JPH06349511A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH06349511A
JPH06349511A JP5137646A JP13764693A JPH06349511A JP H06349511 A JPH06349511 A JP H06349511A JP 5137646 A JP5137646 A JP 5137646A JP 13764693 A JP13764693 A JP 13764693A JP H06349511 A JPH06349511 A JP H06349511A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
fuel
interconnector
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5137646A
Other languages
Japanese (ja)
Other versions
JP3443875B2 (en
Inventor
Shozo Kobayashi
章三 小林
Hiroshi Takagi
洋 鷹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP13764693A priority Critical patent/JP3443875B2/en
Publication of JPH06349511A publication Critical patent/JPH06349511A/en
Application granted granted Critical
Publication of JP3443875B2 publication Critical patent/JP3443875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a high-power and large-capacity fuel cell. CONSTITUTION:A fuel cell mainframe has single cells isolated in two lines in longitudinal and lateral directions to be planely arrayed in such a structure that these single cells and interconnectors 20-22 are in layers. Gas distributing plates 40, 41 are arranged at the upper and lower parts of the fuel cell mainframe. An oxygen gas supply groove 42 and an oxygen gas exhaust groove 43 are provided on the lower face of the gas distributing plate 40, both 42, 43 having the ends in branch structures. A fuel gas supply groove 44 and a fuel gas exhaust groove 45 are provided on the upper face of the gas distributing plate 41, these grooves having the ends in branch structures.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リン酸塩型、溶融炭酸
塩型、固体電解質型等の燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphate type, a molten carbonate type, a solid electrolyte type fuel cell and the like.

【0002】[0002]

【従来の技術と課題】一般にリン酸塩型、溶融炭酸塩
型、固体電解質型等の燃料電池では、アノード極及びカ
ソード極をそれぞれ表裏面に設けた電解質からなる単セ
ルとインタコネクタとを積み重ねた構造のものがある。
このタイプの燃料電池は、高出力化を図るために電解質
をできる限り薄膜化する必要がある。逆に、大容量化の
ためには単セルを大面積化する必要があり、単セルを大
面積化すればする程単セルにかかる応力も大きくなるの
で、単セルの厚みを厚くして機械的強度をあげなければ
ならない。従って、燃料電池を高出力化すると共に大容
量化することは困難であった。
2. Description of the Related Art Generally, in a fuel cell of a phosphate type, a molten carbonate type, a solid electrolyte type, etc., a single cell made of an electrolyte having an anode electrode and a cathode electrode respectively provided on the front and back surfaces and an interconnector are stacked. There are different structures.
In this type of fuel cell, it is necessary to make the electrolyte as thin as possible in order to achieve high output. Conversely, in order to increase the capacity, it is necessary to increase the area of the single cell, and the larger the area of the single cell, the greater the stress applied to the single cell. You have to increase your strength. Therefore, it has been difficult to increase the output and the capacity of the fuel cell.

【0003】この対策として、インタコネクタ相互間に
複数の単セルを並べて配設する構造が提案されている。
この場合、燃料電池に供給される燃料ガスや酸化ガスの
流路が問題となる。すなわち、燃料ガスや酸化ガスの流
路が長くなると、ガス供給口から排出口に至るまでの過
程でガスの消費が進み、排出口に近いほどガスの濃度が
低くなるからである。面状に並べて配設された複数の単
セル間においてガスの濃度分布が斑になると、発電斑が
起きて単セル内部に温度斑が発生し、熱応力によって単
セルに割れやひび等が発生する心配がある。また、燃料
電池に発生する電流の密度にも斑ができ、アノード極や
カソード極を劣化させる原因にもなる。
As a countermeasure against this, a structure has been proposed in which a plurality of single cells are arranged side by side between interconnectors.
In this case, the flow path of the fuel gas and the oxidizing gas supplied to the fuel cell becomes a problem. That is, when the flow path of the fuel gas or the oxidizing gas becomes long, the gas consumption progresses in the process from the gas supply port to the discharge port, and the concentration of the gas becomes lower toward the discharge port. If the gas concentration distribution becomes uneven between a plurality of single cells arranged side by side, unevenness in power generation causes temperature unevenness inside the single cells, and thermal stress causes cracks or cracks in the single cells. I have a concern. In addition, the density of the current generated in the fuel cell is uneven, which causes deterioration of the anode electrode and the cathode electrode.

【0004】そこで、本発明の課題は、インタコネクタ
相互間に複数の単セルを面状に並べて配設する構造を有
し、かつガスの濃度分布斑が小さい燃料電池を提供する
ことにある。
Therefore, an object of the present invention is to provide a fuel cell having a structure in which a plurality of single cells are arranged side by side between interconnectors and the gas concentration distribution unevenness is small.

