JPS6283620A - Magnetic scale - Google Patents

Magnetic scale

Info

Publication number
JPS6283620A
JPS6283620A JP22573785A JP22573785A JPS6283620A JP S6283620 A JPS6283620 A JP S6283620A JP 22573785 A JP22573785 A JP 22573785A JP 22573785 A JP22573785 A JP 22573785A JP S6283620 A JPS6283620 A JP S6283620A
Authority
JP
Japan
Prior art keywords
scale
magnetic
austenite
cold working
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22573785A
Other languages
Japanese (ja)
Other versions
JPH0132448B2 (en
Inventor
Chuzo Sudo
須藤 忠三
Yasuo Otani
大谷 泰夫
Katsuhiro Uno
宇野 克洋
Zenshi Tsuchiya
土屋 善嗣
Hisayoshi Mizusaki
水崎 久嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd, Sumitomo Metal Industries Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP22573785A priority Critical patent/JPS6283620A/en
Publication of JPS6283620A publication Critical patent/JPS6283620A/en
Publication of JPH0132448B2 publication Critical patent/JPH0132448B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To obtain a magnetic scale with high S/N and a high reliability by constituting the magnetic scale by the base of the austenite steel of a ferromagnetic material containing over 10% martensite texture produced by a cold working induced transformation and a scale with a nonmagnetic austenite texture produced by a local melting processing. CONSTITUTION:A stainless steel which contains Ni, Cr, Mn, Mo and N and wherein the quantity DELTANi of Ni as mentioned in the accompanying expression is -7-2 is used and martensite texture produced by a cold working induced transformation shall be above 10vol%. When the degree of working is increased, the quantity of martensite transformation is increased to decreased a saturation flux density, which is suitable for a scale. This quasi-austenite steel has a ferromagnetism through a cold working and, when a solution heat treatment is applied thereto after held at about 1,100 deg.C and quickly cooled, completely transformed to an austenite texture to be nonmagnetic. The combination of a ferromagnetic base body 1 and a nonmagnetic scale 2 increases S/N; the magnetic scale has a low cost because its material is a general austenite stainless steel; has a base material with a strength increased by cold working and notches are unnecessary because the scale is made by melting processing, which increases a mechanical strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、変位量や変位速度等の測定に用いられる磁気
目盛に係り、特にピストンロッド等の機・袖的強度が求
められる材料に直接形成し7得て、その変位諸量を測定
するに好適な磁気目盛に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic scale used for measuring displacement amounts, displacement speeds, etc. The present invention relates to a magnetic scale suitable for forming and measuring various displacement quantities thereof.

〔従来技術とその間頌点〕[Prior art and its odes]

磁気目盛は、金属材等の基体表面に目盛部と(7て磁気
的性質の異なる線条又は帯状の磁気的変質部を規則的に
配列形成し、その表面に磁気センサーを近接対峙させ、
磁気センサーにより前記目盛を読取ることによって、基
体と磁気センサーとの相対変位を測定するものである。
The magnetic scale is made by forming a scale part (7) on the surface of a base material such as a metal material, and forming a regular array of linear or band-shaped magnetically altered parts having different magnetic properties, and placing a magnetic sensor close to and facing the surface of the scale part (7).
By reading the scale with a magnetic sensor, the relative displacement between the base and the magnetic sensor is measured.

目盛の読取り感度は変質部と非変質部との磁気的性質の
差が大であるほど高くなり、一般に、基体を磁性材とし
、変質部を空隙溝とすることにより最大感度(例えばピ
ークツーピークで700mV)が得られるとされている
The reading sensitivity of the scale increases as the difference in magnetic properties between the altered part and the non-altered part increases.In general, the maximum sensitivity (for example, peak-to-peak It is said that 700 mV) can be obtained.

しかし、ピストンロッドや案内軸等のように摺動使用さ
れる表面部に7?r俄目盛を形成しようとする場合は、
表面の平滑性が要求されるため、上記のような空隙方式
を適用することはできない。
However, 7? When trying to form an r scale,
Since surface smoothness is required, the void method described above cannot be applied.

特開昭57−16309号には金属材料表面に高エネル
ギービームを照射!−で局部的に熱処理し、磁気的に変
質させて目盛を付ける方法が示されている。この方法は
簡便であるが、一般的には母材部(基体部)と熱処理部
の感慨特性の差が小さくて高価な検出装置が必要となっ
た。す、あるいは検出の信頼性が低いのが欠点である。
In JP-A No. 57-16309, a high-energy beam is irradiated onto the surface of a metal material! - A method is shown in which a scale is created by locally heat-treating and magnetically altering the properties. Although this method is simple, the difference in emotional characteristics between the base material portion (substrate portion) and the heat-treated portion is generally small, and an expensive detection device is required. The disadvantage is that the reliability of detection is low.

