JPH0888018A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell

Info

Publication number
JPH0888018A
JPH0888018A JP6221443A JP22144394A JPH0888018A JP H0888018 A JPH0888018 A JP H0888018A JP 6221443 A JP6221443 A JP 6221443A JP 22144394 A JP22144394 A JP 22144394A JP H0888018 A JPH0888018 A JP H0888018A
Authority
JP
Japan
Prior art keywords
tightening
power generation
fuel cell
plate
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6221443A
Other languages
Japanese (ja)
Inventor
Shigeki Kadoma
茂樹 門間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6221443A priority Critical patent/JPH0888018A/en
Publication of JPH0888018A publication Critical patent/JPH0888018A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To enhance sealing and power generating efficiency without largely increasing weight by installing a plurality of fastening means and fastening regions where a manifold part and a power generating part are located. CONSTITUTION: An end plate 21a is formed as a separating plate with a central plate 51 facing a power generating part and a frame-shaped plate 52 facing a manifold part. A fastening plate 23a has a plurality of taps passing through a part 61 in the direction of thickness, facing the central plate 51, of plate 21a, a bolt 62 is fixed to the tap, and pressure is applied to the power generating part by fastening the bolt 62 through the central plate 51. Fastening force is applied to the manifold part with a spring 25 and a bolt 26 through the frame-shaped plate 52. Fastening by the bolt 26 is adjusted to set fastening to the manifold part, and fastening by the bolt 62 is adjusted to set fastening to the power generating part. Without increasing the thickness of the fastening plate, suitable fastening is applied to the manifold part and the power generating part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解質として高分子イ
オン交換膜を用いる固体高分子型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell using a polymer ion exchange membrane as an electrolyte.

【0002】[0002]

【従来の技術】周知のように、固体高分子型燃料電池
は、動作温度が低いこと、出力密度が高く小型軽量化で
きること、電解質が固体であるため逸失がないこと、電
解質が腐食性でないので耐久性に富んでいることなどの
多くの利点を備えている。
2. Description of the Related Art As is well known, a polymer electrolyte fuel cell has a low operating temperature, a high output density and can be made compact and lightweight, and since the electrolyte is a solid, there is no loss, and the electrolyte is not corrosive. It has many advantages such as being durable.

【0003】ところで、このような固体高分子型燃料電
池は、単位電池1つ当りの出力電圧が低いため、通常、
図8に示すように、単位電池1を複数個積層した積層構
造に構成されている。
By the way, in such a polymer electrolyte fuel cell, since the output voltage per unit cell is low, it is usually
As shown in FIG. 8, it has a laminated structure in which a plurality of unit batteries 1 are laminated.

【0004】単位電池1は、それぞれ中央部分を除去し
て開口構成に形成された酸化剤通路形成用枠材2と、セ
ル収容枠材3と、燃料通路形成用枠材4と、水透過板収
容枠材5と、水通路形成用枠材6と、導電性セパレータ
板7とを上記順に積層可能に備えるとともに、酸化剤通
路形成用枠材2の開口部8に図9に示すように多孔性導
電材で形成された配流板9を配置し、セル収容枠材3の
開口部10に図10に示すように多孔性の酸化剤極1
1、高分子イオン交換膜12、多孔性の燃料極13から
なる三層構成のセル14を配置し、燃料通路形成用枠材
4の開口部15に図9に示すように多孔性導電材で形成
された配流板9を配置し、水透過板収容枠材5の開口部
16に図示しない水透過板を配置し、水通路形成用枠材
6の開口部17に図9に示す構造と同様に形成された図
示しない導電性の配流板を配置し、この状態で各枠材お
よび導電性セパレータ板7を積層したものとなってい
る。
The unit battery 1 has a frame member 2 for forming an oxidant passage, a cell containing frame member 3, a frame member 4 for forming a fuel passage, and a water permeable plate, each of which has a central portion removed to form an opening structure. The accommodating frame member 5, the water passage forming frame member 6, and the conductive separator plate 7 are provided so as to be laminated in the above order, and the opening 8 of the oxidant passage forming frame member 2 has a porous structure as shown in FIG. A flow distribution plate 9 made of a conductive conductive material is arranged, and a porous oxidizer electrode 1 is provided in an opening 10 of the cell housing frame member 3 as shown in FIG.
1, a three-layered cell 14 composed of a polymer ion exchange membrane 12 and a porous fuel electrode 13 is arranged, and a porous conductive material is used in the opening 15 of the fuel passage forming frame member 4 as shown in FIG. The formed flow distribution plate 9 is arranged, a water permeable plate (not shown) is arranged in the opening 16 of the water permeable plate accommodating frame member 5, and the opening 17 of the water passage forming frame member 6 has the same structure as shown in FIG. A conductive flow distribution plate (not shown) is formed, and each frame member and the conductive separator plate 7 are laminated in this state.