【0005】[0005]

【課題を解決するための手段と作用】以上の課題を解決
するため、本発明に係る燃料電池は、(a) 電解質と
この電解質の表裏面にそれぞれ設けられたアノード極及
びカソード極からなる矩形状単セルと、インタコネクタ
とを積み重ねた積層構造体を有し、(b)前記インタコ
ネクタの間に前記矩形状単セルを縦横それぞれ二列にな
るように離隔して面状に並設し、(c)前記インタコネ
クタにガス流通用孔を田の字状に配設し、前記矩形状単
セルのそれぞれの周囲にガスマニホルドを設け、(d)
前記ガスマニホルドにガスを供給する、端部が分岐した
枝状構造のガス流通路を有しているガス集配部を、前記
積層構造体の端部に設けた、ことを特徴とする。インタ
コネクタに配設されたガス流通用孔の略半分がガス供給
路として用いられ、残りのガス流通用孔がガス排出路と
して用いられる。
In order to solve the above problems, the fuel cell according to the present invention comprises: (a) an electrolyte and a rectangular electrode composed of an anode electrode and a cathode electrode provided on the front and back surfaces of the electrolyte, respectively. A laminated structure in which a unit cell having a shape and an interconnector are stacked, and (b) the rectangular unit cells are arranged side by side in a two-dimensional array in the vertical and horizontal directions between the interconnectors. (C) The gas flow holes are arranged in a square shape in the interconnector, and a gas manifold is provided around each of the rectangular unit cells, (d)
It is characterized in that a gas collecting and distributing section for supplying gas to the gas manifold and having a gas flow passage having a branched structure with branched ends is provided at an end of the laminated structure. Approximately half of the gas distribution holes provided in the interconnector are used as gas supply paths, and the remaining gas distribution holes are used as gas discharge paths.

【0006】また、前記ガス流通路は先端に向かって2
の乗数の単位、つまり2分割の単位で順に分割されてい
るものが好ましい。この構造であればガスの流れがより
均等になる。以上の構成において、ガス(燃料ガスある
いは酸化ガス)は供給路として用いられるガス流通用孔
からアノード極あるいはカソード極に供給される。供給
されたガスは電解質を介して電極反応を起こす。反応後
のガスは排出路として用いられるガス流通用孔を通って
排出される。ガス流通用孔を一部に含んでいる各ガスマ
ニホルドには、端部が分岐した枝状構造をしているガス
流通路を有しているガス集配部から均一にガスが供給さ
れる。そして、各ガスマニホルドはインタコネクタの間
に並設された矩形状単セルのそれぞれの周囲に位置して
いるため、ガスは矩形状単セルに対して均等に供給さ
れ、かつ排出される。従って、ガスの濃度分布が斑にな
るという事態が生じない。
Further, the gas flow passage has two passages toward the tip.
It is preferable that the units are sequentially divided by a unit of a multiplier of, that is, a unit of two divisions. With this structure, the gas flow becomes more uniform. In the above structure, the gas (fuel gas or oxidizing gas) is supplied to the anode electrode or the cathode electrode from the gas flow hole used as the supply path. The supplied gas causes an electrode reaction via the electrolyte. The gas after the reaction is discharged through a gas flow hole used as a discharge passage. Gas is uniformly supplied to each of the gas manifolds, each of which partially includes a gas flow hole, from a gas collector / deliverer having a gas flow passage having a branched structure with branched ends. Since each gas manifold is located around each rectangular unit cell juxtaposed between the interconnectors, the gas is evenly supplied to and discharged from the rectangular unit cell. Therefore, the situation where the gas concentration distribution becomes uneven does not occur.

【0007】[0007]

【実施例】以下、本発明に係る燃料電池の一実施例を添
付図面を参照して説明する。図1は固体電解質型燃料電
池本体の構成を示すものである。固体電解質1は矩形状
をしており、その材料としてはY23を8mol%添加さ
れて安定したZrO2等が用いられている。カソード極
2は固体電解質1の上面に形成され、アノード極3は固
体電解質1の下面に形成されている。カソード極2は
(La,Sr)MnO3等のペロブスカイト型酸化物導
電材料からなり、アノード極3はNi・ZrO2サーメ
ット等からなる。固体電解質1とカソード極2とアノー
ド極3は、グリーンシート状にされたそれぞれの原料を
積み重ねて圧着した後、共焼結(同時に焼成すること)
することにより、カソード極2とアノード極3をそれぞ
れ上下面に設けた固体電解質1、すなわち、矩形状単セ
ル4とされる。単セル4は縦横それぞれ二列になるよう
に離隔して面状に配置される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the fuel cell according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows the structure of a solid oxide fuel cell body. The solid electrolyte 1 has a rectangular shape, and as a material thereof, ZrO 2 or the like which is stable with 8 mol% of Y 2 O 3 added is used. The cathode electrode 2 is formed on the upper surface of the solid electrolyte 1, and the anode electrode 3 is formed on the lower surface of the solid electrolyte 1. The cathode electrode 2 is made of a perovskite type oxide conductive material such as (La, Sr) MnO 3 and the anode electrode 3 is made of Ni.ZrO 2 cermet. The solid electrolyte 1, the cathode electrode 2, and the anode electrode 3 are cosintered (fired at the same time) after stacking the respective green sheet-shaped raw materials and press-bonding them.
As a result, the solid electrolyte 1 having the cathode 2 and the anode 3 provided on the upper and lower surfaces, that is, the rectangular single cell 4 is obtained. The unit cells 4 are arranged in a plane so as to be separated from each other in two rows in the vertical and horizontal directions.