この対策としては、Fe 25%、Nx 75%金合金
ど非常に高価な磁性材料を適用する例が示されているが
、これは高価なだけでなく強度や耐摩耗性はあまシ望め
ず、用途上の制約が多い上、磁気特性も完全とけどい難
い。
As a countermeasure to this, examples have been shown of applying very expensive magnetic materials such as 25% Fe and 75% Nx gold alloys, but these are not only expensive but also have poor strength and wear resistance. In addition to having many restrictions in terms of use, it is difficult to perfect the magnetic properties.

すなわち、理論上は空隙溝において最大の磁気出力が得
られることはすでに述べ九が、空隙溝は言いかえれば非
磁性体を意味するのであって、要するに強磁性体と非磁
性体を組合せたものが磁気目盛としては最良であること
を示している。ところが上記公報におけるFe、 Ni
、合金の場合は母材部(基体部)、熱処理部とも強磁性
体であって、単にそれらの透磁率の差によって目盛を形
成しているから、必ずしも理想的な組合わせとは言い難
いのである。
In other words, it has already been mentioned that theoretically the maximum magnetic output can be obtained in the air gap groove, but in other words, the air gap groove means a non-magnetic material, and in short, it is a combination of a ferromagnetic material and a non-magnetic material. shows that it is the best as a magnetic scale. However, in the above publication, Fe, Ni
In the case of alloys, both the base material (base part) and the heat-treated part are ferromagnetic, and the scale is simply formed by the difference in magnetic permeability between them, so it is not necessarily an ideal combination. be.

また、特開昭58−7517号公報に示され友ように、
金属材の表面に化学メッキにより、N1およびP?主成
分とする薄膜(0,2〜0.3N厚)を形成して基体と
し、この基体の薄膜を部分的に通電加熱したり、あるい
はレーザ等の粒子線により加熱して、その薄膜に磁電的
変質部を所定間隔て形成するようにしたものが知られて
いる。
Also, as shown in Japanese Patent Application Laid-Open No. 58-7517,
N1 and P? by chemical plating on the surface of metal materials. A thin film (0.2 to 0.3 N thick) of the main component is formed as a base, and the thin film of this base is partially heated with electricity or heated with a particle beam such as a laser, and the thin film is electromagnetic. There is a known method in which altered parts are formed at predetermined intervals.

しかしながら、このようなN1およびPを主成分とする
メッキ薄膜に、加熱処理を施して変質部を形成したもの
によれば、目盛の読取り感度が比較的低いため、S/N
比が悪いという欠点があり、感度を高めるためには薄膜
をかなり厚くしなければならず、経済的に問題がある。
However, if a plated thin film containing N1 and P as the main components is heat-treated to form an altered part, the reading sensitivity of the scale is relatively low, so the S/N is low.
The disadvantage is that the ratio is poor, and in order to increase sensitivity the thin film must be made considerably thicker, which poses an economical problem.

また、磁気目盛表面に耐摩耗性が要求される場合には表
面にクロームメッキ等の附摩耗頃を施す必要があり、こ
れによって加工工程が複雑になるという欠点がある。
Furthermore, if the surface of the magnetic scale is required to have wear resistance, it is necessary to apply a wear coating such as chrome plating to the surface, which has the drawback of complicating the processing process.

さらに、加熱処理されたメッキ薄膜にクラック等の損傷
が発生するおそれがある。′ 本発明は、これら従来技術における問題点を全て解決し
た、S/N比が高くてしかも加工性、経済性に優れ、更
に耐摩耗性を含めた機械的強度も高い磁気目盛を提供す
るものである。
Furthermore, there is a risk that damage such as cracks may occur in the heat-treated plated thin film. 'The present invention solves all of the problems in the conventional techniques and provides a magnetic scale with a high S/N ratio, excellent workability and economic efficiency, and also high mechanical strength including wear resistance. It is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の磁気目盛は、基体が冷間加工誘起変態によるマ
ルテンサイト組織を10%以上含む強磁性体のオーステ
ナイ) N4であり、目盛部が局部的な溶融処理による
非磁性のオーステナイト組織である。
The magnetic scale of the present invention has a base made of ferromagnetic austenite (N4) containing 10% or more of martensitic structure due to cold work-induced transformation, and the scale portion has a non-magnetic austenitic structure due to local melting treatment.

〔作用および効果〕[Action and effect]

オーステナイト鋼の一部は、溶体化熱処理を受けること
により完全オーステナイト組織を生成し、非磁性を示す
が、その後の冷間加工により加工誘起変態を生じてマル
テンサイト組織を生成し、強磁性化する。この種の銅は
準安定オーステナイト鋼と呼ばれ、冷間加工によシ強磁
性化したものを再度、溶体化熱処理することにより完全
オーステナイト組織となり、非磁性となる。
Some austenitic steels undergo solution heat treatment to form a completely austenitic structure and exhibit non-magnetism, but subsequent cold working causes strain-induced transformation to form a martensitic structure and become ferromagnetic. . This type of copper is called a metastable austenitic steel, which is made ferromagnetic through cold working and then subjected to solution heat treatment again to become a completely austenitic structure and become non-magnetic.

本発明は、冷間加工により強磁性化されたこの準安定オ
ーステナイト鋼をV′i気目盛の基体となし、その一部
を溶融処理にて非磁性化することにより目盛部となした
ものである。
In the present invention, this metastable austenitic steel, which has been made ferromagnetic by cold working, is used as the base of the V'i scale, and a part of it is made nonmagnetic by melting treatment to form the scale part. be.

不発明によれば、0基体が強磁性、目盛部が非磁性、す
なわち理想的な強磁性と非磁性の組合せである友め、S
/N比が高い。■一般的なオーステナイトステンレス鋼
が素材として使用できるため、低コストである。■強磁
性化のための冷間加工が基体の強度向上に寄与する。■
目盛部をl各部処理にて形成するため、目盛部が非磁性
であるにもかかわらず、切欠部を設けるような強度低下
がなく、ピストンロッドのような機械的強度を必要とす
る材料に好適となる。■目盛部の形成の際に材料が浴融
するまで温度を上げ得るので、温度管理が容易で生産性
も良好である。
According to the invention, the 0 base is ferromagnetic and the scale part is non-magnetic, that is, an ideal combination of ferromagnetism and non-magnetism, S.
/N ratio is high. ■Low cost because common austenitic stainless steel can be used as the material. ■Cold working to make it ferromagnetic contributes to improving the strength of the base. ■
Since the scale part is formed by processing each part, even though the scale part is non-magnetic, there is no decrease in strength like providing a notch, making it suitable for materials that require mechanical strength such as piston rods. becomes. - When forming the scale part, the temperature can be raised until the material melts in the bath, so temperature control is easy and productivity is good.

〔具体的説明〕[Specific explanation]

不発明において、基体鋼として使用されるオーステナイ
ト鋼は、重体化熱処理後の状態では完全オーステナイト
組織であって、かつ冷間加工によって加工誘起変態を生
じてマルテンサイト組織が生成する準安定オーステナイ
)Eであり、具体的にはN1、Cr場合によυ更にMn
、 Mo5Nを含有するステンレス鋼において、下式で
求まるΔN1が−7を超え2未満であるようなものが好
適である。
In the present invention, the austenitic steel used as the base steel has a completely austenitic structure after heavy-duty heat treatment, and is a metastable austenite steel in which a martensitic structure is generated by deformation-induced transformation by cold working. Specifically, depending on N1 and Cr, υ and Mn
, Stainless steel containing Mo5N is preferably one in which ΔN1, which is determined by the following formula, is greater than -7 and less than 2.

ΔN’1=Ni−4(Cr+1.5M0−20)2/1
゜−0,5Mn−a+(C+N)+IF)  (ただし
重量%)ΔN1が一7以下ではオーステナイト組織が不
安定になり、使用中のわずかの変形や、寒冷地での温度
低下などで目盛部が再変熊するため磁気目盛としては使
用上不都合となる。2以」二では逆にオーステナイト組
織の安定Jyが高く、加工語気変態が事実上、起らなく
なるため、本発明には使えない。
ΔN'1=Ni-4(Cr+1.5M0-20)2/1
゜-0,5Mn-a+(C+N)+IF) (However, weight %) If ΔN1 is less than 17, the austenite structure becomes unstable and the scale part becomes unstable due to slight deformation during use or temperature drop in cold regions. It is inconvenient to use as a magnetic scale because it changes again. On the other hand, in the case of 2 or more, the stability Jy of the austenite structure is high, and the deformation transformation practically does not occur, so that it cannot be used in the present invention.

基体鋼において、冷間加工誘、起変態によるマルテンサ
イト組織を10%(体積%)以上としたのは、10%未
満では強磁性化が不充分で目盛読取りのS / N比が
不足するからである。上限は磁気的な面からは特に限定
の必要がないが、40%を超えると、材qが脆化し加工
中に割れが発生し易くなる外、使用上も好ましくないの
で、実際上はこれ以下にするのが望ましい。
The reason why the martensitic structure due to cold working and transformation in the base steel is set to 10% (volume %) or more is because if it is less than 10%, ferromagnetization is insufficient and the S/N ratio for reading the scale is insufficient. It is. There is no need to limit the upper limit from a magnetic point of view, but if it exceeds 40%, the material q becomes brittle and cracks are likely to occur during processing, and it is also undesirable for use, so in practice it should be lower than this. It is desirable to do so.

冷間加工としては、冷間圧延、冷間引抜き、冷間押出し
、温圧加工等、加工の種類を問わないが、太径丸棒(4
0〜100靭f程度)においては矯正加工の方が加工荷
重が小さくて好ましい。一般的には、加工度を上げると
マルテンサイト変B量が増し、飽和磁気強さが下がって
来るので、磁気目盛として好適となる。
Cold processing is not limited to any type of processing, such as cold rolling, cold drawing, cold extrusion, hot pressing, etc., but
(about 0 to 100 toughness f), straightening is preferable because the processing load is smaller. Generally, as the degree of processing increases, the amount of martensite variation B increases and the saturation magnetic strength decreases, making it suitable for use as a magnetic scale.

目盛部を形成するための溶融処理としては、基体表面の
所定の位置にレーザービーム、電子ビームまたはその他
の高エネルギービームを照射するのが、位置精度、加工
工数、熱影響部の防止の関係から好ましい。
For the melting process to form the scale, laser beams, electron beams, or other high-energy beams are irradiated to predetermined positions on the base surface due to positional accuracy, processing time, and prevention of heat-affected zones. preferable.

この溶融処理においては、表層のみを融解させればよい
。磁気目盛においては、目盛部、すなわち融解部に比し
て基体部分の体積が圧倒的に大きいので、融解部は急速
に凝固冷却し、非磁性化する。また、この溶融処理は、
溶融しさえすれば良いものであるから、温度管理に厳密
さを要せず、しかも溶融したかどうかは目視で判断でき
るから、全体として処理操作が極めて容易である。
In this melting process, it is sufficient to melt only the surface layer. In a magnetic scale, since the volume of the base portion is overwhelmingly larger than the scale portion, that is, the melted portion, the melted portion rapidly solidifies and cools and becomes non-magnetic. In addition, this melting process
Since all that is required is melting, strict temperature control is not required, and whether or not it has melted can be determined visually, making the overall processing operation extremely easy.

なお、オーステナイ)Mの温体化熱処理とは、1000
〜1100°C程度の温度に加熱保持後急冷することに
より、加工組織を再結晶させ、また種種の析出物を固溶
させる処理で強度や謝金性、磁気特性等を調整するもの
である。
In addition, the warming heat treatment of Austenai) M is 1000
By heating and holding at a temperature of about 1100° C. and then rapidly cooling, the processed structure is recrystallized, and various precipitates are dissolved in solid solution to adjust the strength, rewardability, magnetic properties, etc.

また、加工誘起変態とは、溶体化処理では室温でオース
テナイト組織であるが、これに冷間塑性変形を与えると
、オーステナイトの一部がマルテンサイトに変態する現
象である。
In addition, deformation-induced transformation is a phenomenon in which a part of the austenite transforms into martensite when cold plastic deformation is applied to the austenite structure at room temperature after solution treatment.

〔実施例〕〔Example〕

箸1表に示す成分金有する熱間圧延棒鋼を1050°C
の温度で温体化熱処理を施し、冷間引抜き、および矯正
を行い、さらに表面研磨加工を施して直後20聰fのピ
ストンロッドを得た。なお、矯正は20−ルによる繰返
し曲げ矯正法によった。
Chopsticks 1 A hot rolled steel bar having the composition shown in Table 1 is heated to 1050°C.
A piston rod with a diameter of 20 cm was immediately obtained by subjecting it to a warming heat treatment at a temperature of 200 m, followed by cold drawing and straightening, and further surface polishing. Note that the correction was performed by a repeated bending correction method using a 20-rule.

第    1    表 ついで、このピストンロンド外周軸方向に、一定の間隔
で一定幅のリング帯状の領域(間隔2眉1、i7i 1
 WIl)を設定し、この領域をレーザにより素材の融
点以上に加熱処理して非磁性体を形成した。
Next, in the direction of the outer peripheral axis of this piston rond, ring band-shaped areas of a constant width at constant intervals (interval 2 eyebrow 1, i7i 1
WIl) was set, and this region was heated to a temperature higher than the melting point of the material using a laser to form a nonmagnetic material.

このとき熱処理条件は、スポット径1頭出力1聰の炭酸
ガスレーザを用い、加工速度をO−5m/minで融解
深さ0.1〜0.2靭であった。
At this time, the heat treatment conditions were as follows: a carbon dioxide laser with a spot diameter of one head and an output of one laser was used, the processing speed was O-5 m/min, and the melting depth was 0.1 to 0.2 toughness.

このように構成される不発明磁気目盛を付設したピスト
ンロッドの表面に磁気センサーを近接対峙させて測定し
比。
The ratio was measured by placing a magnetic sensor close to the surface of the piston rod equipped with the magnetic scale constructed as described above.

第19図は不発明磁気目盛を付設したピストンロッドの
一部断面を示す図である。(1)は基体、〈2)は非磁
性体、(3)は磁気センサーである。
FIG. 19 is a partial cross-sectional view of a piston rod provided with an inventive magnetic scale. (1) is a base, <2) is a non-magnetic material, and (3) is a magnetic sensor.

これらピストンロッドの特性ならびに測定結果を第2表
に示す。
Table 2 shows the characteristics and measurement results of these piston rods.

第    2    表 [− 第2表から明らかのように、減面率5X以上の冷間引抜
きによシ引張強さが著しく増大し、ビストンロッドとし
て好適になり、かつ透磁率が約20以上の強磁性体とな
っている。また、減面率20.96以上のものを磁気セ
ンサーで測定したところ、ピークからピークで600m
V以上の出力信号を得ることができた。この債は、前述
した空隙方式のものに匹適し、従来のメッキ薄膜のもの
の7倍以上に達している。
Table 2 [- As is clear from Table 2, cold drawing with an area reduction of 5X or more significantly increases the tensile strength, making it suitable as a piston rod, and with a magnetic permeability of about 20 or more. It is a magnetic material. In addition, when measuring the area reduction rate of 20.96 or more with a magnetic sensor, it was found that the distance from peak to peak was 600 m.
It was possible to obtain an output signal of V or more. This bond is comparable to that of the above-mentioned air-gap type, and is more than seven times that of the conventional plated thin film type.

このことは、磁気目盛の構成として強磁体と非磁性体の
組合わせが最も効果的であって、特開昭58−7517
号あるいは、特開昭57−16 :d 09号に開示さ
れている強磁性体同志の組合わせよシすぐれていること
を示している。
This means that the combination of ferromagnetic material and non-magnetic material is the most effective for the construction of the magnetic scale, and Japanese Patent Laid-Open No. 58-7517
This shows that the combination of ferromagnetic materials is superior to the combination of ferromagnetic materials disclosed in JP-A-57-16:d09.

また、第2表より、冷間矯正を組合わせるとさらに強磁
性化が進み、その結果センサーの往復での出力差、すな
わちヒステリシスが減少する効果があって、磁気目盛に
一層好適となる。
Further, from Table 2, when cold straightening is combined, ferromagnetization further progresses, which has the effect of reducing the output difference between reciprocations of the sensor, that is, hysteresis, and is more suitable for magnetic scales.

さらに、冷間矯正は材料の寸法を変えずに塑性変形を加
えることができ、その加工荷重も比較的小さいからかな
り大径のものにも適用できる利点もある。
Furthermore, cold straightening can apply plastic deformation without changing the dimensions of the material, and the processing load is relatively small, so it has the advantage that it can be applied to materials with fairly large diameters.

ま念、不実施例においては、炭酸ガスレーザにより加熱
処理を施したが、要は所定の領域を素材の融点以上に、
局所的に加熱することが要件であシ、他の電子ビームの
如き粒子線あるいは通電加熱によっても同一の効果が得
られることは言うまでもない。
Please note that in the non-example, heat treatment was performed using a carbon dioxide laser, but the point is to heat a predetermined area to a temperature higher than the melting point of the material.
Local heating is a requirement, and it goes without saying that the same effect can be obtained by other particle beams such as electron beams or electrical heating.

またさらに、不実施例では棒材を引抜き、矯正し、表面
を円周上に帯状に目盛を付与する例を示したが、棒状以
外の板材や管材でも全く同様であり、ただそれぞれの材
料形状に応じて圧延その他の加工法を選択すれば同じ効
果が得られることはEつまでもない。−!、た目盛形状
も任意の形状が可能である。
Furthermore, in the non-practical example, an example was shown in which a bar was pulled out, straightened, and scales were given on the surface in a band shape on the circumference, but the same is true for plates and pipes other than bar-shaped materials, but the shape of each material is different. It goes without saying that the same effect can be obtained by selecting rolling or other processing methods depending on the situation. -! , the scale shape can be any shape.

そして次に、不発明を適用してなる磁気スケ−)vを有
するピストンロッドの具体的な変位検出装置の一実施例
を第2図、第3図に示し、不発明により奏される効果を
説明する。
Next, a specific example of a displacement detecting device for a piston rod having a magnetic scale (v) obtained by applying the invention is shown in FIGS. 2 and 3, and the effects achieved by the invention will be explained. explain.

第2図に示すように、流体圧ピストンシリンダ(21)
は、シリンダ(22)と、これに挿入されたピストン(
23)と、これに直結され定ピヌトンロツド(11)と
からなる。このピストンロッドα1)は前記第1図図示
実施例と同一に形成され、目盛としての磁気的変質部(
2)のピッチはP、非変質部α]の幅はQ、(Q。
As shown in Figure 2, the hydraulic piston cylinder (21)
is a cylinder (22) and a piston inserted into it (
23) and a constant pinuton rod (11) directly connected to this. This piston rod α1) is formed in the same manner as the embodiment shown in FIG.
2), the pitch is P, the width of the non-altered part α is Q, (Q.

m−)とされている。ピストンロッドα℃の外周面に一
定の間隙を保持ζせて、且つ軸方向にδずらして、2つ
の磁気セスサー(2A)(2B)が配設されている。こ
のように2つのセンサーをずらして配置するのは、ピス
トンロッドα刀の変位方向を検知するためであり、δは
次式(1)を満足するように定められる。
m-). Two magnetic cessors (2A) and (2B) are arranged on the outer circumferential surface of the piston rod α° C. with a constant gap ζ and shifted by δ in the axial direction. The reason for arranging the two sensors in a staggered manner in this manner is to detect the direction of displacement of the piston rod α, and δ is determined to satisfy the following equation (1).

ここで、n−0,1,2、・・・・・・また、磁気セン
サー(2A)(2B)から出力される信号SA、 SB
は、第4図(a)に示す正弦波状のものとなっておシ、
これらの信号は第3図に示すように波形整形回路(ハ)
に入力されている。ここで波形整形された信号SA、 
SBは第4図(b)に示す矩形波状のものとなり、一方
は直接変位方向弁別回路(ホ)に入力され、他方はパル
ス発生回路(至)に入力され、ここにおいて第4図(C
)に示すパルス信号SAPが形成される。このパルス信
号SAPは変位方向弁別回路(至)において、単極性の
信号SAPとされ、変位方向弁別信号りとともにパルス
計数回路@に入力されている。パルス計数回路曽は前記
パルス信号S’APを変位方向弁別信号りに基づいて加
算又は減算計数し、ピストンロッド圓の変位量Xを出力
するようになっている。
Here, n-0, 1, 2,... Also, the signals SA, SB output from the magnetic sensors (2A) (2B)
is a sinusoidal waveform as shown in Fig. 4(a), and
These signals are processed by the waveform shaping circuit (c) as shown in Figure 3.
has been entered. Here, the waveform-shaped signal SA,
The SB has a rectangular waveform as shown in Fig. 4(b), one of which is directly input to the displacement direction discrimination circuit (e), and the other to the pulse generation circuit (to), where the SB has a rectangular waveform as shown in Fig. 4(c).
) is generated. This pulse signal SAP is converted into a unipolar signal SAP in the displacement direction discrimination circuit (to), and is input to the pulse counting circuit @ together with the displacement direction discrimination signal. The pulse counting circuit S is configured to add or subtract the pulse signal S'AP based on the displacement direction discrimination signal and output the displacement amount X of the piston rod circle.

このように構成される変位検出装置にあって、磁気セン
サー(2A)(2B)から出力される信号、SA、SB
の振幅中心は、通常、第4図(a)に示すように刃レベ
ルからεだけずれtものとなっている。したがって、零
レベルを基準に波形整形回路(ハ)において波形整形さ
れた信号SAは、第4図(至)に示すように、ピッチp
は同じであるが、これに対する矩形波の谷長qばεに応
じて変化してしまうことになる。いま、信号SAの振中
冨をaとすると、シル比は次式(21によシ表わすこと
ができる。
In the displacement detection device configured in this way, the signals SA and SB output from the magnetic sensors (2A) (2B)
The center of the amplitude of the blade is normally offset by ε from the blade level, as shown in FIG. 4(a). Therefore, the signal SA whose waveform is shaped in the waveform shaping circuit (c) with reference to the zero level has a pitch p as shown in FIG.
are the same, but the valley length q of the rectangular wave with respect to this changes depending on ε. Now, assuming that the amplitude of the signal SA is a, the sill ratio can be expressed by the following equation (21).

つまり、aが一定であるとすれば、εが大きい程パルス
信号S’APのパルス周期は、第4図(C)に示すよう
に不揃いとなってしまう。その結果、変位量Xの検出分
解能、即ち検出精度が悪くなるということになるのであ
る。
In other words, if a is constant, the larger ε is, the more irregular the pulse period of the pulse signal S'AP becomes, as shown in FIG. 4(C). As a result, the detection resolution of the displacement amount X, that is, the detection accuracy deteriorates.

ところが、不実施例によれば、従来の磁気スケールに比
べて振幅aが約7倍以上になることから、(1/p!、
となる。し念がって、q/I)比が大幅に改善され、検
出精度が向上されるという効果が得られるのである。
However, according to the non-example, the amplitude a is about 7 times or more compared to the conventional magnetic scale, so (1/p!,
becomes. As a result, the q/I) ratio is significantly improved and the detection accuracy is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明磁気目盛を付設しtピストンロッドを一
部断面で示した側面口、第2図乃至第4図は同ロッドを
有する変位検出装置の一例についてその構造作用を示す
説明図である、 図中、1:基体、2:非磁性体、3:磁気センサー。 出願人  住友金属工業株式会社 第  1m 第  2  図 第3図 一−1−− 第4図 (G)
Fig. 1 is a side view showing a partial cross-section of a t-piston rod equipped with a magnetic scale according to the present invention, and Figs. 2 to 4 are explanatory diagrams showing the structure and function of an example of a displacement detecting device having the same rod. In the figure, 1: base, 2: non-magnetic material, 3: magnetic sensor. Applicant: Sumitomo Metal Industries, Ltd. No. 1m No. 2 Fig. 3 Fig. 3-1-1-- Fig. 4 (G)

Claims (1)

【特許請求の範囲】[Claims] (1)基体が冷間加工誘起変態によるマルテンサイト組
織を10%以上含む強磁性体のオーステナイト鋼であり
、目盛部が局部的な溶融処理による非磁性のオーステナ
イト組織であることを特徴とする磁気目盛。
(1) A magnetic material characterized in that the base is a ferromagnetic austenitic steel containing 10% or more of martensitic structure due to cold work-induced transformation, and the scale portion is a non-magnetic austenitic structure due to local melting treatment. scale.
JP22573785A 1985-10-09 1985-10-09 Magnetic scale Granted JPS6283620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22573785A JPS6283620A (en) 1985-10-09 1985-10-09 Magnetic scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22573785A JPS6283620A (en) 1985-10-09 1985-10-09 Magnetic scale

Publications (2)

Publication Number Publication Date
JPS6283620A true JPS6283620A (en) 1987-04-17
JPH0132448B2 JPH0132448B2 (en) 1989-06-30

Family

ID=16834040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22573785A Granted JPS6283620A (en) 1985-10-09 1985-10-09 Magnetic scale

Country Status (1)

Country Link
JP (1) JPS6283620A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264942A (en) * 1987-04-21 1988-11-01 有限会社 サイテツクス Shuttle forming apparatus
JPS6440630A (en) * 1987-04-14 1989-02-10 Scitex Corp Ltd Apparatus for forming shuttle of loom
JPH01174913A (en) * 1987-12-29 1989-07-11 Japan Atom Energy Res Inst Preparation of heat-resistant and corrosion-resistant magnetic scale
US5350463A (en) * 1991-08-13 1994-09-27 Sumitomo Metal Industries, Ltd. Magnetically graduated steel bar
JPH095113A (en) * 1996-04-25 1997-01-10 Japan Atom Energy Res Inst Manufacture of heat-resistant magnetic scale
US5865907A (en) * 1993-06-18 1999-02-02 Nippondenso Co., Ltd Composite magnetic member, process for producing the member and electromagnetic valve using the member
JP2014513273A (en) * 2011-03-03 2014-05-29 アールエルエス メリルナ テニカ ディー.オー.オー. Manufacturing method of magnetic substrate for encoder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876721A (en) * 1972-01-19 1973-10-16
JPS5716309A (en) * 1980-07-04 1982-01-27 Toshiba Mach Co Ltd Displacement detector
JPS57157114A (en) * 1981-03-24 1982-09-28 Toshiba Mach Co Ltd Detecting scale
JPS587517A (en) * 1981-07-07 1983-01-17 Toshiba Mach Co Ltd Manufacture of magnetic scale
JPS58211604A (en) * 1982-06-04 1983-12-09 Inoue Japax Res Inc Magnetic scale
JPS60129950A (en) * 1983-12-15 1985-07-11 Seikosha Co Ltd Photomagnetic recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876721A (en) * 1972-01-19 1973-10-16
JPS5716309A (en) * 1980-07-04 1982-01-27 Toshiba Mach Co Ltd Displacement detector
JPS57157114A (en) * 1981-03-24 1982-09-28 Toshiba Mach Co Ltd Detecting scale
JPS587517A (en) * 1981-07-07 1983-01-17 Toshiba Mach Co Ltd Manufacture of magnetic scale
JPS58211604A (en) * 1982-06-04 1983-12-09 Inoue Japax Res Inc Magnetic scale
JPS60129950A (en) * 1983-12-15 1985-07-11 Seikosha Co Ltd Photomagnetic recording medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440630A (en) * 1987-04-14 1989-02-10 Scitex Corp Ltd Apparatus for forming shuttle of loom
JPH0336945B2 (en) * 1987-04-14 1991-06-04 Saitetsukusu Jugen
JPS63264942A (en) * 1987-04-21 1988-11-01 有限会社 サイテツクス Shuttle forming apparatus
JPH01174913A (en) * 1987-12-29 1989-07-11 Japan Atom Energy Res Inst Preparation of heat-resistant and corrosion-resistant magnetic scale
US5350463A (en) * 1991-08-13 1994-09-27 Sumitomo Metal Industries, Ltd. Magnetically graduated steel bar
US5865907A (en) * 1993-06-18 1999-02-02 Nippondenso Co., Ltd Composite magnetic member, process for producing the member and electromagnetic valve using the member
US6187459B1 (en) 1993-06-18 2001-02-13 Nippondenso Co., Ltd. Composite magnetic member, process for producing the member and electromagnetic valve using the member
US6390443B1 (en) 1993-06-18 2002-05-21 Nippondenso Co. Ltd. Composite magnetic member, process for producing the member and electromagnetic valve using the member
JPH095113A (en) * 1996-04-25 1997-01-10 Japan Atom Energy Res Inst Manufacture of heat-resistant magnetic scale
JP2014513273A (en) * 2011-03-03 2014-05-29 アールエルエス メリルナ テニカ ディー.オー.オー. Manufacturing method of magnetic substrate for encoder

Also Published As

Publication number Publication date
JPH0132448B2 (en) 1989-06-30

Similar Documents

Publication Publication Date Title
JPH02221830A (en) Magnetostriction type torque sensor
US5280729A (en) Magnetostrictive torque detecting apparatus
JPH06216426A (en) Magnetostrictive layer-forming method and strain sensor using the method
EP0177626A1 (en) System for online-detecting transformation value and/or flatness of steel or magnetic material
KR20150144296A (en) Steel for surface-treated mechanical parts with high characteristics, and mechanical parts in this steel and manufacturing method thereof
JPS6283620A (en) Magnetic scale
JP3237138B2 (en) Magnetic scale steel bar
JP6673535B1 (en) Steel subjected to induction hardening
JPS6369950A (en) Nonmagnetic austenitic stainless steel having high hardness
Quitzke et al. Manufacturing and Characterization of Plasma Gas Tungsten Arc-Welded Pipes Made of a Ni-Reduced Austenitic Stainless CrMnNi Steel
JP6434900B2 (en) Iron core member for electromagnetic control component and manufacturing method thereof
JPH0566165A (en) Detection shaft for torque sensor and manufacture thereof
JPH0261540B2 (en)
JPH05472B2 (en)
JP2002107240A (en) Torque transmission shaft and torque sensor using it
JPH04259385A (en) Formation of signal pattern utilizing change in magnetic characteristic
JPH05255819A (en) Absolute position detecting type magnetic scale steel rod and its manufacture
JPH0527490B2 (en)
JP3114455B2 (en) Shaft having magnetostrictive torque detector and method of manufacturing the same
JP2004198349A (en) Magnetostriction type torque sensor, stem for magnetostriction type torque sensor and manufacturing method for stem for magnetostriction type torque sensor
JPH0312047A (en) Steel plate for information recording and recording method using the same
JP2508940B2 (en) Method of forming signal pattern using high density energy source
JP2974554B2 (en) Magnetostriction measurement axis
JPH0452633B2 (en)
JPS60238453A (en) Nonmagnetic metallic belt for drive and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees