458A (en) | Fuel cell | |
US5268241A (en) | Multiple manifold fuel cell | |
KR101388318B1 (en) | Solid oxide fuel cell | |
US6423436B1 (en) | Tubular electrochemical devices with lateral fuel aperatures for increasing active surface area | |
JP6868051B2 (en) | Electrochemical reaction unit and electrochemical reaction cell stack | |
JP5261440B2 (en) | Fuel cell stack | |
US9853308B2 (en) | Solid oxide fuel cell | |
JPS58129788A (en) | Fused carbonate fuel cell layer body | |
JP4683742B2 (en) | Fuel cell | |
JPH0443566A (en) | Solid electrolyte type fuel cell | |
JP3281821B2 (en) | Fuel cell | |
CA2435899A1 (en) | Fuel cell stack for vehicle | |
JP6890040B2 (en) | Electrochemical reaction cell stack | |
JP5100036B2 (en) | Fuel cell stack device, fuel cell stack coupling device and fuel cell | |
JPH06349512A (en) | Fuel cell | |
JP6945035B1 (en) | Electrochemical reaction cell stack | |
JP2014038758A (en) | Fuel cell and fuel cell stack | |
JPH0355764A (en) | Solid electrolytic type fuel cell | |
JP2009245632A (en) | Flat-plate solid oxide fuel cell | |
US11139486B2 (en) | Fuel cell stack having separators with protrusions | |
JPH06349511A (en) | Fuel cell | |
JPH10154519A (en) | Fuel cell separator | |
JP7186208B2 (en) | Electrochemical reaction cell stack | |
JP2018181405A (en) | Fuel cell power generation module | |
JPS58129787A (en) | Fused carbonate fuel cell layer body |