【0008】各単セル4の上面にはそれぞれ集電体5
が、カソード極2に接触した状態で配置される。集電体
5は(La,Sr)MnO3等からなる多孔質体からな
る。各単セル4の下面にはそれぞれ集電体6が、アノー
ド極3に接触した状態で配置される。集電体6はNiメ
ッシュ等からなる。ガスケット10は田の字形状をして
おり、左右方向の中央柱部に酸化ガス供給用孔10aを
16個設け、外枠部の手前側及び奥側に酸化ガス排出用
孔10bをそれぞれ8個設けている。ガスケット10は
四つの穴部10cにそれぞれ集電体5を挿入した状態で
単セル4の上面に配置される。
A current collector 5 is provided on the upper surface of each unit cell 4.
Are arranged in contact with the cathode electrode 2. The current collector 5 is a porous body made of (La, Sr) MnO 3 or the like. On the lower surface of each unit cell 4, a current collector 6 is arranged in contact with the anode electrode 3. The current collector 6 is made of Ni mesh or the like. The gasket 10 is in the shape of a square, and 16 holes 10a for supplying oxidizing gas are provided in the central pillar portion in the left-right direction, and 8 holes 10b for discharging oxidizing gas are provided on the front side and the back side of the outer frame. It is provided. The gasket 10 is arranged on the upper surface of the unit cell 4 with the current collectors 5 inserted into the four holes 10c.

【0009】同様に、ガスケット11は田の字形状をし
ており、左右方向の中央柱部に酸化ガス供給用孔11a
を16個設け、前後方向の中央柱部に燃料ガス供給用孔
11bを16個設け、外枠部の手前側及び奥側に酸化ガ
ス排出用孔11cをそれぞれ8個設け、さらに外枠部の
右側及び左側に燃料ガス排出用孔11dをそれぞれ8個
設けている。ガスケット11は4つの穴部11eにそれ
ぞれ集電体5(あるいは6)を挿入した状態で単セル4
の上面(あるいは下面)に配置される。
Similarly, the gasket 11 is in the shape of a square, and the oxidizing gas supply hole 11a is formed in the central column portion in the left-right direction.
16 are provided, 16 fuel gas supply holes 11b are provided in the central pillar portion in the front-rear direction, and 8 oxidizing gas discharge holes 11c are provided on the front side and the rear side of the outer frame portion. Eight fuel gas discharge holes 11d are provided on each of the right side and the left side. The gasket 11 is a unit cell 4 with the current collectors 5 (or 6) inserted into the four holes 11e.
Is placed on the upper surface (or lower surface) of.

【0010】ガスケット12(図2及び図3参照)は田
の字形状をしており、前後方向の中央柱部に燃料ガス供
給用孔12aを16個設け、外枠部の左側及び右側に燃
料ガス排出用孔12bをそれぞれ8個設けている。ガス
ケット12は四つの穴部12cにそれぞれ集電体6を挿
入した状態で単セル4の下面に配置される。ガスケット
10と11、ガスケット11と11あるいはガスケット
11と12は縁部において接合し、酸化ガスや燃料ガス
を外気から遮断する。これらのガスケット10〜12は
セラミックファイバーとガラスの複合材等からなる。
The gasket 12 (see FIGS. 2 and 3) is in the shape of a square, and 16 fuel gas supply holes 12a are provided in the central column portion in the front-rear direction, and fuel is provided on the left and right sides of the outer frame portion. Eight gas discharge holes 12b are provided. The gasket 12 is arranged on the lower surface of the unit cell 4 with the current collectors 6 inserted into the four holes 12c. The gaskets 10 and 11, the gaskets 11 and 11, or the gaskets 11 and 12 are joined together at their edges to shield the oxidizing gas and the fuel gas from the outside air. These gaskets 10 to 12 are made of a composite material of ceramic fiber and glass.

【0011】インタコネクタ20は中央部の左右方向に
酸化ガス供給用孔20aを16個設け、手前側及び奥側
の縁部に酸化ガス排出用孔20bをそれぞれ8個設けて
いる。インタコネクタ20の下面には複数の溝20c
(図2及び図3参照)が所定の間隔で設けられており、
この溝20cによって酸化ガス30がカソード極2にゆ
きわたる。このインタコネクタ20は燃料電池の上部に
配置される。
The interconnector 20 is provided with 16 holes 20a for supplying oxidizing gas in the left and right direction of the central portion, and 8 holes 20b for discharging oxidizing gas are provided at the front and rear edges, respectively. The lower surface of the interconnector 20 has a plurality of grooves 20c.
(See FIGS. 2 and 3) are provided at a predetermined interval,
The oxidizing gas 30 spreads to the cathode 2 by the groove 20c. The interconnector 20 is arranged above the fuel cell.

【0012】インタコネクタ21は中央部の左右方向に
酸化ガス供給用孔21aを16個設け、中央部の前後方
向に燃料ガス供給用孔21bを16個設け、手前側及び
奥側の縁部に酸化ガス排出用孔21cをそれぞれ8個設
け、さらに右側及び左側の縁部に燃料ガス排出用孔21
dをそれぞれ8個設けている。インタコネクタ21の上
面及び下面にはそれぞれ複数の溝21e,21f(図2
及び図3参照)が所定の間隔で設けられており、溝21
eによって燃料ガス31がアノード極3にゆきわたり、
溝21fによって空気30がカソード極2にゆきわた
る。
The interconnector 21 has 16 holes 21a for supplying an oxidizing gas in the left and right direction at the center and 16 holes 21b for supplying a fuel gas in the front and rear direction at the center, and is provided at the front and rear edges. Eight holes 21c for discharging the oxidizing gas are provided respectively, and the holes 21c for discharging the fuel gas are further provided on the right and left edges.
Eight d's are provided. A plurality of grooves 21e and 21f (see FIG. 2) are formed on the upper surface and the lower surface of the interconnector 21, respectively.
And FIG. 3) are provided at predetermined intervals, and the groove 21
The fuel gas 31 spreads to the anode 3 by e,
Air 30 reaches the cathode 2 by the groove 21f.

【0013】インタコネクタ22(図2及び図3参照)
は中央部の前後方向に燃料ガス供給用孔22aを16個
設け、右側及び左側の縁部に燃料ガス排出用孔22bを
それぞれ8個設けている。インタコネクタ22の上面に
は複数の溝22cが所定の間隔で設けられており、この
溝22cによって燃料ガス31がアノード極3にゆきわ
たる。このインタコネクタ22は燃料電池の下部に配置
される。インタコネクタ20〜22の材料としては、ニ
ッケルクロム合金等の耐熱性合金が用いられる。
Interconnector 22 (see FIGS. 2 and 3)
Has 16 holes 22a for supplying fuel gas in the front-rear direction of the central part, and 8 holes 22b for discharging fuel gas at the right and left edges, respectively. A plurality of grooves 22c are provided on the upper surface of the interconnector 22 at predetermined intervals, and the fuel gas 31 spreads to the anode electrode 3 by the grooves 22c. The interconnector 22 is arranged below the fuel cell. As a material for the interconnectors 20 to 22, a heat resistant alloy such as a nickel chromium alloy is used.

【0014】以上の単セル4、集電体5,6、ガスケッ
ト10〜12及びインタコネクタ20〜22を積み重ね
て固体電解質型燃料電池とする。酸化ガス供給用マニホ
ルドは孔20a,10a,11a,21a及び単セル4
相互間の間隙が連通することにより形成され、酸化ガス
排出用マニホルドは孔20b,10b,11c,21c
が連通することにより形成され、燃料ガス供給用マニホ
ルドは孔22a,12a,11b,21b及び単セル4
相互間の間隙が連通することにより形成され、燃料ガス
排出用マニホルドは孔22b,12b,11d,21d
が連通することにより形成される。
The above single cell 4, current collectors 5, 6, gaskets 10-12, and interconnectors 20-22 are stacked to form a solid oxide fuel cell. The oxidant gas supply manifold includes the holes 20a, 10a, 11a, 21a and the unit cell 4.
The oxidant gas exhaust manifold is formed by communicating the gaps with each other, and the oxidant gas exhaust manifolds have holes 20b, 10b, 11c, 21c.
Are formed by communicating with each other, and the manifold for fuel gas supply has holes 22a, 12a, 11b, 21b and unit cell 4
The fuel gas exhaust manifolds are formed by communicating the gaps between them, and the fuel gas exhaust manifolds have holes 22b, 12b, 11d, 21d.
Are formed by communicating with each other.

