JPH095113A - Manufacture of heat-resistant magnetic scale - Google Patents
Manufacture of heat-resistant magnetic scaleInfo
- Publication number
- JPH095113A JPH095113A JP10518096A JP10518096A JPH095113A JP H095113 A JPH095113 A JP H095113A JP 10518096 A JP10518096 A JP 10518096A JP 10518096 A JP10518096 A JP 10518096A JP H095113 A JPH095113 A JP H095113A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- base material
- electron beam
- magnetic scale
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は高温領域で使用す
る耐熱性磁気スケールの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heat resistant magnetic scale used in a high temperature range.
【0002】[0002]
【従来の技術】図6は例えば特公昭48−10655号
公報に示された従来の磁気スケールを示す断面図であ
り、図において、6は鉄またはエリンバー(商品名)の
ごとき鉄合金よりなる断面円形の棒状の基体、7は基体
6の表面にメッキまたはクラッドで被着形成された銅ま
たはアルミニウムのごとき非磁性金属層、8は非磁性金
属層7の上に被着形成されたコバルト−ニッケルのごと
き磁性層である。2. Description of the Related Art FIG. 6 is a cross-sectional view showing a conventional magnetic scale disclosed in, for example, Japanese Patent Publication No. 48-10655, in which 6 is a cross section made of iron or an iron alloy such as Elinvar (trade name). A circular rod-shaped substrate, 7 is a non-magnetic metal layer such as copper or aluminum deposited on the surface of the substrate 6 by plating or clad, and 8 is cobalt-nickel deposited on the non-magnetic metal layer 7. Is a magnetic layer.
【0003】[0003]
【発明が解決しようとする課題】従来の磁気スケールは
以上のように構成されており、例えば金属データブック
(日本金属学会編、昭和49年)の表1・2・6、および表6
・6・4に示されているように、鉄またはエリンバー(商品
名)のごとき鉄合金の熱膨張係数はそれぞれ12.1×10-6
および8.0×10-6であり、銅およびアルミニウムの熱膨
張係数はそれぞれ17.0×10-6および23.5×10-6であり、
また例えば耐熱鋼データ集(特殊鋼倶楽部編、昭和40
年)の表6(その2)に示されているようにコバルト−
ニッケルの熱膨張係数は例えばS−816(AISI N
O.671 )では11.9×10-6(AISI21〜316 ℃)であ
る。図6に示すような構成では、磁気スケールの熱膨張
係数は基体の熱膨張係数でほとんど決まるが、100〜
300℃の高温度領域でかかる磁気スケールを使用した
場合、基体、非磁性金属層および磁性層の熱膨張係数が
それぞれ異なるため、基体、非磁性金属層および磁性層
の膨張の量が異なり、基体から非磁性金属層や磁性層が
剥離する恐れがあった。The conventional magnetic scale is constructed as described above. For example, Tables 1.2.6 and 6 of the Metal Data Book (edited by the Japan Institute of Metals, 1974).
・ As shown in 6.4, the coefficient of thermal expansion of iron or iron alloys such as Elinvar (trade name) is 12.1 × 10 -6.
And 8.0 × 10 -6 , and the thermal expansion coefficients of copper and aluminum are 17.0 × 10 -6 and 23.5 × 10 -6 , respectively,
Also, for example, heat resistant steel data collection (Special Steel Club, Showa 40)
Cobalt-as shown in Table 6 (Part 2) of
The coefficient of thermal expansion of nickel is, for example, S-816 (AISI N
O.671) is 11.9 × 10 −6 (AISI 21 to 316 ° C.). In the structure as shown in FIG. 6, the coefficient of thermal expansion of the magnetic scale is almost determined by the coefficient of thermal expansion of the substrate, but
When such a magnetic scale is used in a high temperature region of 300 ° C., the thermal expansion coefficients of the substrate, the non-magnetic metal layer and the magnetic layer are different from each other, so that the amounts of expansion of the substrate, the non-magnetic metal layer and the magnetic layer are different from each other. There was a risk that the non-magnetic metal layer and the magnetic layer would peel off.