【0005】なお、酸化剤通路形成用枠材2、セル収容
枠材3、燃料通路形成用枠材4、水透過板収容枠材5、
水通路形成用枠材6は、それぞれ絶縁材で形成されてい
る。また、各枠材および導電性セパレータ板7には、上
記枠材によって形成される酸化剤通路、燃料通路、水通
路にそれぞれ酸化剤、燃料、水を分配供給した後に排出
させるための内部マニホールドを構成する孔18が積層
方向に重合する関係に形成されている。
The oxidant passage forming frame member 2, the cell containing frame member 3, the fuel passage forming frame member 4, the water permeable plate containing frame member 5,
The water passage forming frame member 6 is made of an insulating material. In addition, each frame member and the conductive separator plate 7 are provided with an internal manifold for distributing and supplying the oxidant, fuel, and water to the oxidant passage, the fuel passage, and the water passage, which are formed by the frame member, and then discharging them. The constituent holes 18 are formed so as to overlap in the stacking direction.

【0006】このような単位電池1が複数積層されて燃
料電池積層体20が構成されている。そして、この燃料
電池積層体20の積層方向に位置する両端面に導電性の
エンドプレート21,22が当てがうとともに、これら
エンドプレート21,22の外面に図11(a),(b) に示
すようにエンドプレート21,22より幅広な締付け板
23,24を当てがい、これら締付け板23,24の周
縁部においてばね25を介在させた条件下で両締付け板
23,24を絶縁性のボルト26で積層方向に締付けた
ものとなっている。
A plurality of such unit cells 1 are stacked to form a fuel cell stack 20. Then, the conductive end plates 21 and 22 are applied to both end surfaces of the fuel cell stack 20 which are located in the stacking direction, and the outer surfaces of the end plates 21 and 22 are shown in FIGS. As shown, the tightening plates 23 and 24 wider than the end plates 21 and 22 are applied, and the tightening plates 23 and 24 are insulated from each other under the condition that the spring 25 is interposed at the peripheral portions of the tightening plates 23 and 24. It is tightened in the stacking direction at 26.

【0007】なお、エンドプレート21の上面には、燃
料電池積層体20内の周縁部に前述した孔18によって
形成されている内部マニホールドに通じる酸化剤供給管
27、水供給管28、燃料供給管29、燃料排出管3
0、水排出管31、酸化剤排出管32がエンドプレート
21に形成された通路に気密に接続された状態で立設し
ている。また、締付け板23には、上述した供給管およ
び排出管を貫通させるための孔が設けられている。
On the upper surface of the end plate 21, an oxidant supply pipe 27, a water supply pipe 28, and a fuel supply pipe which communicate with the internal manifold formed by the holes 18 in the peripheral portion of the fuel cell stack 20 are formed. 29, fuel discharge pipe 3
0, a water discharge pipe 31, and an oxidant discharge pipe 32 are erected in a state of being hermetically connected to a passage formed in the end plate 21. Further, the tightening plate 23 is provided with holes for penetrating the above-mentioned supply pipe and discharge pipe.

【0008】上記の説明から判るように、この固体高分
子型燃料電池は、図11(a) に示すように、破線で囲ま
れた中央部に発電部41が位置し、この発電部41の周
囲に発電部41へ燃料,酸化剤および水を分配供給する
マニホールド部42が位置した構成となっている。
As can be seen from the above description, in this polymer electrolyte fuel cell, as shown in FIG. 11 (a), the power generation section 41 is located at the center surrounded by the broken line, and the power generation section 41 is A manifold portion 42 for distributing and supplying the fuel, the oxidant, and the water to the power generation portion 41 is located around the manifold portion 42.