【0015】次に、燃料電池本体の動作について図2及
び図3を参照して説明する。燃料ガス31は、インタコ
ネクタ22の燃料ガス用供給孔22aから燃料ガス供給
用マニホルドを通って各単セル4のアノード極3に導か
れる。同様に、酸化ガス30はインタコネクタ20の酸
化ガス用供給孔20aから酸化ガス供給用マニホルドを
通って各単セル4のカソード極2に導かれる。燃料電池
の内部は高温(約1000℃)に保持されており、カソ
ード極2に供給された酸化ガス30とアノード極3に供
給された燃料ガス31とが固体電解質1を介して電極反
応を起こし、単セル4の厚み方向に電流が流れる。反応
後の燃料ガス31は燃料ガス排出用マニホルドを通って
インタコネクタ22の燃料ガス用排出孔22bから排出
される。同様に反応後の酸化ガス30は酸化ガス排出用
マニホルドを通ってインタコネクタ20の酸化ガス用排
出孔20bから排出される。酸化ガス供給用マニホルド
と燃料ガス供給用マニホルドはインタコネクタの間に面
状に並設された単セル4のそれぞれの周囲に位置してい
るため、酸化ガス30と燃料ガス31は、これらの単セ
ル4に対して均等に供給される。
Next, the operation of the fuel cell body will be described with reference to FIGS. The fuel gas 31 is guided to the anode electrode 3 of each unit cell 4 from the fuel gas supply hole 22a of the interconnector 22 through the fuel gas supply manifold. Similarly, the oxidizing gas 30 is guided from the oxidizing gas supply hole 20a of the interconnector 20 to the cathode 2 of each single cell 4 through the oxidizing gas supply manifold. The inside of the fuel cell is maintained at a high temperature (about 1000 ° C.), and the oxidizing gas 30 supplied to the cathode 2 and the fuel gas 31 supplied to the anode 3 cause an electrode reaction through the solid electrolyte 1. A current flows in the thickness direction of the unit cell 4. The fuel gas 31 after the reaction passes through the fuel gas discharge manifold and is discharged from the fuel gas discharge hole 22b of the interconnector 22. Similarly, the oxidizing gas 30 after the reaction passes through the oxidizing gas discharging manifold and is discharged from the oxidizing gas discharging hole 20b of the interconnector 20. Since the oxidant gas supply manifold and the fuel gas supply manifold are located around each of the unit cells 4 arranged side by side in a plane between the interconnectors, the oxidant gas 30 and the fuel gas 31 are separated from each other. It is evenly supplied to the cells 4.

【0016】次に、図4に示すように、燃料電池本体の
上下にそれぞれガス集配板40,41を配設する。ガス
集配板41は図5に示すように、上面に燃料ガス供給溝
44および燃料ガス排出溝45が設けられている。燃料
ガス供給溝44及び燃料ガス排出溝45は、それぞれ一
方の端部に燃料ガス供給口44b及び燃料ガスは、口4
5bを設けている。他方の端部は分岐して枝状構造をし
ており、それぞれの終端部44a及び45aはインタコ
ネクタ22の燃料ガス供給用孔22a及び燃料ガス排出
用孔22bに連通する位置に設けられている。
Next, as shown in FIG. 4, gas collecting and distributing plates 40 and 41 are arranged above and below the fuel cell body. As shown in FIG. 5, the gas distribution plate 41 is provided with a fuel gas supply groove 44 and a fuel gas discharge groove 45 on the upper surface. The fuel gas supply groove 44 and the fuel gas discharge groove 45 have a fuel gas supply opening 44b and a fuel gas opening 4 at one end respectively.
5b is provided. The other end is branched and has a branched structure, and the respective end portions 44a and 45a are provided at positions communicating with the fuel gas supply hole 22a and the fuel gas discharge hole 22b of the interconnector 22, respectively. .

【0017】同様に、ガス集配板40は下面に酸化ガス
供給溝42及び酸化ガス排出溝43が設けられている。
酸化ガス供給溝42及び酸化ガス排出溝43は、それぞ
れ一方の端部に酸化ガス供給口42b及び酸化ガス排出
口43bを設けている。他方の端部は分岐して枝状構造
をしており、それぞれの終端部42a,43aはインタ
コネクタ20の酸化ガス供給用孔20a及び酸化ガス排
出孔20bに連通する位置に設けられている。ガス集配
板40,41の材料としては、ニッケルクロム合金等の
耐熱性合金が用いられる。
Similarly, the gas collecting and distributing plate 40 is provided with an oxidizing gas supply groove 42 and an oxidizing gas discharge groove 43 on the lower surface.
The oxidizing gas supply groove 42 and the oxidizing gas discharge groove 43 are provided with an oxidizing gas supply port 42b and an oxidizing gas discharge port 43b at one end respectively. The other end is branched and has a branched structure, and the respective end portions 42a and 43a are provided at positions communicating with the oxidizing gas supply hole 20a and the oxidizing gas discharge hole 20b of the interconnector 20. As a material of the gas collecting and distributing plates 40 and 41, a heat resistant alloy such as a nickel chromium alloy is used.

【0018】以上の構成からなる燃料電池において、酸
化ガス供給口42bに流入した酸化ガス30は端部が分
岐した枝状構造をしている酸化ガス供給溝42を通っ
て、インタコネクタ20に設けられている酸化ガス用供
給孔20aのそれぞれに均一に供給される。同様に、燃
料ガス供給口44bに流入した燃料ガス31は端部が分
岐した枝状構造をしている燃料ガス供給溝44を通っ
て、インタコネクタ22に設けられている燃料ガス用供
給孔22aのそれぞれに均一に供給される。そして、酸
化ガス排出用マニホルドと燃料ガス排出用マニホルドは
インタコネクタの間に面状に並設された単セル4のそれ
ぞれの周囲に位置しているため、反応後の酸化ガス30
と燃料ガス31はこれらの単セル4に対して均等に排出
される。この結果、酸化ガス30及び燃料ガス31が単
セル4に対して均等に供給され、かつ排出されるので、
ガス濃度分布斑が小さい固体電解質型燃料電池が得られ
る。また、ガス集配板40,41は、供給された酸化ガ
スや燃料ガスを燃料電池本体内に導入する前に予め加熱
する機能を有すると共に、燃料電池本体を冷却して過熱
から燃料電池を保護する機能を有する。
In the fuel cell having the above structure, the oxidizing gas 30 flowing into the oxidizing gas supply port 42b is provided in the interconnector 20 through the oxidizing gas supply groove 42 having a branched structure with branched ends. It is uniformly supplied to each of the oxidizing gas supply holes 20a. Similarly, the fuel gas 31 that has flowed into the fuel gas supply port 44b passes through the fuel gas supply groove 44 having a branched structure with the end portion branched, and then the fuel gas supply hole 22a provided in the interconnector 22. Is evenly supplied to each. Further, since the oxidizing gas discharging manifold and the fuel gas discharging manifold are located around each of the unit cells 4 arranged side by side in a plane between the interconnectors, the oxidizing gas after reaction 30
The fuel gas 31 is evenly discharged to these unit cells 4. As a result, since the oxidizing gas 30 and the fuel gas 31 are evenly supplied to and discharged from the single cell 4,
A solid oxide fuel cell having a small gas concentration distribution unevenness can be obtained. Further, the gas collecting and distributing plates 40 and 41 have a function of preheating the supplied oxidizing gas and fuel gas before introducing them into the fuel cell main body, and cool the fuel cell main body to protect the fuel cell from overheating. Have a function.

【0019】こうして得られた固体電解質型燃料電池を
1000℃にて稼動させた際の発電特性評価結果を図6
に示す(実線51)。ここに、単セル4は一辺が12c
mの正方形をしており、燃料ガスとして過湿水素ガスを
用い、酸化ガスとして空気を用いた。インタコネクタ2
0〜22の材料としては高温耐酸化性に優れているイン
コネル600(ニッケル74%、クロム15%、鉄8
%)を使用した。比較のため、図6にはインタコネクタ
の間に単セルを一つしか配設しない構造の固体電解質型
燃料電池の評価結果(一点鎖線52)と、ガス集配板を
備えない固体電解質型燃料電池の評価結果(点線53)
とを合わせて記載している。
FIG. 6 shows the power generation characteristic evaluation results when the solid oxide fuel cell thus obtained was operated at 1000 ° C.
(Solid line 51). Here, the unit cell 4 has a side of 12c
The squares of m were used, and super-humid hydrogen gas was used as the fuel gas and air was used as the oxidizing gas. Interconnector 2
As materials for 0 to 22, Inconel 600 (74% nickel, 15% chromium, 8 iron), which has excellent high temperature oxidation resistance.
%)It was used. For comparison, FIG. 6 shows an evaluation result (dashed line 52) of a solid oxide fuel cell having a structure in which only one unit cell is arranged between interconnectors, and a solid oxide fuel cell without a gas collecting plate. Evaluation result (dotted line 53)
And are also described.

【0020】図6に示すように、開回路状態(端子電流
が0[A])での端子電圧は、三者ともに略理論値通り
1.04[V]であった。一方、本実施例の燃料電池は
端子電流が増加しても端子電圧の低下量は小さい。とこ
ろが、比較例の燃料電池は端子電流が増加するにつれて
端子電圧が急速に低下している。特に、本実施例の燃料
電池の発電量は、インタコネクタの間に単セルを一つし
か配設しない構造の固体電解質型燃料電池の発電量の略
4倍であることが認められる。また、ガス集配板40,
41を備えない場合は、酸化ガス供給用マニホルドや燃
料ガス供給用マニホルドに酸化ガスや燃料ガスを均一に
供給することが不十分であるため、ガス濃度分布斑の抑
制が不十分であることが認められる。
As shown in FIG. 6, the terminal voltage in the open circuit state (the terminal current is 0 [A]) was 1.04 [V], which is almost the theoretical value. On the other hand, in the fuel cell of this example, the amount of decrease in the terminal voltage is small even if the terminal current increases. However, in the fuel cell of the comparative example, the terminal voltage rapidly decreases as the terminal current increases. In particular, it is recognized that the power generation amount of the fuel cell of this example is about four times that of the solid oxide fuel cell having a structure in which only one unit cell is arranged between the interconnectors. In addition, the gas distribution plate 40,
When 41 is not provided, it is insufficient to uniformly supply the oxidizing gas and the fuel gas to the oxidizing gas supply manifold and the fuel gas supply manifold, so that the suppression of the gas concentration distribution unevenness may be insufficient. Is recognized.