【0004】更に、剥離しない場合でも基体、非磁性金
属層および磁性層の熱膨張係数がそれぞれ異なるためか
かる磁気スケールを高温度領域で使用した場合、基体、
非磁性金属層および磁性層の膨張の量が異なるため、基
体、非磁性金属層および磁性層のそれぞれに熱膨張に伴
う応力が加わり、磁性層の磁気特性が劣化し、磁気スケ
ールの感度が低下するという問題点があった。Further, even when the magnetic scale is not peeled off, the thermal expansion coefficient of the substrate, the non-magnetic metal layer and the magnetic layer are different from each other.
Since the expansion amounts of the non-magnetic metal layer and the magnetic layer are different, stress due to thermal expansion is applied to the substrate, non-magnetic metal layer, and magnetic layer, which deteriorates the magnetic properties of the magnetic layer and reduces the sensitivity of the magnetic scale. There was a problem to do.
【0005】また、磁気テープ等を磁気スケールに用い
るものがあるが、この場合は熱により消磁されてしま
い、例えば50℃ぐらいまでしか使えないという問題点
があった。There is also a magnetic tape or the like which is used for a magnetic scale, but in this case, it is demagnetized by heat and has a problem that it can be used only up to about 50 ° C., for example.
【0006】この発明は上記のような問題点を解決する
ためになされたもので、100℃以上でも消磁せず、温
度変化に対しても剥離が生じず、安定かつ測定精度が高
い耐熱性磁気スケールを製造する方法を提供することを
目的とする。The present invention has been made in order to solve the above-mentioned problems, and it does not demagnetize even at 100 ° C. or higher, does not peel even when the temperature changes, and is stable and has high measurement accuracy. It is an object to provide a method for manufacturing a scale.
【0007】[0007]
【課題を解決するための手段】この発明に係る耐熱性磁
気スケールの製造方法は、強磁性体であり、焼き入れ硬
化が可能な合金からなる耐熱性基材に、所定間隔に熱を
加えて加熱溶融部分の磁気特性を変化させ、上記基材よ
り大きな残留磁化を発生させるようにしたものであり、
上記基材及び上記加熱溶融部分の少なくともいずれか一
方のキュリー点が100℃以上のものである。A method of manufacturing a heat-resistant magnetic scale according to the present invention is a method of applying heat at a predetermined interval to a heat-resistant base material made of an alloy which is a ferromagnetic material and can be hardened by quenching. The magnetic characteristics of the heated and melted portion are changed to generate a larger residual magnetization than the above base material,
The Curie point of at least one of the base material and the heat-melted portion is 100 ° C. or higher.
【0008】また、上記耐熱性基材をS35C、フェラ
イト系ステンレス、またはマルテサント系ステンレスの
いずれかとしたものである。The heat resistant base material is S35C, ferritic stainless steel, or martesant stainless steel.
【0009】また、出力が0.1KW〜15KW、掃引速度が1
分当り0.1m〜15.0m、単位長当りの照射エネルギーが2
0kJ/m〜300kJ/m、ビームの焦点位置が基材表面から
0〜±100mm の範囲の電子ビーム又はレーザビームによ
り熱を加えたものである。The output is 0.1 KW to 15 KW and the sweep speed is 1
0.1m-15.0m per minute, irradiation energy per unit length is 2
0kJ / m to 300kJ / m, beam focus position from the substrate surface
Heat is applied by an electron beam or laser beam in the range of 0 to ± 100 mm.
【0010】また、基材及び加熱溶融部分の少なくとも
いずれか一方を着磁したものである。Further, at least one of the base material and the heat-melted portion is magnetized.
【0011】[0011]
実施の形態1.以下、この発明の一実施の形態を図につ
いて説明する。図1はこの発明の実施の形態1による耐
熱性磁気スケールの製造方法を示す斜視図である。図に
おいて、1は板状の耐熱性基材であり、焼き入れ硬化が
可能な合金、例えば炭素鋼S35Cのような強磁性体で
ある。2は電子ビーム3等により加熱された加熱部分で
あり、磁気特性が変化した部分である。図2は上記耐熱
性磁気スケールを着磁している様子を示す側面構成図で
あり、図において、4は着磁用の電磁石、10は磁気ス
ケールである。図3は図2に示す方法によって着磁した
磁気スケールを用いて変位量を検出している様子を示す
斜視図であり、図において、5は磁気スケールに残留し
ている磁化を検出する例えばホール素子のようなセンサ
ーである。図4は図3の方法で検出された磁化量を示す
関係図であり、横軸に変位量、縦軸に磁化量をとってい
る。Embodiment 1. Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 is a perspective view showing a method for manufacturing a heat resistant magnetic scale according to Embodiment 1 of the present invention. In the figure, reference numeral 1 is a plate-shaped heat-resistant base material, which is a quench-hardenable alloy, for example, a ferromagnetic material such as carbon steel S35C. Reference numeral 2 denotes a heated portion heated by the electron beam 3 or the like, which is a portion where the magnetic characteristics have changed. FIG. 2 is a side view showing a state in which the heat resistant magnetic scale is magnetized. In the figure, 4 is an electromagnet for magnetizing and 10 is a magnetic scale. FIG. 3 is a perspective view showing how the amount of displacement is detected by using the magnetic scale magnetized by the method shown in FIG. 2. In the figure, 5 is a hole for detecting the magnetization remaining in the magnetic scale. It is a sensor like an element. FIG. 4 is a relational diagram showing the amount of magnetization detected by the method of FIG. 3, where the horizontal axis represents the displacement amount and the vertical axis represents the magnetization amount.
【0012】図1において、板状の炭素鋼S35Cの基
材1に、出力1.1KW、掃引速度1.O m/min、焦点距離+5
0 mmの電子ビーム3を照射すると、電子ビームを照射さ
れた部分は急激に加熱溶融される。続いて、電子ビーム
を移動すると、いままで電子ビームを照射されていた部
分は今度は急激に冷却個体化される。そのため、電子ビ
ームを掃引した部分は線状あるいは面状に急激な加熱冷
却作用を受け、極度の残留応力が発生する。S35Cの
ような炭素鋼では急激な溶融固化を行うと焼き入れ効果
により硬度が非常に高くなることが知られている。従っ
て、強磁性の炭素鋼S35Cの基材に電子ビームを照射
すれば基材の表面あるいは内部に線状あるいは面状の磁
気特性の変化層、即ち磁気格子が形成される。形成され
た磁気格子は、上述のように極度の応力を受けて硬度が
高くなっているため保磁力が大きく、図2に示す方法で
電磁石4を使って着磁すると、大きな残留磁化が発生す
る。従って、電子ビームを照射する間隔を任意に選び、
図3のように残留磁化量を検出する素子、例えばホール
素子5などを用いることにより、図4に示すような変位
量と残留磁化量の関係図が得られ、変位の検出が可能と
なる。また、この発明では強磁性の基材の表面あるいは
内部の一方あるいは両方に、線状あるいは面状にある間
隔でそれぞれ独立して、焼き入れ硬化により磁気特性の
変化した領域を形成したので、残留磁化が図4に示すよ
うにパルス的に検出され、従来の方法に比べ安定で、か
つ非常に検出感度が高くなる。また、加熱部分2は基材
1そのものを焼き入れ硬化させて形成されたものであ
り、100℃以上のキュリー点を共に有するので、耐熱
性がある。In FIG. 1, an output of 1.1 KW, a sweep speed of 1.0 m / min, and a focal length of +5 is applied to a substrate 1 of plate-like carbon steel S35C.
When the electron beam 3 of 0 mm is irradiated, the portion irradiated with the electron beam is rapidly heated and melted. Then, when the electron beam is moved, the portion which has been irradiated with the electron beam is rapidly cooled and solidified. Therefore, the swept portion of the electron beam undergoes a rapid heating or cooling action linearly or in a plane, and an extreme residual stress occurs. It is known that when carbon steel such as S35C is rapidly melted and solidified, the hardness becomes extremely high due to the quenching effect. Therefore, when a ferromagnetic carbon steel S35C substrate is irradiated with an electron beam, a linear or planar magnetic property changing layer, that is, a magnetic lattice is formed on the surface or inside of the substrate. The formed magnetic lattice has a large coercive force because it has a high hardness due to the extreme stress as described above, and when it is magnetized by using the electromagnet 4 in the method shown in FIG. 2, a large residual magnetization occurs. . Therefore, choose the interval to irradiate the electron beam arbitrarily,
By using the element for detecting the residual magnetization amount as shown in FIG. 3, for example, the Hall element 5 or the like, the relationship diagram between the displacement amount and the residual magnetization amount as shown in FIG. 4 can be obtained, and the displacement can be detected. Further, in the present invention, since the regions where the magnetic characteristics are changed by quenching hardening are formed independently on one or both of the surface and the inside of the ferromagnetic base material at linear or planar intervals, The magnetization is detected in pulses as shown in FIG. 4, which is more stable than the conventional method and has extremely high detection sensitivity. Further, the heating portion 2 is formed by quenching and hardening the base material 1 itself and has a Curie point of 100 ° C. or higher, so that it has heat resistance.
【0013】なお、この実施の形態では電子ビームの出
力を1.1KWとしたが、0.1〜15KWの範囲であってもよい。
なお、電子ビームの出力が0.1W未満では掃引速度を非常
に遅くしなければ基材が溶融しないので焼き入れ硬化に
よる磁気変化層が形成できず、また、15KWを越えると掃
引速度を非常に速くしなければ溶融幅が広くなり溶融体
が急冷されないので上記磁化変化層が形成できなくなる
ため実用的でない。また、電子ビームの掃引速度を1.0m
/minとしたが、0.1〜15.0m/minの範囲であってもよ
い。また、電子ビームの焦点距離を基材表面から+50mm
としたが、0〜±100mmの範囲であってもよい。なお、電
子ビームの焦点距離が+100mmを越える場合や−100mm
未満の場合には電子ビームの焦点が離れすぎるので基材
が溶融せず焼き入れ硬化による磁気変化層が形成されな
い。なお、単位当たりの照射エネルギーは20KJ/m〜300
KJ/mが望ましい。Although the output of the electron beam is 1.1 KW in this embodiment, it may be in the range of 0.1 to 15 KW.
If the output of the electron beam is less than 0.1 W, the base material will not melt unless the sweep speed is made extremely slow, so a magnetic change layer cannot be formed by quench hardening, and if it exceeds 15 KW, the sweep speed will be very high. If this is not done, the melting width will be wide and the melt will not be rapidly cooled, so that the magnetization change layer cannot be formed, which is not practical. Also, the electron beam sweep speed is 1.0m
/ Min, but may be in the range of 0.1 to 15.0 m / min. Also, the focal length of the electron beam is +50 mm from the substrate surface.
However, the range may be 0 to ± 100 mm. In addition, when the focal length of the electron beam exceeds +100 mm or −100 mm
If it is less than the above range, the electron beam is too far out of focus, so that the substrate is not melted and the magnetic change layer is not formed by quench hardening. The irradiation energy per unit is 20KJ / m ~ 300
KJ / m is desirable.
【0014】また、上記実施の形態では電子ビームによ
り加熱したが、他の加熱方法、例えばレーザビーム、プ
ラズマ、抵抗加熱により加熱するようにしてもよい。な
お、例えばレーザビームの場合も、出力、掃引速度、焦
点距離等が電子ビームの場合と同様に限定される。In the above-mentioned embodiment, the electron beam is used for heating, but other heating methods such as laser beam, plasma and resistance heating may be used. In the case of a laser beam, for example, the output, sweep speed, focal length, etc. are limited as in the case of an electron beam.
【0015】さらに、上記実施の形態では耐熱性基材1
として炭素鋼S35Cを用いたが、他の耐熱性の優れ
た、焼き入れ硬化が可能な強磁性材料で、残留磁化が大
きくなるように磁気特性が変化する素材であれば、例え
ばフェライト系またはマルテンサイト系ステンレスであ
ってもよい。Further, in the above embodiment, the heat resistant substrate 1
Although carbon steel S35C was used as the above, other heat-resistant, hardenable and hardenable ferromagnetic materials whose magnetic properties change so as to increase the residual magnetization, for example, ferrite series or martens It may be site-based stainless steel.
【0016】また、上記実施の形態では基材および加熱
溶融部分の少なくともいずれか一方を着磁して残留磁化
量を検出するようにしたが、あらかじめ着磁せずに、検
出時に、図5に示すように、励起用磁石4と磁束量を検
出する素子、例えばホール素子5などを用いて図4と同
様の変位量と検出磁束量の関係が得られ、変位の検出が
可能となる。また、このような励磁式の磁気検出器を用
いれば、300〜400℃の高温にさらされるような環
境下でも使用することができる。In the above embodiment, at least one of the base material and the heat-melted portion is magnetized to detect the residual magnetization amount. As shown, the same relationship between the displacement amount and the detected magnetic flux amount as in FIG. 4 is obtained by using the excitation magnet 4 and an element that detects the amount of magnetic flux, such as the Hall element 5, and the displacement can be detected. Further, by using such an excitation type magnetic detector, it can be used even in an environment where it is exposed to a high temperature of 300 to 400 ° C.
【0017】[0017]
【発明の効果】以上のように、この発明によれば、強磁
性体であり、焼き入れ硬化が可能な合金からなる耐熱性
基材に、所定間隔に熱を加えて加熱溶融部分の磁気特性
を変化させ、上記基材より大きな残留磁化を発生させる
ようにし、上記基材及び上記加熱溶融部分の少なくとも
いずれか一方のキュリー点が100℃以上となるように
したので、高温でも消磁せず、耐熱性のある磁気スケー
ルが得られる。また、温度変化に対して剥離等の恐れが
なく、安定かつ測定精度の高いものが製造できる効果が
ある。As described above, according to the present invention, the heat-resistant base material made of an alloy which is a ferromagnet and can be hardened by quenching is heated at a predetermined interval and the magnetic characteristics of the heat-melted portion are obtained. Was changed so as to generate a remanent magnetization larger than that of the base material, and the Curie point of at least one of the base material and the heating and melting portion was 100 ° C. or higher, so that it was not demagnetized even at high temperature, A magnetic scale with heat resistance can be obtained. In addition, there is no fear of peeling or the like due to temperature change, and there is an effect that a stable product with high measurement accuracy can be manufactured.
【0018】また、上記耐熱性基材をS35C、フェラ
イト系ステンレス、またはマルテサント系ステンレスの
いずれかで構成すると、安定、かつ精度の高い耐熱性磁
気スケールが得られる。If the heat resistant substrate is made of S35C, ferritic stainless steel, or martesant stainless steel, a stable and highly accurate heat resistant magnetic scale can be obtained.
【0019】また、出力が0.1KW〜15KW、掃引速度が1
分当り0.1m〜15.0m、単位長当りの照射エネルギーが2
0kJ/m〜300kJ/m、ビームの焦点位置が基材表面から
0〜±100mm の範囲の電子ビーム又はレーザビームによ
り熱を加えると、磁気変化層が容易に形成できる。The output is 0.1 KW to 15 KW and the sweep speed is 1
0.1m-15.0m per minute, irradiation energy per unit length is 2
0kJ / m to 300kJ / m, beam focus position from the substrate surface
The magnetic change layer can be easily formed by applying heat with an electron beam or a laser beam in the range of 0 to ± 100 mm.
【0020】また、基材及び加熱溶融部分の少なくとも
いずれか一方を着磁すると、励起用の磁石がなくても変
位量が検出でき、検出装置の構成が簡単になる。Further, when at least one of the base material and the heating / melting portion is magnetized, the displacement amount can be detected without a magnet for excitation, and the structure of the detection device is simplified.
【図1】 この発明の実施の形態1による耐熱性磁気ス
ケールの製造方法を示す斜視図である。FIG. 1 is a perspective view showing a method for manufacturing a heat resistant magnetic scale according to a first embodiment of the present invention.
【図2】 この発明の実施の形態1に係わる耐熱性磁気
スケールを着磁している様子を示す側面構成図である。FIG. 2 is a side view showing a state in which the heat resistant magnetic scale according to the first embodiment of the present invention is magnetized.
【図3】 この発明の実施の形態1に係わる耐熱性磁気
スケールを用いて変位量を検出する様子を示す斜視図で
ある。FIG. 3 is a perspective view showing how a displacement amount is detected using the heat resistant magnetic scale according to the first embodiment of the present invention.
【図4】 検出された磁化量と変位量との関係を示す関
係図である。FIG. 4 is a relationship diagram showing a relationship between a detected magnetization amount and a displacement amount.
【図5】 この発明の実施の形態1に係わる他の変位量
を検出する様子を示す斜視図である。FIG. 5 is a perspective view showing how to detect another displacement amount according to the first embodiment of the present invention.
【図6】 従来の磁気スケールを示す断面図である。FIG. 6 is a cross-sectional view showing a conventional magnetic scale.
1 耐熱性基材、2 加熱部分、3 電子ビーム、4
電磁石、5ホール素子、10 耐熱性磁気スケール。1 heat resistant substrate, 2 heating part, 3 electron beam, 4
Electromagnet, 5 hall element, 10 heat resistant magnetic scale.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 英男 兵庫県尼崎市塚口本町八丁目1番1号 三 菱電機株式会社材料研究所内 (72)発明者 大村 俊次 兵庫県尼崎市塚口本町八丁目1番1号 三 菱電機株式会社材料研究所内 (72)発明者 大峯 恩 兵庫県尼崎市塚口本町八丁目1番1号 三 菱電機株式会社生産技術研究所内 (72)発明者 森安 雅治 兵庫県尼崎市塚口本町八丁目1番1号 三 菱電機株式会社生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Ikeda 1-1-1, Tsukaguchihonmachi, Amagasaki, Hyogo Prefecture Sanryo Electric Co., Ltd. Materials Research Laboratory (72) Inujishi Omura, 1-8, Tsukaguchihonmachi, Amagasaki, Hyogo No. 1 Sanryo Electric Co., Ltd. Materials Research Laboratory (72) Inventor Omine En 1-8-1, Tsukaguchihonmachi, Amagasaki City, Hyogo Prefecture Sanryo Electric Co., Ltd. Production Technology Research Laboratory (72) Inventor Masaharu Moriyasu Amagasaki City, Hyogo Prefecture 8-1, 1-1 Tsukaguchihonmachi Sanryo Electric Co., Ltd.
Claims (4)
合金からなる耐熱性基材に、所定間隔に熱を加えて加熱
溶融部分の磁気特性を変化させ、上記基材より大きな残
留磁化を発生させるようにした、上記基材及び上記加熱
溶融部分の少なくともいずれか一方のキュリー点が10
0℃以上である耐熱性磁気スケールの製造方法。1. A remanent magnetization larger than that of the above-mentioned base material by applying heat at a predetermined interval to a heat-resistant base material made of an alloy which is a ferromagnetic material and capable of being hardened by hardening to change the magnetic characteristics of a heated and melted portion. The Curie point of at least one of the base material and the heat-melted portion is 10
A method for producing a heat-resistant magnetic scale having a temperature of 0 ° C. or higher.
テンレス、またはマルテサント系ステンレスのいずれか
である請求項1記載の耐熱性磁気スケールの製造方法。2. The method for producing a heat-resistant magnetic scale according to claim 1, wherein the heat-resistant base material is S35C, ferritic stainless steel, or martesant stainless steel.
り0.1m〜15.0m、単位長当りの照射エネルギーが20kJ
/m〜300kJ/m、ビームの焦点位置が基材表面から0〜
±100mm の範囲の電子ビーム又はレーザビームにより熱
を加えた請求項1または2記載の耐熱性磁気スケールの
製造方法。3. The output is 0.1 KW to 15 KW, the sweep speed is 0.1 m to 15.0 m per minute, and the irradiation energy per unit length is 20 kJ.
/ M ~ 300kJ / m, beam focus position is 0 ~ from the substrate surface
The method for producing a heat-resistant magnetic scale according to claim 1 or 2, wherein heat is applied by an electron beam or a laser beam in a range of ± 100 mm.
れか一方を着磁した請求項1ないし3のいずれかに記載
の耐熱性磁気スケールの製造方法。4. The method for producing a heat-resistant magnetic scale according to claim 1, wherein at least one of the base material and the heat melting portion is magnetized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8105180A JP2886131B2 (en) | 1996-04-25 | 1996-04-25 | Manufacturing method of heat resistant magnetic scale |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8105180A JP2886131B2 (en) | 1996-04-25 | 1996-04-25 | Manufacturing method of heat resistant magnetic scale |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62217316A Division JP2824059B2 (en) | 1987-08-31 | 1987-08-31 | Manufacturing method of heat resistant magnetic scale |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH095113A true JPH095113A (en) | 1997-01-10 |
JP2886131B2 JP2886131B2 (en) | 1999-04-26 |
Family
ID=14400487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8105180A Expired - Lifetime JP2886131B2 (en) | 1996-04-25 | 1996-04-25 | Manufacturing method of heat resistant magnetic scale |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2886131B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716309A (en) * | 1980-07-04 | 1982-01-27 | Toshiba Mach Co Ltd | Displacement detector |
JPS60250211A (en) * | 1984-05-28 | 1985-12-10 | Inoue Japax Res Inc | Manufacture of magnetic scale |
JPS6283620A (en) * | 1985-10-09 | 1987-04-17 | Sumitomo Metal Ind Ltd | Magnetic scale |
-
1996
- 1996-04-25 JP JP8105180A patent/JP2886131B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716309A (en) * | 1980-07-04 | 1982-01-27 | Toshiba Mach Co Ltd | Displacement detector |
JPS60250211A (en) * | 1984-05-28 | 1985-12-10 | Inoue Japax Res Inc | Manufacture of magnetic scale |
JPS6283620A (en) * | 1985-10-09 | 1987-04-17 | Sumitomo Metal Ind Ltd | Magnetic scale |
Also Published As
Publication number | Publication date |
---|---|
JP2886131B2 (en) | 1999-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5091021A (en) | Magnetically coded device and method of manufacture | |
US5089060A (en) | Thermomagnetically patterned magnets and method of making same | |
US5492572A (en) | Method for thermomagnetic encoding of permanent magnet materials | |
US6830634B2 (en) | Method and device for continuous annealing metallic ribbons with improved process efficiency | |
AU665210B2 (en) | A method of encoding and decoding a glassy alloy strip to be used as an identification marker | |
JPH03105210A (en) | Method for producing permanent magnet sensor element with soft magnetic layer | |
JP2886131B2 (en) | Manufacturing method of heat resistant magnetic scale | |
JP2824059B2 (en) | Manufacturing method of heat resistant magnetic scale | |
Han et al. | Microlinear Halbach array of thick-film Nd–Fe–B magnets utilizing local laser irradiation and a direction-changeable external magnetic field | |
JP2544456B2 (en) | Method of manufacturing magnetic scale | |
JP2698586B2 (en) | Manufacturing method of heat resistant magnetic scale | |
JP2588916B2 (en) | Manufacturing method of heat resistant and corrosion resistant magnetic scale | |
US4935070A (en) | Method of manufacturing heat resisting magnetic scale | |
US5076862A (en) | Method of manufacturing heat resisting magnetic scale | |
JPH0823501B2 (en) | Heat resistant magnetic scale and method for producing the same | |
JP2965628B2 (en) | Method for manufacturing sensor having magnetic material as constituent element | |
Wang et al. | Numerical investigation of the impact of thermoelectric effect on electron beam welding of dissimilar materials | |
JPH0287013A (en) | Preparation of magnetic scale | |
KR20190042235A (en) | Self-hysteresis curve continuous measurement apparatus using permanent magnet | |
JP2633229B2 (en) | Manufacturing method of multi-pole permanent magnet | |
JP2578949B2 (en) | Magnetic information reading method | |
JPH05299247A (en) | Method of thermomagnetically coding permanent magnet material | |
Meydan et al. | Laser and sputter-deposited amorphous films for stress detection | |
Grigorenko et al. | Laser processing effect on magnetic properties of amorphous wires | |
JPS58211604A (en) | Magnetic scale |