【0009】しかしながら、このように構成された固体
高分子型燃料電池にあっては、次のような問題があっ
た。すなわち、内部マニホールドの圧力を2 〜8kg/cm2
にして運転される高圧型の固体高分子型燃料電池では、
発電部41、つまり電極の大きさが30cm×30cm程度以上
になると、シール性能を維持するために、発電部41に
必要な締付け力よりマニホールド部42でのガスシール
に必要な締付け力の方が大きくなり、全体の締付け力が
10トン以上となる。このような大きな締付け力で締付
け板23,24の周縁部を締付けると、締付け板23,
24の変形(撓み)が大きくなり、この結果、発電部4
1の接触抵抗が大きくなって発電効率(発電量)が低下
する問題があった。そこで、締付け板23,24の厚み
を増して変形を少なくすることが考えられるが、このよ
うにすると全体の大重量化を免れ得ないことになる。
However, the polymer electrolyte fuel cell thus constructed has the following problems. That is, the pressure of the internal manifold is 2 to 8 kg / cm 2
In the high-pressure polymer electrolyte fuel cell that is operated as
When the size of the power generation unit 41, that is, the size of the electrode is about 30 cm × 30 cm or more, the tightening force required for gas sealing in the manifold unit 42 is higher than the tightening force required for the power generation unit 41 in order to maintain the sealing performance. The total tightening force is 10 tons or more. When the peripheral portions of the tightening plates 23, 24 are tightened with such a large tightening force, the tightening plates 23, 24
The deformation (deflection) of 24 increases, and as a result, the power generation unit 4
There was a problem that the contact resistance of No. 1 becomes large and the power generation efficiency (power generation amount) is reduced. Therefore, it is conceivable to increase the thickness of the tightening plates 23 and 24 to reduce the deformation, but if this is done, it is unavoidable to increase the overall weight.

【0010】[0010]

【発明が解決しようとする課題】上述の如く、従来の固
体高分子型燃料電池にあっては、シール性能を得ようと
すると、発電部の接触抵抗が大きくなって発電効率(発
電量)が低下する問題があった。そこで本発明は、全体
の大重量化を招くことなく、シール性能の向上と、発電
効率の向上とを図れる固体高分子型燃料電池を提供する
ことを目的としている。
As described above, in the conventional polymer electrolyte fuel cell, when it is attempted to obtain the sealing performance, the contact resistance of the power generation part increases and the power generation efficiency (power generation amount) increases. There was a problem of decline. Therefore, it is an object of the present invention to provide a polymer electrolyte fuel cell that can improve the sealing performance and the power generation efficiency without increasing the weight of the whole.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、中央部に発電部が位置し、この発電部
の周囲に上記発電部へ燃料,酸化剤および冷媒を分配供
給するマニホールド部が位置するように上記発電部を構
成する要素および上記マニホールド部を構成する要素を
備えてなる単位電池を導電性セパレータを介して複数積
層してなる燃料電池積層体と、この燃料電池積層体を積
層方向に締付ける締付け手段とを備えた固体高分子型燃
料電池において、前記締付け手段を、前記マニホールド
部が位置する領域を締付ける第1の締付け手段と、前記
発電部が位置する領域を締付ける第2の締付け手段とで
構成している。
In order to achieve the above object, in the present invention, a power generation section is located in the central portion, and a fuel, an oxidant, and a refrigerant are distributed to the power generation section around the power generation section. A fuel cell stack comprising a plurality of unit cells each including an element forming the power generation section and an element forming the manifold section so that the manifold section is located, and a unit cell formed by stacking the unit cells with a conductive separator interposed therebetween. A solid polymer electrolyte fuel cell comprising a tightening means for tightening a body in a stacking direction, wherein the tightening means tightens a first tightening means for tightening an area where the manifold section is located and a area where the power generating section is located. It is composed of a second tightening means.

【0012】[0012]

【作用】マニホールド部が位置する領域を締付ける第1
の締付け手段と、発電部が位置する領域を締付ける第2
の締付け手段とに分けているので、互いの干渉をなくす
ことができ、全体の大重量化を招くことなく、各領域に
適合した締付け力で締付けることが可能となる。
[Operation] First of tightening the area where the manifold is located
Second tightening means and a second area for tightening the area where the power generation section is located
It is possible to eliminate the interference with each other, and it is possible to perform the fastening with the fastening force suitable for each region without increasing the overall weight.

【0013】[0013]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1には本発明の一実施例に係る固体高分子型燃料
電池に組込まれた燃料電池積層体20およびこの燃料電
池積層体20の積層方向両端に当てがわれるエンドプレ
ート21a,22が示されている。
Embodiments will be described below with reference to the drawings. FIG. 1 shows a fuel cell stack 20 incorporated in a polymer electrolyte fuel cell according to an embodiment of the present invention, and end plates 21a, 22 applied to both ends of the fuel cell stack 20 in the stacking direction. ing.

【0014】燃料電池積層体20は、従来のものと同じ
構成である。この実施例に係る固体高分子型燃料電池が
従来のものとことなる点は、エンドプレート21aの構
成と、図2に示す締付け板23aの構成とにある。した
がって、以下の図では図8乃至図11と同一部分に同一
符号を付し、詳しい説明は省略する。
The fuel cell stack 20 has the same structure as the conventional one. The polymer electrolyte fuel cell according to this embodiment is different from the conventional one in the structure of the end plate 21a and the structure of the tightening plate 23a shown in FIG. Therefore, in the following figures, the same parts as those in FIGS. 8 to 11 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0015】エンドプレート21aは、図11において
説明した発電部に臨む中央板部51と、マニホールド部
に臨む枠状板部52とからなる分離板構成に形成されて
いる。
The end plate 21a is formed in a separating plate structure composed of a central plate portion 51 facing the power generation portion and a frame-shaped plate portion 52 facing the manifold portion described in FIG.

【0016】一方、締付け板23aは、図2(a) に示す
ように、エンドプレート21aの中央板部51に臨む部
分61に厚み方向に貫通する図示しない複数のタップを
設けている。そして、これらのタップにボルト62が装
着され、これらボルト62の締付けによって中央板部5
1を介して発電部に押圧力、つまり締付け力を与えてい
る。なお、マニホールド部に対しては、従来と同様にば
ね25とボルト26とによって枠状板部52を介して締
付け力を与えている。
On the other hand, as shown in FIG. 2A, the tightening plate 23a is provided with a plurality of taps (not shown) penetrating in the thickness direction in a portion 61 of the end plate 21a which faces the central plate portion 51. Bolts 62 are attached to these taps, and the central plate portion 5 is tightened by tightening these bolts 62.
A pressing force, that is, a tightening force is applied to the power generation unit via 1. In addition, the tightening force is applied to the manifold portion by the spring 25 and the bolt 26 via the frame-shaped plate portion 52 as in the conventional case.

【0017】このような構成であると、ボルト26によ
る締付け力を調整することによってマニホールド部に対
する締付け力を設定することができ、ボルト62による
締付け力を調整することによって発電部に対する締付け
力を設定することができる。すなわち、締付け板の厚み
を増すことなく、マニホールド部と発電部とにそれぞれ
に適合した締付け力を与えることが可能となる。
With such a configuration, the tightening force for the manifold portion can be set by adjusting the tightening force by the bolt 26, and the tightening force for the power generating portion can be set by adjusting the tightening force by the bolt 62. can do. That is, it is possible to apply a tightening force adapted to each of the manifold section and the power generation section without increasing the thickness of the tightening plate.

【0018】なお、本発明は上述した実施例に限定され
るものではない。たとえば、図3に示すようにボルト6
2と中央板部51との間に皿ばね63を介在させてもよ
いし、図4に示すようにボルト62は使用せずに、締付
け板23と中央板部51との間に調整板64を介在させ
てもよい。また、図5に示すようにボルト62は使用せ
ずに、締付け板23と中央板部51,枠状板部52との
間に縮み量の異なるベローズ65を介在させてもよい。
また、図6に示すようにボルト62は使用せずに、締付
け板23と中央板部51との間に皿ばね66と調整板6
7とを介在させてもよいし、図7に示すように構成して
もよい。
The present invention is not limited to the above embodiment. For example, as shown in FIG.
2 and the central plate portion 51 may be provided with a disc spring 63. Alternatively, as shown in FIG. 4, the bolt 62 is not used and the adjusting plate 64 is provided between the tightening plate 23 and the central plate portion 51. May be interposed. Further, as shown in FIG. 5, without using the bolt 62, a bellows 65 having a different shrinkage amount may be interposed between the tightening plate 23 and the central plate portion 51 and the frame-shaped plate portion 52.
Further, as shown in FIG. 6, without using the bolt 62, the disc spring 66 and the adjusting plate 6 are provided between the tightening plate 23 and the central plate portion 51.
7 may be interposed, or may be configured as shown in FIG.

【0019】なお、図3乃至図5中、68は皿ばねを示
し、図4乃至図7中、69は中央板部51と枠状板部5
2との厚みの違いを吸収するために境界部分に介挿され
た四弗化エチレン等で形成された薄い樹脂板あるいはア
ルミニウム等で形成された薄い金属板を示している。
3 to 5, reference numeral 68 denotes a disc spring, and in FIGS. 4 to 7, 69 denotes the central plate portion 51 and the frame-shaped plate portion 5.
2 shows a thin resin plate formed of ethylene tetrafluoride or the like or a thin metal plate formed of aluminum or the like, which is inserted in the boundary portion in order to absorb the difference in thickness between the two.

【0020】また、上述した各例では、一方のエンドプ
レートを中央板部と枠状板部とで構成しているが、両方
のエンドプレートを上記と同じ構成にし、両方から発電
部の締付け力を調整できるようにしてもよい。また、燃
料、酸化剤、水を供給排出するための供給管および排出
管を両方のエンドプレートに設けることもできる。
Further, in each of the above-mentioned examples, one end plate is composed of the central plate portion and the frame-shaped plate portion. However, both end plates have the same structure as described above, and the tightening force of the power generation portion is applied from both end plates. May be adjustable. It is also possible to provide a supply pipe and a discharge pipe for supplying and discharging the fuel, the oxidant, and the water to both end plates.

【0021】なお、発電中に生じる熱を冷却するために
用いられる水は、これに限られるものではなく、低級ア
ルコール、弗素系不活性液体などのように、燃料電池本
体の動作温度に近い沸点(たとえば70℃〜100 ℃)を有
する他の冷媒を用いてもよい。
The water used for cooling the heat generated during power generation is not limited to this, but may be a boiling point close to the operating temperature of the fuel cell main body such as lower alcohol and fluorine-based inert liquid. Other refrigerants having (for example, 70 ° C to 100 ° C) may be used.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
発電部とマニホールド部とをこれらに適合した締付け力
で締め付けることができるので、全体の大重量化を招く
ことなく、シール性能の向上と発電効率の向上とを図る
ことができる。
As described above, according to the present invention,
Since the power generation part and the manifold part can be tightened with a tightening force adapted to them, it is possible to improve the sealing performance and the power generation efficiency without increasing the weight of the whole.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る固体高分子型燃料電池
に組込まれる燃料電池積層体およびエンドプレートを示
す斜視図
FIG. 1 is a perspective view showing a fuel cell stack and an end plate incorporated in a polymer electrolyte fuel cell according to an embodiment of the present invention.

【図2】(a) は同電池の組立後の平面図で、(b) は側面
FIG. 2 (a) is a plan view of the same battery after assembly, and FIG. 2 (b) is a side view.

【図3】本発明の第1の変形例を説明するための図FIG. 3 is a diagram for explaining a first modified example of the present invention.

【図4】本発明の第2の変形例を説明するための図FIG. 4 is a diagram for explaining a second modified example of the present invention.

【図5】本発明の第3の変形例を説明するための図FIG. 5 is a diagram for explaining a third modified example of the present invention.

【図6】本発明の第4の変形例を説明するための図FIG. 6 is a diagram for explaining a fourth modified example of the present invention.

【図7】本発明の第5の変形例を説明するための図FIG. 7 is a diagram for explaining a fifth modified example of the present invention.

【図8】従来の固体高分子型燃料電池に組込まれる燃料
電池積層体およびエンドプレートを示す斜視図
FIG. 8 is a perspective view showing a fuel cell stack and an end plate incorporated in a conventional polymer electrolyte fuel cell.

【図9】同電池に組込まれる配流板の斜視図FIG. 9 is a perspective view of a distribution plate incorporated in the battery.

【図10】同電池に組込まれるセルの斜視図FIG. 10 is a perspective view of a cell incorporated in the battery.

【図11】(a) は同電池の組立後の平面図で、(b) は側
面図
FIG. 11 (a) is a plan view of the battery after assembly, and FIG. 11 (b) is a side view.

【符号の説明】[Explanation of symbols]