【0021】なお、本発明に係る燃料電池は前記実施例
に限定するものではなく、その要旨の範囲内で種々に変
形することができる。前記実施例では固体電解質型燃料
電池について説明したが、リン酸塩型や溶融炭酸塩型の
燃料電池であってもよい。また、ガス集配板のガス流通
路は、必ずしもガス集配板の表面に設けた溝である必要
はない。例えば、ガス集配板を水平方向に2分割し、そ
れぞれの分割面に溝を形成した後、分割面を接合するこ
とにより、ガス集配板内部に管状のガス流通路を設けて
もよい。
The fuel cell according to the present invention is not limited to the above embodiment, but can be variously modified within the scope of the gist thereof. Although the solid oxide fuel cell has been described in the above embodiment, it may be a phosphate type or molten carbonate type fuel cell. Further, the gas flow passage of the gas collecting and distributing plate does not necessarily have to be a groove provided on the surface of the gas collecting and distributing plate. For example, the gas collecting and distributing plate may be horizontally divided into two, grooves may be formed on the respective dividing surfaces, and then the dividing surfaces may be joined to each other to provide a tubular gas flow passage inside the gas collecting and distributing plate.

【0022】[0022]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、各ガスマニホルドには端部が分岐した枝状構造
をしているガス流通路を有しているガス集配部から均一
にガスが供給され、各ガスマニホルドはインタコネクタ
の間に並設された矩形状単セルのそれぞれの周囲に位置
しているので、ガスは各単セルに対して均等に供給かつ
排出され、ガス濃度分布斑を抑えることができる。この
結果、単セル内部に温度斑が発生しにくく、熱応力によ
る単セルの割れやひび等も発生しない、大出力かつ大容
量の燃料電池が得られる。また、燃料電池に発生する電
流の密度も一様となり、アノード極やカソード極を劣化
させる心配もない。
As is apparent from the above description, according to the present invention, each gas manifold is provided with a gas flow passage having a branch-like structure with branched ends so that a uniform distribution can be obtained from the gas collecting and distributing portion. The gas manifolds are located around each rectangular unit cell juxtaposed between the interconnectors, so that the gas is evenly supplied to and discharged from each unit cell. It is possible to suppress uneven density distribution. As a result, it is possible to obtain a high-output and large-capacity fuel cell in which temperature unevenness is unlikely to occur inside the unit cell, and the unit cell is not cracked or cracked due to thermal stress. Further, the density of the current generated in the fuel cell becomes uniform, and there is no concern that the anode and cathode will deteriorate.

【0023】また、ガス集配部を、燃料電池本体の端部
に設けることにより、供給ガスの予熱効果及び燃料電池
本体の冷却効果が得られ、燃料電池を小型化できる。
Further, by providing the gas collecting and distributing section at the end of the fuel cell body, the effect of preheating the supply gas and the effect of cooling the fuel cell body can be obtained, and the size of the fuel cell can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る燃料電池の一実施例を示すもの
で、燃料電池本体の組立て斜視図。
FIG. 1 shows an embodiment of a fuel cell according to the present invention, and is an assembled perspective view of a fuel cell main body.

【図2】図1のII−II断面図。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】図1のIII−III断面図。FIG. 3 is a sectional view taken along line III-III in FIG.

【図4】図1に示した燃料電池本体とガス集配板の組立
て斜視図。
FIG. 4 is an assembled perspective view of the fuel cell main body and the gas distribution plate shown in FIG.

【図5】図4に示したガス集配板の平面図。FIG. 5 is a plan view of the gas distribution plate shown in FIG.

【図6】図4に示した燃料電池の発電特性を示すグラ
フ。
6 is a graph showing power generation characteristics of the fuel cell shown in FIG.

【符号の説明】[Explanation of symbols]

1…固体電解質 2…カソード極 3…アノード極 4…単セル 21…インタコネクタ 21a…酸化ガス供給用孔(ガス流通用孔) 21b…燃料ガス供給用孔(ガス流通用孔) 21c…酸化ガス排出用孔(ガス流通用孔) 21d…燃料ガス排出用孔(ガス流通用孔) 40,41…ガス集配板 42…酸化ガス供給溝 43…酸化ガス排出溝 44…燃料ガス供給溝 45…燃料ガス排出溝 DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte 2 ... Cathode electrode 3 ... Anode electrode 4 ... Single cell 21 ... Interconnector 21a ... Oxidizing gas supply hole (gas distribution hole) 21b ... Fuel gas supply hole (gas distribution hole) 21c ... Oxidation gas Discharge hole (gas distribution hole) 21d ... Fuel gas discharge hole (gas distribution hole) 40, 41 ... Gas distribution plate 42 ... Oxidizing gas supply groove 43 ... Oxidizing gas discharge groove 44 ... Fuel gas supply groove 45 ... Fuel Gas exhaust groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質とこの電解質の表裏面にそれぞれ
設けられたアノード極及びカソード極からなる矩形状単
セルと、インタコネクタとを積み重ねた積層構造体を有
し、 前記インタコネクタの間に、前記矩形状単セルを縦横そ
れぞれ二列になるように離隔して面状に並設し、 前記インタコネクタにガス流通用孔を田の字状に配設
し、前記矩形状単セルのそれぞれの周囲にガスマニホル
ドを設け、 前記ガスマニホルドにガスを供給する、端部が分岐した
枝状構造のガス流通路を有しているガス集配部を、前記
積層構造体の端部に設けた、 ことを特徴とする燃料電池。
1. A laminate structure in which an electrolyte and a rectangular single cell composed of an anode electrode and a cathode electrode respectively provided on the front and back surfaces of the electrolyte and an interconnector are stacked, and between the interconnectors, The rectangular unit cells are arranged side by side so as to be separated into two rows each in the vertical and horizontal directions, and gas passage holes are arranged in a square shape in the interconnector, and each of the rectangular unit cells is arranged. A gas manifold is provided around the gas manifold, and a gas collector / distributor for supplying gas to the gas manifold is provided at an end of the laminated structure, the gas collector having a branched gas flow passage having a branched end. Is a fuel cell.
【請求項2】 ガス流通路が先端に向かって2分割され
ていることを特徴とする請求項1記載の燃料電池。
2. The fuel cell according to claim 1, wherein the gas flow passage is divided into two toward the tip.
JP13764693A 1993-06-08 1993-06-08 Fuel cell Expired - Fee Related JP3443875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13764693A JP3443875B2 (en) 1993-06-08 1993-06-08 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13764693A JP3443875B2 (en) 1993-06-08 1993-06-08 Fuel cell

