JPH0131570B2 - - Google Patents

Info

Publication number
JPH0131570B2
JPH0131570B2 JP56204115A JP20411581A JPH0131570B2 JP H0131570 B2 JPH0131570 B2 JP H0131570B2 JP 56204115 A JP56204115 A JP 56204115A JP 20411581 A JP20411581 A JP 20411581A JP H0131570 B2 JPH0131570 B2 JP H0131570B2
Authority
JP
Japan
Prior art keywords
magnetic
metal wire
magnetic metal
curved surface
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56204115A
Other languages
Japanese (ja)
Other versions
JPS58105012A (en
Inventor
Osamu Myoga
Hitoshi Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP20411581A priority Critical patent/JPS58105012A/en
Publication of JPS58105012A publication Critical patent/JPS58105012A/en
Publication of JPH0131570B2 publication Critical patent/JPH0131570B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は磁気スケールおよびその製造方法に係
わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic scale and a method for manufacturing the same.

従来の磁気スケールは非磁性基体上にメツキ、
蒸着あるいはスパツター等で磁性層を被着形成、
あるいは磁性粉末を塗布あるいは板状等の磁性材
料を被着形成されていた。そして検出器を磁性材
料の平面部に沿つて移動させ、位置検出あるいは
長さ測定等を行なつていた。しかしながら、前記
従来の磁性層被着形成方法は煩雑であるために高
価格磁気スケールとなり、また、シート状の磁気
記録媒体であるため、磁気ヘツドでN−S極パタ
ーンを書き込む場合、磁気ヘツドと磁気記録媒体
の接触状態に変動が生じ易く高精度、高密度に磁
気書き込みすることが困難である。
Conventional magnetic scales are plated on a non-magnetic substrate.
Forming a magnetic layer by vapor deposition or sputtering,
Alternatively, they were formed by applying magnetic powder or by adhering a plate-like magnetic material. Then, the detector was moved along the flat surface of the magnetic material to detect the position or measure the length. However, the conventional magnetic layer adhesion formation method is complicated, resulting in an expensive magnetic scale, and since the magnetic recording medium is a sheet-shaped magnetic recording medium, when writing an N-S pole pattern with a magnetic head, it is difficult to use a magnetic head. The contact state of the magnetic recording medium tends to fluctuate, making it difficult to perform magnetic writing with high precision and high density.

本発明はFe−Co−Mn−C系の磁気的に硬い磁
性金属線材をオーステナイト系ステンレス鋼から
なる円柱あるいは円筒状基体の長手方向に沿つて
形成された溝の中に設置し、前記磁性金属線材の
曲面が前記基体の曲面に対して同一面にあるいは
凸状になるように溶接あるいはろう付けで固定、
あるいはスエージ加工でかしめて固定し、磁性金
属線材の曲面に磁気書き込みするか、あるいは磁
気スケールの磁性金属線材の埋め込み面を含む全
外周面を外周研削し、平滑な磁性材料の曲面を作
製して該曲面に磁気書き込みすることで、高精
度、高記録密度の厳しい温度変化に対応できる磁
気スケール及びその製造方法を提供するものであ
る。本発明に係わる磁気スケールは、たとえば熱
膨張係数が14ppm/℃以上で18ppm/℃以下の
Fe−Co−Mn−C系の磁気的に硬い磁性金属線材
をたとえば熱膨張係数が14ppm/℃以上で
18ppm/℃以下のオーステナイト系ステンレス鋼
からなる円柱あるいは円筒状基体の長手方向に沿
つて形成された溝に前記磁性金属線材の曲面が前
記基体の曲面に対して同一面あるいは凸状になる
ように配置した構造を特徴としている。その製造
方法としては前記Fe−Co−Mn−C系の磁気的に
硬い磁性金属線材を熱膨張係数が前記オーステナ
イト系ステンレス鋼からなる円柱あるいは円筒状
基体の長手方向に沿つて形成された溝の中に設置
し、前記磁性金属線材の曲面が前記基体の曲面に
対して同一面あるいは凸状になるように溶接ある
いはろう付けで固定、あるいはスエージ加工でか
しめて固定して作製することを特徴とする磁気ス
ケールの製造方法と、及び前記Fe−Co−Mn−C
系の磁気的に硬い磁性金属線材を前記オーステナ
イト系ステンレス鋼からなる円柱あるいは円筒状
基体の長手方向に沿つて形成された溝の中に設置
し、前記磁性金属線材の曲面が前記基体の曲面に
対して同一面あるいは凸状になるように溶接ある
いはろう付けで固定、あるいはスエージ加工でか
しめて固定し、該磁性金属線材の埋め込み面を含
む全外周面を外周研削し、平滑な磁性材料の曲面
を作製することを特徴とする磁気スケールの製造
方法で製造することにある。
In the present invention, a magnetically hard magnetic metal wire of the Fe-Co-Mn-C system is installed in a groove formed along the longitudinal direction of a columnar or cylindrical base made of austenitic stainless steel, and the magnetic metal wire is fixed by welding or brazing so that the curved surface of the wire is flush with or convex to the curved surface of the base;
Alternatively, the curved surface of the magnetic metal wire can be magnetically written by caulking and fixed by swaging, or the entire outer peripheral surface of the magnetic scale including the embedded surface of the magnetic metal wire can be ground to create a smooth curved surface of the magnetic material. The present invention provides a magnetic scale that can cope with severe temperature changes with high accuracy and high recording density by magnetically writing on the curved surface, and a method for manufacturing the same. The magnetic scale according to the present invention has a thermal expansion coefficient of 14 ppm/℃ or more and 18 ppm/℃ or less, for example.
For example, a Fe-Co-Mn-C system magnetically hard magnetic metal wire with a thermal expansion coefficient of 14 ppm/°C or higher is used.
A groove is formed along the longitudinal direction of a columnar or cylindrical base made of austenitic stainless steel with a temperature of 18 ppm/°C or less so that the curved surface of the magnetic metal wire is flush with or convex to the curved surface of the base. It is characterized by its arranged structure. The manufacturing method involves using the Fe-Co-Mn-C based magnetically hard magnetic metal wire material having a thermal expansion coefficient of a groove formed along the longitudinal direction of the columnar or cylindrical base made of the austenitic stainless steel. The magnetic metal wire is fixed by welding or brazing, or caulked by swaging so that the curved surface of the magnetic metal wire is flush with or convex to the curved surface of the base. A method for manufacturing a magnetic scale, and the Fe-Co-Mn-C
A magnetically hard magnetic metal wire of the system is placed in a groove formed along the longitudinal direction of the columnar or cylindrical base made of austenitic stainless steel, and the curved surface of the magnetic metal wire is aligned with the curved surface of the base. The magnetic metal wire is fixed by welding, brazing, or caulking so that it is on the same plane or in a convex shape, and the entire outer circumferential surface including the embedded surface of the magnetic metal wire is ground to create a smooth curved surface of the magnetic material. An object of the present invention is to manufacture a magnetic scale by a method of manufacturing a magnetic scale.

Fe−Co−Mn−C系の磁気的に硬い磁性金属線
材を設置する基体は非磁性であることはもちろん
であり、該磁性金属線材の熱膨張係数と同一の熱
膨張係数を有する材料が望ましい。その理由は、
厳しい温度変化が起こる環境では、熱膨張係数の
違いによつて基体から磁性金属線材が外れること
があるためである。
The substrate on which the Fe-Co-Mn-C magnetically hard magnetic metal wire is installed is of course non-magnetic, and is preferably made of a material that has the same coefficient of thermal expansion as that of the magnetic metal wire. . The reason is,
This is because, in environments where severe temperature changes occur, the magnetic metal wire may come off from the base due to differences in thermal expansion coefficients.

非磁性基体にあらかじめ掘る溝の巾は埋込む磁
性金属線材の直径程度が望ましく、溝の巾が広す
ぎて磁性金属線材が労せずはずれるようでは作業
性の点で望ましくない。また、溝の巾が狭すぎ
て、埋込みの際、磁性金属線材あるいは非磁性基
体が変形するようでは良好な磁気スケールを得る
上で望ましくない。溝の深さは埋込む磁性金属線
材の直径の半分以下の長さでは、埋込んだ磁性金
属線材が労せずはずれるため、作業上の点で望ま
しくない。また、埋込む磁性金属線材の直径より
長くすると磁性材料の曲面を得るための研削量が
多くなり、高価な磁気スケールとなることは明確
である。したがつて、溝の深さは埋込む磁性金属
線材の直径の半分を越えてその直径を越えない深
さであれば充分である。溝の底面は第1図のaの
ように平面であつても、bのように曲面であつて
もかまわず、本発明の磁気スケールを製造する上
で問題は起こらない。
The width of the groove pre-dug in the non-magnetic substrate is preferably about the diameter of the magnetic metal wire to be embedded, and it is undesirable from the viewpoint of workability if the groove is too wide and the magnetic metal wire can be easily removed. Furthermore, if the width of the groove is too narrow and the magnetic metal wire or nonmagnetic substrate is deformed during embedding, this is not desirable in terms of obtaining a good magnetic scale. If the depth of the groove is less than half the diameter of the embedded magnetic metal wire, the embedded magnetic metal wire will come off without effort, which is undesirable from a work point of view. Furthermore, it is clear that if the diameter is longer than the diameter of the magnetic metal wire to be embedded, the amount of grinding required to obtain the curved surface of the magnetic material will increase, resulting in an expensive magnetic scale. Therefore, it is sufficient that the depth of the groove is more than half the diameter of the magnetic metal wire to be embedded, but not more than that diameter. The bottom surface of the groove may be flat as shown in FIG.

本発明に使用する磁性金属線材は、外部磁場の
影響を受けないように保磁力が300エルステツド
以上であることはもちろんのこと、残留磁束密度
の高い材料であることが望ましい。検出に磁気ヘ
ツドを使用する場合は、残留磁束密度がある程度
低くても検出可能であるが、その場合、磁気スケ
ールと磁気ヘツドの位置調整に多大な労力が費や
される。また、磁気抵抗効果素子を使用する場合
はある程度高い残留磁束密度を必要とする。特
に、高速で検出器を移動させ位置検出等を行う場
合は、磁気スケールと検出器は接触しないことが
望ましく、その場合、磁性金属線材の残留磁束密
度は高いことが必要である。したがつて、本発明
ではFe−Co−Mn−C合金あるいはその合金に
Mo、W、Si、B、V、CrあるいはTiを単体ある
いは2種以上含む合金を用いた。
The magnetic metal wire used in the present invention preferably has a coercive force of 300 oersted or more so as not to be affected by external magnetic fields, and is also preferably a material with a high residual magnetic flux density. When a magnetic head is used for detection, detection is possible even if the residual magnetic flux density is low to some extent, but in that case, a great deal of effort is expended in positioning the magnetic scale and the magnetic head. Furthermore, when using a magnetoresistive element, a somewhat high residual magnetic flux density is required. In particular, when moving the detector at high speed to perform position detection, etc., it is desirable that the magnetic scale and the detector do not come into contact with each other, and in that case, the residual magnetic flux density of the magnetic metal wire needs to be high. Therefore, in the present invention, Fe-Co-Mn-C alloy or its alloy is used.
An alloy containing a single element or two or more of Mo, W, Si, B, V, Cr, or Ti was used.

溝の中に設置した磁性金属線材を固定するため
にはスエージ加工でかしめるかあるいは溶接、ろ
う付けで固定することが望ましい。スエージ加工
でかしめて固定する場合は、第2図bのように溝
の側壁が少し傾き、磁性金属線材をかしめて、磁
性金属線材が溝の外に飛びださない程度に加工す
ればよい。加工度の目安として、第2図aで何も
ない部分の面積(溝の面積−磁性金属線材の面
積)の減面率で加工すれば充分である。溶接の場
合は、溶接時の発熱による溶融部分が広くならな
いように電力量を調整する必要がある。例えば直
径1.5mmφのFe−Co−Mn−C系合金線材を80[ワ
ツト/秒]の電力でSUS303材に溶接すると磁性
金属線材のSUS303材との接合部から約100μm深
さに渡つて磁性金属線材が溶融していた。ろう付
けの場合は、ろう付けを最終熱処理の前後のどち
らで行なうかによつて、ろう材の選定を行う必要
がある。即ち、ろう付けを最終熱処理前に行う場
合は、その熱処理温度より高い融点のろう材を用
いる必要があり、最終熱処理後に行う場合は、そ
の熱処理温度より低い融点のろう材を用いる必要
がある。以上のようなスエージ、溶接あるいはろ
う付けにより磁性金属線材を溝の中に固定せず、
ただ、磁性金属線材を溝の中に埋込むだけの状態
で、研削加工を施した場合、研削加工中に磁性金
属線材が溝の中から飛び出してくる場合が多く、
精度良く加工できないことはもちろんのこと、作
業に危険が伴なう。しかしながら、スエージ、溶
接あるいはろう付けにより磁性金属線材を固定す
ると、研削加工により、さらに温度サイクル試験
によつても磁性金属線材が溝の中から飛び出して
くることは無かつた。
In order to fix the magnetic metal wire installed in the groove, it is desirable to caulk it by swaging, or to fix it by welding or brazing. When fixing by caulking by swaging, the side walls of the groove are slightly inclined as shown in FIG. 2b, and the magnetic metal wire is caulked to the extent that the magnetic metal wire does not protrude out of the groove. As a guideline for the degree of processing, it is sufficient to perform the processing at a reduction rate of the area of the blank portion (area of the groove - area of the magnetic metal wire) as shown in FIG. 2a. In the case of welding, it is necessary to adjust the amount of electric power so that the melted area does not become large due to the heat generated during welding. For example, when a Fe-Co-Mn-C alloy wire with a diameter of 1.5 mmφ is welded to a SUS303 material with a power of 80 [watts/second], the magnetic metal wire is welded to a depth of about 100 μm from the joint with the SUS303 material. The wire was melted. In the case of brazing, it is necessary to select a brazing material depending on whether brazing is to be performed before or after final heat treatment. That is, when brazing is performed before the final heat treatment, it is necessary to use a brazing material with a melting point higher than the heat treatment temperature, and when brazing is performed after the final heat treatment, it is necessary to use a brazing material with a melting point lower than the heat treatment temperature. The magnetic metal wire is not fixed in the groove by swaging, welding or brazing as described above,
However, if the magnetic metal wire is simply embedded in the groove and then subjected to grinding, the magnetic metal wire often comes out from the groove during the grinding process.
Not only is it impossible to process with high precision, but the work is also dangerous. However, when the magnetic metal wire was fixed by swaging, welding, or brazing, the magnetic metal wire did not come out of the groove during grinding or even during a temperature cycle test.

前記した最終熱処理は、磁性金属線材の磁気特
性を磁気スケールとして最適にすることを目的と
しているが、その最終熱処理は、非磁性基体の溝
の中に埋込む作業の前後どちらで施してもかまわ
ないことは明白である。
The purpose of the final heat treatment described above is to optimize the magnetic properties of the magnetic metal wire as a magnetic scale, but the final heat treatment may be performed either before or after embedding it in the groove of the non-magnetic substrate. It is clear that there is no such thing.

以上のようにして得られた磁気スケールは非磁
性基体を、検出器を移動させる案内軸として使用
すると、一体物で磁気スケールと案内軸の役割を
果すことができ、部品の節約あるいは構造の簡単
化に役立ち、装置としての価格の低減に効果を発
揮することも明白である。
The magnetic scale obtained as described above can function as both a magnetic scale and a guide shaft in one piece by using a non-magnetic substrate as a guide shaft for moving the detector, saving parts and simplifying the structure. It is also clear that this method is useful in reducing the cost of the device.

使用する磁性金属線材の直径は、一般の検出ヘ
ツドあるいは磁気抵抗効果素子を使用した場合、
0.5mmφ以上であれば充分であり、また太すぎる
と高価なCo元素を用いた磁性金属線材が高価と
なり、3mmφを越えない磁性金属線材が適当であ
る。
The diameter of the magnetic metal wire used is as follows when using a general detection head or magnetoresistive element:
A diameter of 0.5 mm or more is sufficient; if it is too thick, a magnetic metal wire using the expensive Co element becomes expensive, so a magnetic metal wire not exceeding 3 mm is appropriate.

次に本発明の磁気スケールおよびその製造方法
について実施例によつて説明する。
Next, the magnetic scale of the present invention and its manufacturing method will be explained by way of examples.

実施例 1 直径6mm、長さ1000mmのSUS303材の丸棒に巾
0.5mm、深さ0.5mmの第1図bのような溝を一直線
に掘つた。その溝に直径0.5mmの重量比で38.025
%Co−19.512%Mn−0.585%C−1.366%Si−
0.488%V−残りFeから成る冷間伸線加工された
合金線材を埋込み、スエージ加工を施して直径
5.97mmの複合体とした。その複合体を450℃で30
分間、水素雰囲気中で熱処理した。第3図のよう
に埋込まれた磁性金属線材は、溝から遊離するこ
とがなかつた。
Example 1 A round bar made of SUS303 material with a diameter of 6 mm and a length of 1000 mm.
A trench of 0.5 mm and depth as shown in Figure 1 b was dug in a straight line. The groove has a diameter of 0.5mm and the weight ratio is 38.025
%Co−19.512%Mn−0.585%C−1.366%Si−
A cold-drawn alloy wire consisting of 0.488% V and remaining Fe is embedded and swaged to reduce the diameter.
It was made into a 5.97mm composite. The complex was heated at 450℃ for 30
Heat treatment was performed for 1 minute in a hydrogen atmosphere. The magnetic metal wire embedded as shown in FIG. 3 did not come loose from the groove.

実施例 2 直径10mm、長さ1000mmのSUS303材の丸棒に巾
1.5mm、深さ0.9mmの第1図aのような溝を一直線
に掘つた。その溝に直径1.5mmの実施例1で用い
た磁性金属線材と同組成の線材を470℃の融点の
ろう材が溶融しているSUS303材の溝の中に埋め
込み、素早く冷却して線材を固定し複合体とし
た。その複合体を450℃で30分間、水素雰囲気中
で熱処理した。熱処理された複合体は、溝の部分
を上方に向けて固定した。第3図のように埋込ま
れた磁性金属線材は溝から遊離することはなかつ
た。
Example 2 A round bar made of SUS303 material with a diameter of 10 mm and a length of 1000 mm.
A trench of 1.5 mm and 0.9 mm deep was dug in a straight line as shown in Figure 1 a. A wire with a diameter of 1.5 mm and the same composition as the magnetic metal wire used in Example 1 is embedded in the groove of SUS303 material in which a brazing filler metal with a melting point of 470°C is melted, and the wire is fixed by quickly cooling it. It was made into a complex. The composite was heat treated at 450°C for 30 minutes in a hydrogen atmosphere. The heat treated composite was fixed with the groove portion facing upward. As shown in FIG. 3, the embedded magnetic metal wire did not come loose from the groove.

実施例 3 外径15mm、肉厚4mm、長さ1000mmのSUS303材
の円筒棒に巾1.8mm、深さ1.6mmの第4図のような
溝を一直線に掘つた。その溝に直径1.8mmの実施
例1で用いた同組成の線材を埋込み、70[W/秒]
の電力で連続溶接を施して複合体とした。その複
合体を450℃で30分間、水素雰囲気中で熱処理し
た。熱処理された複合体は、溶接によりきずつい
たSUS303材の外表面を取り除くため、センター
レスグラインダーで研削加工した。埋込まれた磁
性金属線材は溝から遊離することがなかつた。
Example 3 A groove as shown in Fig. 4 with a width of 1.8 mm and a depth of 1.6 mm was dug in a straight line in a cylindrical rod made of SUS303 material with an outer diameter of 15 mm, a wall thickness of 4 mm, and a length of 1000 mm. A wire of the same composition used in Example 1 with a diameter of 1.8 mm was embedded in the groove, and the wire rod was heated at 70 [W/sec].
Continuous welding was performed using electric power to create a composite. The composite was heat treated at 450°C for 30 minutes in a hydrogen atmosphere. The heat-treated composite was ground using a centerless grinder to remove the outer surface of the SUS303 material that had been damaged by welding. The embedded magnetic metal wire did not come loose from the groove.

実施例 4 実施例1の熱処理された直径5.97mmの複合体は
精密研削用センターレスグラインダーあるいは通
常の精密外周研削機を用いて、埋込み面を含む外
周面を第5図でφ0=5.8mmとなるように研削した。
埋込まれた磁性金属線材は溝から遊離することな
く、良好な磁性材料の曲面が得られた。
Example 4 The heat-treated composite of Example 1 with a diameter of 5.97 mm was polished to a diameter of φ 0 =5.8 mm in Fig. 5 using a centerless grinder for precision grinding or an ordinary precision peripheral grinder to reduce the outer peripheral surface including the embedded surface. It was ground so that
The embedded magnetic metal wire did not come loose from the groove, and a good curved surface of the magnetic material was obtained.

実施例で製造した磁気スケールは一定間隔で磁
気書き込みを施して、検出用磁気ヘツドあるいは
磁気抵抗効果素子を用いて読み取ると、書き込み
間隔と同じ間隔で検出信号が得られた。
When the magnetic scale manufactured in the example was magnetically written at regular intervals and read using a detection magnetic head or a magnetoresistive element, detection signals were obtained at the same intervals as the writing intervals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aおよびbは本発明の非磁性基体(円柱
状)に形成された溝の形状を示す図。第2図aは
溝の中に磁性金属線材を埋込んだ状態を示す図、
第2図bはaの状態のものをスエージ加工でかし
めて磁性金属線材を固定した状態を示す図であ
る。第3図は実施例で製造した磁気スケールの断
面図。第4図は実施例に用いたステンレスの非磁
性基体(円筒)の断面図。第5図は実施例で製造
した磁気スケールの断面図。 各図におて、1は非磁性基体に形成された溝、
2は溝に固定された磁性金属線材。
FIGS. 1a and 1b are diagrams showing the shapes of grooves formed in the nonmagnetic substrate (cylindrical) of the present invention. Fig. 2a is a diagram showing a state in which a magnetic metal wire is embedded in a groove;
FIG. 2b is a diagram showing a state in which the magnetic metal wire rod in the state shown in a is crimped by swaging to fix the magnetic metal wire. FIG. 3 is a cross-sectional view of the magnetic scale manufactured in the example. FIG. 4 is a cross-sectional view of a stainless steel nonmagnetic substrate (cylindrical) used in the example. FIG. 5 is a cross-sectional view of the magnetic scale manufactured in the example. In each figure, 1 is a groove formed in a non-magnetic substrate;
2 is a magnetic metal wire fixed in the groove.

Claims (1)

【特許請求の範囲】 1 Fe−Co−Mn−C系の磁気的に硬い磁性金属
線材をオーステナイト系ステンレス鋼からなる円
柱あるいは円筒状基体の長手方向に沿つて形成さ
れた溝に前記磁性金属線材の曲面が前記基体の曲
面に対して同一面あるいは凸状になるように配置
した構造を特徴とする磁気スケール。 2 Fe−Co−Mn−C系の磁気的に硬い磁性金属
線材をオーステナイト系ステンレス鋼からなる円
柱あるいは円筒状基体の長手方向に沿つて形成さ
れた溝の中に設置し、前記磁性金属材の曲面が前
記基体の曲面に対して同一面あるいは凸状になる
ように溶接あるいはろう付けで固定、あるいはス
エージ加工でかしめて固定して作製することを特
徴とする磁気スケールの製造方法。 3 Fe−Co−Mn−C系の磁気的に硬い磁性金属
材をオーステナイト系ステンレス鋼からなる円柱
あるいは円筒状基体の長手方向に沿つて形成され
た溝の中に設置し、前記磁性金属線材の曲面が前
記基体の曲面に対して同一面あるいは凸状になる
ように溶接あるいはろう付けで固定、あるいはス
エージ加工でかしめて固定し、該磁性金属線材の
埋め込み面を含む基体の全外周面を外周研削し、
平滑な磁性材料の曲面を作製することを特徴とす
る磁気スケールの製造方法。
[Claims] 1. A Fe-Co-Mn-C based magnetically hard magnetic metal wire is inserted into a groove formed along the longitudinal direction of a columnar or cylindrical base made of austenitic stainless steel. 1. A magnetic scale characterized by a structure in which the curved surface of is arranged so as to be flush with or convex to the curved surface of the base. 2. A Fe-Co-Mn-C based magnetically hard magnetic metal wire is placed in a groove formed along the longitudinal direction of a cylinder or cylindrical base made of austenitic stainless steel, and A method for manufacturing a magnetic scale, characterized in that the curved surface is fixed by welding or brazing, or caulked by swaging so that the curved surface is flush with or convex to the curved surface of the base. 3. A Fe-Co-Mn-C based magnetically hard magnetic metal material is installed in a groove formed along the longitudinal direction of a columnar or cylindrical base made of austenitic stainless steel, and the magnetic metal wire material is The curved surface is fixed by welding or brazing, or caulked by swaging so that the curved surface is flush with or convex to the curved surface of the base, and the entire outer peripheral surface of the base including the embedded surface of the magnetic metal wire is fixed to the outer periphery. Grind and
A method for manufacturing a magnetic scale, characterized by manufacturing a smooth curved surface of a magnetic material.
JP20411581A 1981-12-17 1981-12-17 Magnetic scale and manufacture thereof Granted JPS58105012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20411581A JPS58105012A (en) 1981-12-17 1981-12-17 Magnetic scale and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20411581A JPS58105012A (en) 1981-12-17 1981-12-17 Magnetic scale and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58105012A JPS58105012A (en) 1983-06-22
JPH0131570B2 true JPH0131570B2 (en) 1989-06-27

Family

ID=16485055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20411581A Granted JPS58105012A (en) 1981-12-17 1981-12-17 Magnetic scale and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58105012A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157803U (en) * 1984-09-22 1986-04-18
JPS6165304U (en) * 1984-10-02 1986-05-06
JPH0531521Y2 (en) * 1985-10-04 1993-08-13
JPH02122210A (en) * 1988-10-31 1990-05-09 Uchiyama Yoichi Straight motion guide apparatus and scale recording method for guide axis thereof
JP4967688B2 (en) * 2007-01-29 2012-07-04 ヤマハ株式会社 Slide operation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528997A (en) * 1975-07-14 1977-01-24 Kureha Chem Ind Co Ltd Novel cation exchange membrane and process for producing thereof
JPS5222285U (en) * 1975-08-05 1977-02-17
JPS528446B2 (en) * 1974-08-27 1977-03-09
JPS554248A (en) * 1978-06-27 1980-01-12 Takata Kk Belt guide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528446U (en) * 1975-07-04 1977-01-21

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528446B2 (en) * 1974-08-27 1977-03-09
JPS528997A (en) * 1975-07-14 1977-01-24 Kureha Chem Ind Co Ltd Novel cation exchange membrane and process for producing thereof
JPS5222285U (en) * 1975-08-05 1977-02-17
JPS554248A (en) * 1978-06-27 1980-01-12 Takata Kk Belt guide

Also Published As

Publication number Publication date
JPS58105012A (en) 1983-06-22

Similar Documents

Publication Publication Date Title
JPH02221830A (en) Magnetostriction type torque sensor
EP1033764A3 (en) Magnetoresistance effect element and method for producing the same, and magnetoresistance effect type head, magnetic recording apparatus, and magnetoresistance effect memory element
JPH0766503B2 (en) Method of adjusting magnetic domain structure of magnetoresistive sensor
US4840073A (en) Torque detecting device
JPH0131570B2 (en)
JPH10176966A (en) Magnetostriction-detecting body for torque sensor
JPH0134328B2 (en)
JPS6363051B2 (en)
JPH03242983A (en) Manufacture of magnetic structure
JP2006300902A (en) Stress detection method and device
JPS60323A (en) Magnetic scale and its manufacture
JPS6283620A (en) Magnetic scale
JP4876393B2 (en) Torque detection device
JPS6482330A (en) Ferromagnetic powder and magnetic recording medium formed by using said powder
JPH04155232A (en) Manufacture of magnetostrictive detector for torque sensor
EP0310543B1 (en) Using of a technique of converting a magnetic material to nonmagnetic or alternatively for a non-contacting incremental measuring method of displacement and/or of the position of a moving part.
US5076862A (en) Method of manufacturing heat resisting magnetic scale
JPH04221726A (en) Manufacture of magnetostriction detector for torque sensor
JPH0634459A (en) Magnetostriction detector for magnetostriction type torque sensor and its manufacture
JPH0132446B2 (en)
JP2640462B2 (en) Composite magnetic wire and method of manufacturing the same
JP3018812B2 (en) Method of manufacturing shaft having magnetostrictive torque detector
JPH0288715A (en) Production of heat resistant magnetic scale
JP5648958B2 (en) Method of manufacturing plate member for magnetostrictive force sensor, ring member for magnetostrictive force sensor, and method of manufacturing ring member for magnetostrictive force sensor
JPH1038710A (en) Stress detecting element