1…単位電池 2…酸化剤通路
形成用枠材 3…セル収容枠材 4…燃料通路形
成用枠材 5…水透過板収容枠材 6…水通路形成
用枠材 7…導電性セパレータ板 8,10,1
5,16,17…開口部 9…配流板 14…セル 18…孔 20…燃料電池
積層体 21、21a,22…エンドプレート 23,23a,
24…締付け板 26…ボルト 27…酸化剤供
給管 28…水供給管 29…燃料供給
管 30…燃料排出管 31…水排出管 32…酸化剤排出管 41…発電部 42…マニホールド部 51…発電部に
臨む中央板部 52…マニホールド部に臨む枠状板部 62…ボルト 63,66…皿ばね 64,67…調
整板 65…ベローズ
DESCRIPTION OF SYMBOLS 1 ... Unit battery 2 ... Oxidizing agent passage formation frame material 3 ... Cell accommodation frame material 4 ... Fuel passage formation frame material 5 ... Water permeable plate accommodation frame material 6 ... Water passage formation frame material 7 ... Conductive separator plate 8 , 10, 1
5, 16 and 17 ... Opening portion 9 ... Flow distribution plate 14 ... Cell 18 ... Hole 20 ... Fuel cell stack 21, 21a, 22 ... End plate 23, 23a,
24 ... Tightening plate 26 ... Bolt 27 ... Oxidant supply pipe 28 ... Water supply pipe 29 ... Fuel supply pipe 30 ... Fuel discharge pipe 31 ... Water discharge pipe 32 ... Oxidant discharge pipe 41 ... Power generation part 42 ... Manifold part 51 ... Power generation Central plate part 52 facing the part 52 ... Frame-shaped plate part facing the manifold part 62 ... Bolts 63, 66 ... Disc springs 64, 67 ... Adjusting plate 65 ... Bellows

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】中央部に発電部が位置し、この発電部の周
囲に上記発電部へ燃料,酸化剤および冷媒を分配供給す
るマニホールド部が位置するように上記発電部を構成す
る要素および上記マニホールド部を構成する要素を備え
てなる単位電池を導電性セパレータを介して複数積層し
てなる燃料電池積層体と、この燃料電池積層体を積層方
向に締付ける締付け手段とを備えた固体高分子型燃料電
池において、前記締付け手段は、前記マニホールド部が
位置する領域を締付ける第1の締付け手段と、前記発電
部が位置する領域を締付ける第2の締付け手段とで構成
されていることを特徴とする固体高分子型燃料電池。
1. An element constituting the power generation section such that a power generation section is located in a central portion, and a manifold section for distributing and supplying a fuel, an oxidant, and a refrigerant to the power generation section is located around the power generation section, and Solid polymer type including a fuel cell stack formed by stacking a plurality of unit cells each including an element forming a manifold part through a conductive separator, and a tightening unit that tightens the fuel cell stack in the stacking direction. In the fuel cell, the tightening means includes a first tightening means for tightening an area where the manifold portion is located and a second tightening means for tightening an area where the power generating portion is located. Polymer electrolyte fuel cell.
【請求項2】中央部に発電部が位置し、この発電部の周
囲に上記発電部へ燃料,酸化剤および冷媒を分配供給す
るマニホールド部が位置するように上記発電部を構成す
る要素および上記マニホールド部を構成する要素を備え
てなる単位電池を導電性セパレータを介して複数積層し
てなる燃料電池積層体と、この燃料電池積層体の積層方
向の両端部にそれぞれ当てがわれ、少なくとも一方に前
記マニホールド部の流路に通じる流路を備えた一対のエ
ンドプレートと、これらエンドプレートの外面にそれぞ
れ当てがわれた一対の締付け板と、これら一対の締付け
板間に締付け力を与える締付け手段とを備えた固体高分
子型燃料電池において、前記一対のエンドプレートのう
ちの少なくとも一方は、前記発電部に臨む中央板部と前
記マニホールド部に臨む枠状板部とに分離された分離板
構成に形成されており、上記中央板部とこれに隣接する
前記一方の締付け板との間に上記発電部が位置する領域
の締付け力を調整する締付け力調整機構が設けられてい
ることを特徴とする固体高分子型燃料電池。
2. An element constituting the power generation section such that a power generation section is located at a central portion, and a manifold section for distributing and supplying fuel, an oxidant, and a refrigerant to the power generation section is located around the power generation section, and A fuel cell stack formed by stacking a plurality of unit cells each including an element constituting a manifold part with a conductive separator interposed between the unit cell and the fuel cell stack. A pair of end plates provided with a flow path communicating with the flow path of the manifold section, a pair of tightening plates applied to the outer surfaces of the end plates, and a tightening means for applying a tightening force between the pair of tightening plates. In the polymer electrolyte fuel cell including at least one of the pair of end plates, at least one of the end plate has a central plate portion facing the power generation portion and the manifold portion. It is formed in a separation plate configuration that is separated into a facing frame-shaped plate portion, and adjusts the tightening force in the region where the power generation part is located between the central plate part and the one tightening plate adjacent to the center plate part. A polymer electrolyte fuel cell having a tightening force adjusting mechanism.
JP6221443A 1994-09-16 1994-09-16 Solid polymer fuel cell Pending JPH0888018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6221443A JPH0888018A (en) 1994-09-16 1994-09-16 Solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6221443A JPH0888018A (en) 1994-09-16 1994-09-16 Solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JPH0888018A true JPH0888018A (en) 1996-04-02

Family

ID=16766820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6221443A Pending JPH0888018A (en) 1994-09-16 1994-09-16 Solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JPH0888018A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159629A (en) * 1998-12-17 2000-12-12 Ballard Power Systems Inc. Volume effecient layered manifold assembly for electrochemical fuel cell stacks
EP1094536A1 (en) * 1999-10-22 2001-04-25 General Motors Corporation Fuel cell stack compression method and apparatus
WO2002093671A1 (en) * 2001-05-14 2002-11-21 Tokyo Gas Company Limited Laminated structure of flat plate type solid oxide fuel cell
US6663995B2 (en) 2002-04-30 2003-12-16 General Motors Corporation End plates for a fuel cell stack structure
US6936362B2 (en) 2003-04-14 2005-08-30 General Motors Corporation Variable pressure drop stack
JP2005251635A (en) * 2004-03-05 2005-09-15 Honda Motor Co Ltd Fuel cell stack
JP2006114362A (en) * 2004-10-15 2006-04-27 Toyota Motor Corp Fuel cell
US7045245B2 (en) 2002-04-30 2006-05-16 General Motors Corporation Method and apparatus for providing a uniform fuel cell stack structure
US7087333B2 (en) 2003-02-26 2006-08-08 General Motors Corporation Hydrogen recirculation without a pump
US7169491B2 (en) 2003-02-26 2007-01-30 General Motors Corporation Flexible system for hydrogen recirculation
WO2007148811A1 (en) * 2006-06-20 2007-12-27 Toyota Jidosha Kabushiki Kaisha Fuel cell
US7344797B2 (en) 2002-04-30 2008-03-18 General Motors Corporation Compact fuel cell stack structure
KR100819601B1 (en) * 2006-11-15 2008-04-04 지에스칼텍스 주식회사 A device for tightening stack of pemfc
US7396601B2 (en) 2003-04-14 2008-07-08 General Motors Corporation Flow control for multiple stacks
US7704626B2 (en) 2004-07-29 2010-04-27 Gm Global Technology Operations, Inc. Isolated and insulated stack end unit inlet/outlet manifold headers
WO2010119817A1 (en) 2009-04-13 2010-10-21 本田技研工業株式会社 Fuel cell module
US7833678B2 (en) 2003-03-06 2010-11-16 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
US7951502B2 (en) 2006-06-20 2011-05-31 Toyota Jidosha Kabushiki Kaisha Fuel cell
US9368826B2 (en) 2013-01-31 2016-06-14 Honda Motor Co., Ltd. Fuel cell stack
WO2017026447A1 (en) * 2015-08-10 2017-02-16 住友精密工業株式会社 Fuel cell
WO2017061029A1 (en) * 2015-10-09 2017-04-13 株式会社アドバンテスト Jig for evaluating characteristics, device for evaluating characteristics, and evaluation method
JP2019008867A (en) * 2017-06-20 2019-01-17 本田技研工業株式会社 Manufacturing method and manufacturing installation of fuel cell stack
CN112825367A (en) * 2019-11-20 2021-05-21 财团法人工业技术研究院 Adjustable stress structure for fuel cell

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159629A (en) * 1998-12-17 2000-12-12 Ballard Power Systems Inc. Volume effecient layered manifold assembly for electrochemical fuel cell stacks
EP1094536A1 (en) * 1999-10-22 2001-04-25 General Motors Corporation Fuel cell stack compression method and apparatus
US6428921B1 (en) 1999-10-22 2002-08-06 General Motors Corporation Fuel cell stack compression method and apparatus
JP2002343376A (en) * 2001-05-14 2002-11-29 Tokyo Gas Co Ltd Lamination structure of plate-shaped solid oxide fuel cell
US7223492B2 (en) 2001-05-14 2007-05-29 Tokyo Gas Co., Ltd. Laminated structure of flat plate type solid oxide fuel cell
WO2002093671A1 (en) * 2001-05-14 2002-11-21 Tokyo Gas Company Limited Laminated structure of flat plate type solid oxide fuel cell
US6663995B2 (en) 2002-04-30 2003-12-16 General Motors Corporation End plates for a fuel cell stack structure
US7344797B2 (en) 2002-04-30 2008-03-18 General Motors Corporation Compact fuel cell stack structure
US7045245B2 (en) 2002-04-30 2006-05-16 General Motors Corporation Method and apparatus for providing a uniform fuel cell stack structure
US7169491B2 (en) 2003-02-26 2007-01-30 General Motors Corporation Flexible system for hydrogen recirculation
US7087333B2 (en) 2003-02-26 2006-08-08 General Motors Corporation Hydrogen recirculation without a pump
US7833678B2 (en) 2003-03-06 2010-11-16 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
US6936362B2 (en) 2003-04-14 2005-08-30 General Motors Corporation Variable pressure drop stack
US7749634B2 (en) 2003-04-14 2010-07-06 Gm Global Technology Operations, Inc. Flow control for multiple stacks
CN100388544C (en) * 2003-04-14 2008-05-14 通用汽车公司 Variable pressure drop stack
US7396601B2 (en) 2003-04-14 2008-07-08 General Motors Corporation Flow control for multiple stacks
JP2005251635A (en) * 2004-03-05 2005-09-15 Honda Motor Co Ltd Fuel cell stack
JP4494830B2 (en) * 2004-03-05 2010-06-30 本田技研工業株式会社 Fuel cell stack
US7704626B2 (en) 2004-07-29 2010-04-27 Gm Global Technology Operations, Inc. Isolated and insulated stack end unit inlet/outlet manifold headers
JP2006114362A (en) * 2004-10-15 2006-04-27 Toyota Motor Corp Fuel cell
WO2007148811A1 (en) * 2006-06-20 2007-12-27 Toyota Jidosha Kabushiki Kaisha Fuel cell
US7951502B2 (en) 2006-06-20 2011-05-31 Toyota Jidosha Kabushiki Kaisha Fuel cell
KR100819601B1 (en) * 2006-11-15 2008-04-04 지에스칼텍스 주식회사 A device for tightening stack of pemfc
WO2010119817A1 (en) 2009-04-13 2010-10-21 本田技研工業株式会社 Fuel cell module
US8507150B2 (en) 2009-04-13 2013-08-13 Honda Motor Co., Ltd. Fuel cell module
US9368826B2 (en) 2013-01-31 2016-06-14 Honda Motor Co., Ltd. Fuel cell stack
WO2017026447A1 (en) * 2015-08-10 2017-02-16 住友精密工業株式会社 Fuel cell
JPWO2017026447A1 (en) * 2015-08-10 2018-06-07 住友精密工業株式会社 Fuel cell
WO2017061029A1 (en) * 2015-10-09 2017-04-13 株式会社アドバンテスト Jig for evaluating characteristics, device for evaluating characteristics, and evaluation method
JP2019008867A (en) * 2017-06-20 2019-01-17 本田技研工業株式会社 Manufacturing method and manufacturing installation of fuel cell stack
CN112825367A (en) * 2019-11-20 2021-05-21 财团法人工业技术研究院 Adjustable stress structure for fuel cell
TWI797397B (en) * 2019-11-20 2023-04-01 財團法人工業技術研究院 Adjustable stress structure for fuel cell

Similar Documents

Publication Publication Date Title
JPH0888018A (en) Solid polymer fuel cell
EP0936689B1 (en) Arrangement for tightening a stack of fuel cell elements
US5484666A (en) Electrochemical fuel cell stack with compression mechanism extending through interior manifold headers
US5993987A (en) Electrochemical fuel cell stack with compression bands
JP4862243B2 (en) Fuel cell stack
US5804326A (en) Integrated reactant and coolant fluid flow field layer for an electrochemical fuel cell
KR100840159B1 (en) Fuel cell system
JP2002367665A (en) Fuel cell stack and its pressurized support method
JP4481423B2 (en) Polymer electrolyte fuel cell stack
JP2011508383A (en) Compressor for fuel cell stack
JP2004207074A (en) Fuel cell
JPH1032016A (en) Fastening and heating device of fuel cell
JPH10261426A (en) Block structure of fuel cell stack
JPH09167623A (en) Solid polymer electrolyte type fuel cell
JPH0218551B2 (en)
JPS6353857A (en) Fuel cell separator
JPS5975576A (en) Fuel cell
JPH08138699A (en) Solid polyelectrolyte fuel cell
JP2008108485A (en) Fuel cell
JPH0822837A (en) Solid polymer electrolyte fuel cell
JPH01211868A (en) Fastening device for fuel cell
JPH0529000A (en) Fuel cell
KR102541553B1 (en) Fuel cell stack system
JP2002050393A (en) Fuel cell
JP2000294268A (en) Fastening structure of fuel cell