Publications (2)

Publication Number Publication Date
JPH06349511A true JPH06349511A (en) 1994-12-22
JP3443875B2 JP3443875B2 (en) 2003-09-08

Family

ID=15203510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13764693A Expired - Fee Related JP3443875B2 (en) 1993-06-08 1993-06-08 Fuel cell

Country Status (1)

Country Link
JP (1) JP3443875B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052164A1 (en) * 1998-04-03 1999-10-14 Plug Power Inc. Pem-type fuel cell assembly having multiple parallel fuel cell sub-stacks
JP2004525479A (en) * 2000-07-18 2004-08-19 モトローラ・インコーポレイテッド Fuel cell array device
KR100446609B1 (en) * 2000-03-17 2004-09-04 삼성전자주식회사 Proton exchange membrane fuel cell and monopolar cell pack of direct methanol fuel cell
US7632599B2 (en) 2003-07-15 2009-12-15 Nitto Denko Corporation Separator for fuel cell and fuel cell using the same
US20170162879A1 (en) * 2014-08-27 2017-06-08 Murata Manufacturing Co., Ltd. Fuel cell unit
WO2021190757A1 (en) * 2020-03-26 2021-09-30 Eh Group Engineering Ag Fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052164A1 (en) * 1998-04-03 1999-10-14 Plug Power Inc. Pem-type fuel cell assembly having multiple parallel fuel cell sub-stacks
KR100446609B1 (en) * 2000-03-17 2004-09-04 삼성전자주식회사 Proton exchange membrane fuel cell and monopolar cell pack of direct methanol fuel cell
JP2004525479A (en) * 2000-07-18 2004-08-19 モトローラ・インコーポレイテッド Fuel cell array device
US7632599B2 (en) 2003-07-15 2009-12-15 Nitto Denko Corporation Separator for fuel cell and fuel cell using the same
US20170162879A1 (en) * 2014-08-27 2017-06-08 Murata Manufacturing Co., Ltd. Fuel cell unit
US10497944B2 (en) * 2014-08-27 2019-12-03 Murata Manufacturing Co., Ltd. Fuel cell unit
WO2021190757A1 (en) * 2020-03-26 2021-09-30 Eh Group Engineering Ag Fuel cell

Also Published As

Publication number Publication date
JP3443875B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
KR100696939B1 (en) Solid oxide fuel cell stacks
JPS63279574A (en) Temperature distribution improving method for fuel cell
JPH06290798A (en) Solid-state electrolytic type fuel cell
JP6093452B2 (en) Fuel cell stack and fuel cell module
JPH08222237A (en) Separator for fuel cell
US20160056492A1 (en) Fuel battery
JPS60253170A (en) Laminated fuel battery
EP0568991B1 (en) Solid-electrolyte fuel cell system
JPH05159790A (en) Solid electrolyte fuel cell
JPH0238377Y2 (en)
JP3443875B2 (en) Fuel cell
JPH06349512A (en) Fuel cell
JP2570771B2 (en) Fuel cell cooling method
JP6825084B2 (en) Fuel cell
JPH0355764A (en) Solid electrolytic type fuel cell
JPH05129033A (en) Solid electrolytic fuel cell
JPH0462757A (en) Solid electrolyte type fuel cell
JP2018181405A (en) Fuel cell power generation module
US11764389B2 (en) Fuel cell manifold having an embedded dielectric layer and methods of making thereof
US20220393219A1 (en) Fuel plenum and fuel cell stack including same
JPH033958Y2 (en)
JPH06342664A (en) Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate
JPH10294122A (en) Fused carbonate fuel cell
JP2517703B2 (en) Fuel cell
JPH06105625B2 (en) Molten carbonate fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees