JPH04259385A - Formation of signal pattern utilizing change in magnetic characteristic - Google Patents

Formation of signal pattern utilizing change in magnetic characteristic

Info

Publication number
JPH04259385A
JPH04259385A JP2231991A JP2231991A JPH04259385A JP H04259385 A JPH04259385 A JP H04259385A JP 2231991 A JP2231991 A JP 2231991A JP 2231991 A JP2231991 A JP 2231991A JP H04259385 A JPH04259385 A JP H04259385A
Authority
JP
Japan
Prior art keywords
stainless steel
equiv
equivalent
ferrite
signal pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2231991A
Other languages
Japanese (ja)
Other versions
JP2616504B2 (en
Inventor
Shinji Kato
真司 加藤
宗谷 ▲高▼木
Muneya Takagi
Akio Sato
彰生 佐藤
Akira Matsunawa
松縄 朗
Seiji Katayama
聖二 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3022319A priority Critical patent/JP2616504B2/en
Publication of JPH04259385A publication Critical patent/JPH04259385A/en
Application granted granted Critical
Publication of JP2616504B2 publication Critical patent/JP2616504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To form signal patterns (magnetic scale) by utilizing a stainless steel which is widened in compsn. range than heretofore and changing the metal structure with remelting solidification without undergoing a strong working stage by irradiation with a laser beam, thereby changing magnetic characteristics as well. CONSTITUTION:A stainless steel layer 2 having the coexistence structure of the austenite and ferrite within the range enclosed by points A (15.2% Cr equiv., 8.0% Ni equiv.), B (21.2% Cr equiv., 3.2% Ni equiv.), C (40.0% Cr equiv., 13.0% Ni equiv.), D (37.0% Cr equiv., 30.0% Ni equiv.), as shown in scheeffler phase diagram of attached Fig. is disposed on the surface of parts and high-density energy, such as YAG laser 3, is impressed in a prescribed signal pattern shape to the surface of this stainless steel 2 to locally remelt and solidify the steel layer by rapid cooling, by which the structure obtd. at a high cooling rate is formed. This stainless steel has the magnetic characteristics different from the magnetic characteristics of the structure of the stainless steel part which is not remelted and solidified by rapid cooling.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、位置や速度を検出する
非接触型センサーなどに使用される、金属表面に磁気特
性の異なる信号パターン(磁気目盛りなど)を形成する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming signal patterns (magnetic scales, etc.) with different magnetic characteristics on a metal surface, which is used in non-contact sensors for detecting position and speed.

【0002】0002

【従来の技術】金属表面へのレーザ光照射による再溶融
凝固で金属材料の磁気特性を変えることを利用して信号
パターン(磁気目盛り)を形成することできる。その一
例として、18%Cr−7%Niの不安定オーステナイ
ト鋼の部材を冷間引抜と矯正して加工誘起マルテンサイ
ト組織にし、レーザ照射によって表面を溶融凝固させる
とその部分はオーステナイト(非磁性体)化する。再溶
融部と非溶融部を交互に繰り返したパターンを形成する
ことによって、非磁性・強磁性パターンを形成する。こ
のような表面を磁気検出器で走査すると、パターンに応
じたパルス信号が得られ、この信号をカウントすれば、
部材の変位や速度を検出することができる(例えば、住
友金属、Vol. 42−3 (1990), pp.
21−26参照)。
2. Description of the Related Art A signal pattern (magnetic scale) can be formed by changing the magnetic properties of a metal material by remelting and solidifying the metal surface by irradiating it with a laser beam. As an example, when an unstable austenitic steel member of 18% Cr-7% Ni is cold-drawn and straightened to form a deformation-induced martensitic structure, and the surface is melted and solidified by laser irradiation, that part becomes austenite (a non-magnetic material). ) to become A non-magnetic/ferromagnetic pattern is formed by forming a pattern in which re-melted parts and non-melted parts are alternately repeated. When such a surface is scanned with a magnetic detector, a pulse signal corresponding to the pattern is obtained, and if this signal is counted,
The displacement and speed of members can be detected (for example, Sumitomo Metals, Vol. 42-3 (1990), pp.
21-26).

【0003】また、金属基体の上に急冷凝固により非晶
質化する合金を結晶質の肉盛溶着層を形成し、これにレ
ーザ(高密度エネルギー)照射で急速溶解・急速凝固さ
せて非晶質層パターンを形成する。結晶質部分と非晶質
部分との交互パターンを磁気検出器で走査すれば、同様
に変位や速度を検出することができる。この技術に関連
した発明を本出願人も特願平1−324163号、2−
93926号、2−93930号などにて提案した。
[0003] In addition, a crystalline overlay weld layer is formed on a metal substrate with an alloy that becomes amorphous by rapid solidification, and this is rapidly melted and solidified by laser (high-density energy) irradiation to form an amorphous layer. Forms a layered pattern. Displacement and velocity can be similarly detected by scanning an alternating pattern of crystalline and amorphous portions with a magnetic detector. The applicant has also filed an invention related to this technology in Japanese Patent Application No. 1-324163, 2-
It was proposed in No. 93926, No. 2-93930, etc.

【0004】0004

【発明が解決しようとする課題】従来例の前者の場合に
は、マルテンサイト化のためには特定組成のオーステナ
イト鋼を用意しなければならず、冷間引抜や矯正の強加
工工程が必要でありかつその加工度の制御も必要であり
、さらに適用部材の形状が限定されてしまう。また、後
者の場合には、非晶質化する合金を特別に用意する必要
があり、また非晶質化(アモルファス化)のために極め
て大きな冷却速度を必要とする。
[Problem to be solved by the invention] In the former case of the conventional example, it is necessary to prepare austenitic steel with a specific composition in order to make it martensitic, and strong working processes such as cold drawing and straightening are necessary. It is also necessary to control the degree of processing, and furthermore, the shape of the applicable member is limited. Furthermore, in the latter case, it is necessary to specially prepare an alloy to be made amorphous, and an extremely high cooling rate is required for making the alloy amorphous.

【0005】本発明の目的は、従来よりも組成範囲を広
くしたステンレス鋼を利用して、強加工工程を経ること
なく、レーザ光照射による再溶融凝固で金属組織を変え
て磁気特性をも変えることで信号パターン(磁気目盛り
)を形成する方法を提供することである。
The purpose of the present invention is to use stainless steel with a wider composition range than before, and to change the metal structure and magnetic properties by remelting and solidifying by laser beam irradiation, without going through a strong working process. The object of the present invention is to provide a method for forming a signal pattern (magnetic scale).

【0006】[0006]

【課題を解決するための手段】上述の目的が、部品の表
面に、添付図面のシェフラー状態図に示すように点A(
15.2%Cr当量、8.0%Ni当量)、B(21.
2%Cr当量、3.2%Ni当量)、C(40.0%C
r当量、13.0%Ni当量)、D(37.0%Cr当
量、30.0%Ni当量)で囲まれる範囲内のオーステ
ナイトとフェライトの共存組織を有するステンレス鋼層
を配置し、該部品表面を所定寸法に機械加工し、前記ス
テンレス鋼の表面にレーザなどの高密度エネルギーを所
定信号パターン形状に印加して局部的に再溶融急冷凝固
させて、該高密度エネルギーを印加しない前記ステンレ
ス鋼部分の組織とは磁気特性を異なるようにし、そして
、必要に応じて仕上げ表面加工を施すことを特徴とする
磁気特性変化を利用した信号パターンの形成方法によっ
て達成される。
[Means for Solving the Problems] The above-mentioned object is achieved by forming a point A (
15.2% Cr equivalent, 8.0% Ni equivalent), B (21.
2% Cr equivalent, 3.2% Ni equivalent), C (40.0% C
r equivalent, 13.0% Ni equivalent), D (37.0% Cr equivalent, 30.0% Ni equivalent). The stainless steel whose surface is machined to a predetermined dimension, and where high-density energy such as a laser is applied to the surface of the stainless steel in a predetermined signal pattern shape to locally remelt and rapidly solidify the stainless steel without applying the high-density energy. This is achieved by a method of forming a signal pattern that utilizes a change in magnetic properties, which is characterized by making the magnetic properties different from the structure of the part and, if necessary, applying a finishing surface treatment.

【0007】上述の組成範囲の内で、点E(17.8%
Cr当量、7.5%Ni当量)、F(21.0%Cr当
量、5.0%Ni当量)、G(38.0%Cr当量、1
6.8%Ni当量)、H(36.0%Cr当量、27.
0%Ni当量)で囲まれる範囲内のステンレス鋼である
ことは、後述する検出信号強度が大きいので、好ましい
。部品(すなわち、基体)がオーステナイト系ステンレ
ス鋼などの非磁性金属から造られていることは磁気特性
検出の際に有利である。
Within the above composition range, point E (17.8%
Cr equivalent, 7.5% Ni equivalent), F (21.0% Cr equivalent, 5.0% Ni equivalent), G (38.0% Cr equivalent, 1
6.8% Ni equivalent), H (36.0% Cr equivalent, 27.
It is preferable to use stainless steel within the range (0% Ni equivalent) because the detection signal intensity described later is large. It is advantageous in detecting magnetic properties that the component (ie, the substrate) is made of a non-magnetic metal such as austenitic stainless steel.

【0008】ステンレス鋼層を103 ℃/秒以下の冷
却速度で肉盛溶着して部品の表面上に形成することでシ
ェフラー状態図に示された金属組織とすることができる
。 あるいは、シェフラー状態図に示された金属組織を有す
る材料を溶接などの手法によって部品表面に接合する。 再溶融急冷凝固の時の冷却速度が2×103 〜107
 ℃/秒であることが好ましく、後述するようにシェフ
ラー状態図での0%フェライト量ライン(a)および1
00%フェライト量ライン(b)の間が狭まるようにな
って、肉盛溶着の金属(ステンレス鋼)層とは異なるオ
ーステナイト量とフェライト量との比でかつ異なる金属
組織(微細な棒状共晶凝固組織ないしマッシブ凝固(パ
ーティションレス凝固)組織が得られる(中尾、西本:
ステンレス鋼のレーザグレージング」、生産と技術、V
ol.42, No.3夏号、(社)生産技術振興協会
(1990)、 39−44参照)。
[0008] By forming a stainless steel layer on the surface of a component by overlay welding at a cooling rate of 103° C./second or less, the metal structure shown in the Schaeffler phase diagram can be obtained. Alternatively, a material having a metal structure shown in the Schaeffler phase diagram is joined to the surface of the component by a method such as welding. The cooling rate during remelting and rapid solidification is 2 x 103 ~ 107
℃/sec, and as described later, the 0% ferrite amount line (a) and 1 in the Schaeffler phase diagram.
The distance between the 00% ferrite amount lines (b) becomes narrower, and the ratio of austenite and ferrite amounts is different from that of the overlay welded metal (stainless steel) layer, and the metal structure (fine rod-shaped eutectic solidification) A tissue or massive coagulation (partitionless coagulation) tissue can be obtained (Nakao, Nishimoto:
“Laser Glazing of Stainless Steel”, Production and Technology, V
ol. 42, No. 3 Summer issue, Production Technology Promotion Association (1990), 39-44).

【0009】高密度エネルギーがYAGレーザ光である
ことは好ましく、電子ビーム、アーク放電などであって
も良い。
[0009] The high-density energy is preferably a YAG laser beam, but may also be an electron beam, an arc discharge, or the like.

【0010】0010

【作用】本発明では、シェフラー状態図に示すように、
冷却速度103 ℃/秒以下の急冷条件下で形成したと
きに、オーステナイトとフェライトとの共存する領域の
ステンレス鋼を用い、このステンレス鋼をパルスレーザ
光照射で短時間に溶融し、すぐに急冷凝固(冷却速度:
2×103 〜107 ℃/秒で)させると、溶融凝固
部分はオーステナイト量とフェライト量との比および金
属組織が母材(レーザ照射されないステンレス鋼部分)
に対して変化し、磁気的性質も変化する。
[Operation] In the present invention, as shown in the Schaeffler phase diagram,
When formed under rapid cooling conditions with a cooling rate of 103 °C/second or less, stainless steel is used in the region where austenite and ferrite coexist, and this stainless steel is melted in a short time by pulsed laser light irradiation, and then rapidly solidified. (Cooling rate:
2 × 103 to 107 °C/sec), the molten solidified portion has a ratio of austenite to ferrite and a metal structure similar to that of the base metal (stainless steel portion not irradiated with laser).
The magnetic properties also change.

【0011】ステンレス鋼を含む鋼の溶着(溶接、肉盛
など)の金属組織を表すシェフラー状態図では、図1に
示すように、横軸をクロム(Cr)当量(フェライト安
定化元素Crと、Crと同様の効果のある他の元素との
合計)とし、縦軸をニッケル(Ni)当量(オーステナ
イト安定化元素Niと、Niと同様の効果のある他の元
素との合計)としてある。基本的には、Ni当量が大き
くかつCr当量が小さい領域での金属組織はオーステナ
イトとなり、Ni当量が小さくかつCr当量が大きい領
域ではフェライトとなり、Ni当量とCr当量とが適当
な割合で存在する領域ではフェライト、オーステナイト
、マルテンサイトが共存している。
In the Schaeffler phase diagram showing the metallographic structure of welding (welding, overlaying, etc.) of steel including stainless steel, as shown in FIG. The vertical axis is the nickel (Ni) equivalent (the sum of the austenite stabilizing element Ni and other elements that have the same effect as Ni). Basically, the metal structure in the region where the Ni equivalent is large and the Cr equivalent is small becomes austenite, and in the region where the Ni equivalent is small and the Cr equivalent is large it becomes ferrite, and the Ni equivalent and Cr equivalent exist in an appropriate ratio. Ferrite, austenite, and martensite coexist in this region.

【0012】フェライト・オーステナイト共存組織とな
る領域は、Ni当量を変数Yn、Cr当量を変数Xcと
すると下記の1式:     1.101Xc−8.139≧Yn≧0.32
5Xc−3.953(Xc≧0、Yn≧0)  …… 
 1式 で表され、線(a)が0%フェライト(100%オース
テナイト)量の境界ラインであり、線(b)が100%
フェライト(0%オーステナイト)量の境界ラインであ
る。
[0012] The region where the ferrite-austenite coexistence structure is formed is determined by the following formula, where the Ni equivalent is a variable Yn and the Cr equivalent is a variable Xc: 1.101Xc-8.139≧Yn≧0.32
5Xc-3.953 (Xc≧0, Yn≧0) ...
1 formula, line (a) is the boundary line of 0% ferrite (100% austenite), line (b) is 100%
This is the boundary line of the amount of ferrite (0% austenite).

【0013】   なお、Yn≦−0.801Xc+25.52(Xc
≧0、Yn≧0)……  2式で表される領域(線(c
)より下側)ではマルテンサイトが混在する。シェフラ
ー状態図は溶着金属が103 ℃/秒程度以下の冷却速
度で凝固した場合の組織図であり、冷却速度がより速く
なると、1式で示されるフェライト・オーステナイト共
存組織が狭くなるように、線(a)および(b)が下記
の3式:     Yn=0.87Xc−8.67(Xc≧0、Y
n≧0)……  3式の線(d)に近づく。このことは
上述した参考文献の第41頁、図4に開示されている。 また、冷却速度を速くすることで得られる金属組織(微
細な棒状共晶凝固組織ないしマッシブ凝固組織)の状態
図が同じ第41頁、図3に開示されている。
Note that Yn≦−0.801Xc+25.52(Xc
≧0, Yn≧0)...A region expressed by the formula 2 (line (c
), martensite is mixed in). The Schaeffler phase diagram is a structure diagram when the weld metal is solidified at a cooling rate of about 103 °C/second or less, and as the cooling rate becomes faster, the ferrite-austenite coexistence structure shown in equation 1 becomes narrower. (a) and (b) are the following three formulas: Yn=0.87Xc-8.67 (Xc≧0, Y
n≧0)... Approaches line (d) of equation 3. This is disclosed on page 41, FIG. 4 of the above-mentioned reference. Further, the phase diagram of the metal structure (fine rod-shaped eutectic solidification structure or massive solidification structure) obtained by increasing the cooling rate is disclosed on the same page 41, FIG. 3.

【0014】そのために、1式で表される領域では冷却
速度を速める(変える)ことによってフェライト量とオ
ーステナイト量を変えることができる。その領域のうち
    1.101Xc−8.139≧Yn≧0.87
Xc−8.67(Xc≧0、Yn≧0)……  4式 で表される領域(線(a)および(d)で挟まれた領域
)では、フェライト量が減少し(即ち、オーステナイト
領域が拡大し)、一方、     0.87Xc−8.67≧Yn≧0.325X
c−3.953(Xc≧0、Yn≧0)  ……  5
式 で表される領域(線(d)および(b)で挟まれた領域
)では、フェライト量が増加する(即ち、フェライト領
域が拡大する)。
Therefore, in the region expressed by equation 1, the amount of ferrite and austenite can be changed by increasing (changing) the cooling rate. Within that area 1.101Xc-8.139≧Yn≧0.87
Xc-8.67 (Xc≧0, Yn≧0)... In the region expressed by formula 4 (the region sandwiched between lines (a) and (d)), the amount of ferrite decreases (that is, the austenite region expands), while 0.87Xc-8.67≧Yn≧0.325X
c-3.953 (Xc≧0, Yn≧0) ... 5
In the region expressed by the formula (the region between lines (d) and (b)), the amount of ferrite increases (that is, the ferrite region expands).

【0015】フェライトは強磁性であり、オーステナイ
トは非磁性であるので、シェフラー状態図での1式で表
されるフェライト・オーステナイト共存領域では、基本
的に冷却速度を速めることによって、金属組織のオース
テナイト量とフェライト量との比がそして金属組織自体
も変化し、磁気的性質も変化する。そして、磁気的特性
の変化(検出器(共振コイル)からの信号強度差)をス
テンレス鋼組成との関係で調べると、図1での閉領域(
点A、B、C、Dで囲まれた領域)アの範囲内であれば
、磁気的特性変化を評価することができる。さらに、図
1での閉領域(点E、F、G、Hで囲まれた領域)イの
範囲内であれば、よりはっきりとした磁気的特性変化が
得られる。また、Ni当量およびCr当量が多すぎると
、加工しにくくなり、さらに原料費のコストアップにな
るので、上記範囲に限定する。
Since ferrite is ferromagnetic and austenite is non-magnetic, in the ferrite-austenite coexistence region expressed by equation 1 in the Schaeffler phase diagram, basically by increasing the cooling rate, the austenite in the metal structure is The ratio between the amount of ferrite and the metal structure itself changes, and the magnetic properties also change. When we examine the change in magnetic properties (difference in signal intensity from the detector (resonant coil)) in relation to the stainless steel composition, we find that the closed region (
Changes in magnetic properties can be evaluated within the range (A) (area surrounded by points A, B, C, and D). Furthermore, within the closed region (area surrounded by points E, F, G, and H) A in FIG. 1, a more distinct change in magnetic properties can be obtained. Furthermore, if the Ni equivalent and Cr equivalent are too large, it becomes difficult to process and further increases the cost of raw materials, so they are limited to the above ranges.

【0016】ステンレス鋼の金属組織での磁気特性変化
は変化しない部分と変化した部分との比較で検出でき、
そのためには、センシングコイル、ホール素子、MR素
子などの磁気/電気特性検出器を用いることができる。 したがって、本願発明に係る組成を有するステンレス鋼
をシェフラー状態図でのフェライト・オーステナイト共
存組織にした母材(層)の表面に信号パターン形状に応
じてレーザ光照射で再溶融し高速冷却凝固させて磁気特
性を変化させた部分を形成することで、信号パターン(
磁気目盛りなど)を形成することができる。
[0016] Changes in magnetic properties in the metal structure of stainless steel can be detected by comparing unchanged parts and changed parts.
For this purpose, a magnetic/electrical property detector such as a sensing coil, a Hall element, or an MR element can be used. Therefore, the surface of the base material (layer) of stainless steel having the composition according to the present invention having a ferrite-austenite coexistence structure according to the Schaeffler phase diagram is remelted by laser beam irradiation according to the signal pattern shape, and is rapidly cooled and solidified. By forming parts with changed magnetic properties, the signal pattern (
magnetic scale, etc.).

【0017】この再溶融急冷凝固処理の前および後に、
ステンレス鋼層の表面を研削、研磨を含めた機械加工す
ることは、信号パターンの精度を高めるだけでなく、検
出器のプローブがステンレス鋼層の表面と接触する場合
には、検出器のプローブとの摺動を滑らかにしたり、プ
ローブとの間隙を小さくかつプローブを傷つけないなど
の効果がある。
[0017] Before and after this remelting and rapid solidification treatment,
Machining the surface of the stainless steel layer, including grinding and polishing, not only increases the accuracy of the signal pattern, but also improves the accuracy of the detector probe when it comes into contact with the surface of the stainless steel layer. This has the effect of smoothing the sliding motion of the probe, reducing the gap between the probe and the probe, and preventing damage to the probe.

【0018】そして、信号パターン(再溶融急冷凝固領
域・部分)を特定方向に周期的に繰り返すように形成す
れば、異なる磁気特性値が交互に繰り返される信号(磁
気目盛り信号)が得られ、あるいは、特定方向に連続的
に幅を減少または増加させるように形成すれは、磁気特
性値が徐々に低下または増大する信号を得られる。これ
ら信号によって、部材の位置や速度を特定・算定するこ
とができる。
[0018] If the signal pattern (remelted, rapidly solidified region/portion) is formed to repeat periodically in a specific direction, a signal (magnetic scale signal) in which different magnetic characteristic values are alternately repeated can be obtained, or If the width is formed so as to continuously decrease or increase in a specific direction, a signal in which the magnetic characteristic value gradually decreases or increases can be obtained. These signals allow the position and speed of the member to be specified and calculated.

【0019】[0019]

【実施例】以下、添付図面を参照して、本発明の実施態
様例および比較例によって本発明を詳細に説明する。図
2に示すリングロータを次のようにして製作した。先ず
、オーステナイト鋼のSUS304(非磁性金属)の円
筒リング1を用意し、その形状は外径が37.7mm、
内径が30.0mm、および幅が8.0mmであった。 このリング1の外周中央に幅が4.0mmで、深さ0.
5mmの溝を機械加工で形成した。表1に示す組成のス
テンレス鋼の合金粉末No.1〜23(試料)を用意し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail by way of embodiments and comparative examples with reference to the accompanying drawings. The ring rotor shown in FIG. 2 was manufactured as follows. First, a cylindrical ring 1 made of austenitic steel SUS304 (non-magnetic metal) is prepared, and its outer diameter is 37.7 mm.
The inner diameter was 30.0 mm, and the width was 8.0 mm. The ring 1 has a width of 4.0 mm and a depth of 0.0 mm at the center of the outer circumference.
A 5 mm groove was formed by machining. Stainless steel alloy powder No. with the composition shown in Table 1. Samples 1 to 23 (samples) were prepared.

【0020】[0020]

【表1】[Table 1]

【0021】そして、これらの合金粉末No.1〜23
をシェフラー状態図に記入すると、図4のようになる。 リング1の溝に用意した合金粉末を連続的に供給し、下
記条件のCO2 レーザを合金粉末に照射して、リング
1の回転によってこの粉末を連続的に溶解し、レーザか
ら外れた溶融体は直ちに凝固して、肉盛層2となった。
[0021] These alloy powders No. 1-23
When written in the Schaeffler state diagram, it becomes as shown in Figure 4. The prepared alloy powder is continuously supplied into the groove of ring 1, and the alloy powder is irradiated with a CO2 laser under the following conditions.The powder is continuously melted by the rotation of ring 1, and the molten material that comes off from the laser is It immediately solidified to form a built-up layer 2.

【0022】CO2 レーザビーム:集光レンズにて直
径2mmの大きさに集光したレーザビームを幅5mmと
なるようにビームオシレータにて走査した。 CO2 レーザ出力:  2.5Kw レーザ走査速度:    200mm/分この肉盛溶接
によってシェフラー状態図に対応した組織のステンレス
肉盛層2をリング1の全周に形成し、研削加工で外径を
37.5mmにして、幅4mmで深さ0.3mmの帯状
レーザ肉盛層2とした。
CO2 laser beam: A laser beam focused to a diameter of 2 mm by a condenser lens was scanned by a beam oscillator to a width of 5 mm. CO2 laser output: 2.5Kw Laser scanning speed: 200mm/min By this overlay welding, a stainless steel overlay layer 2 with a structure corresponding to the Schaeffler phase diagram is formed around the entire circumference of the ring 1, and by grinding, the outer diameter is reduced to 37mm. 5 mm to form a band-shaped laser build-up layer 2 with a width of 4 mm and a depth of 0.3 mm.

【0023】レーザ肉盛層2に、図2に示すように、パ
ルスYAGレーザ光3を集光レンズ4にて微小スポット
に集光して、スケール(目盛り)間隔W(2.25mm
)で幅d(1.125mm)のスポット処理部5となる
ように再溶融急冷処理(スポット処理)を行った。この
レーザスポット処理条件は次の通りであった。YAGレ
ーザビーム:  集光レンズにて直径0.2mmのサイ
ズに集光。
As shown in FIG. 2, a pulsed YAG laser beam 3 is focused on a minute spot on the laser build-up layer 2 by a condensing lens 4, and a scale interval W (2.25 mm) is applied to the laser build-up layer 2.
), and the remelting and quenching treatment (spot treatment) was performed so that the spot treatment portion 5 had a width d (1.125 mm). The laser spot processing conditions were as follows. YAG laser beam: Condensed to a diameter of 0.2 mm using a condensing lens.

【0024】 レーザ用Xeランプ放電電圧:  440Vレーザパル
ス幅:  0.5msec パルスレート:  50pps  溶融スポット直径:  0.28mm 溶融スポットの中心間の間隔:  縦・横ともに0.2
mm冷却速度:  105 〜107 ℃/秒このYA
Gレーザよる再溶融後の冷却凝固では、その冷却速度が
シェフラー状態図の場合よりも速く、得られる処理部で
はその組織(オーステナイト量とフェライト量との比あ
るいは金属組織自体)が非処理部(レーザ照射されない
部分)と異なる。
Xe lamp discharge voltage for laser: 440V Laser pulse width: 0.5msec Pulse rate: 50pps Melting spot diameter: 0.28mm Distance between centers of melting spots: 0.2 both vertically and horizontally
mm Cooling rate: 105 ~ 107 °C/sec This YA
In cooling solidification after remelting with the G laser, the cooling rate is faster than in the case of the Schaeffler phase diagram, and the structure (ratio of the amount of austenite to ferrite or the metal structure itself) in the resulting treated part is similar to that in the untreated part ( (parts not irradiated with laser).

【0025】そして、リングの外周を研磨加工してリン
グロータを製造した。製造したリングロータの肉盛層2
の極近くに図3に示すブロックダイヤグラムの検出器の
共振コイルを配置し、リングロータを回転させて検出器
からの信号強度を調べた。検出器からはスポット処理部
5の間隔(ピッチ)に応じたパルス状の波形が、YAG
レーザ処理部5と非処理部(肉盛層2のまま)とでの磁
気特性の差に対応した強度差(波形のピークtoピーク
の値)で得られ、その結果を表1に信号出力として併記
する。
Then, the outer periphery of the ring was polished to produce a ring rotor. Overlay layer 2 of manufactured ring rotor
The resonant coil of the detector shown in the block diagram shown in Fig. 3 was placed very close to the detector, and the ring rotor was rotated to examine the signal intensity from the detector. A pulse-like waveform corresponding to the interval (pitch) of the spot processing unit 5 is output from the detector.
It is obtained by the intensity difference (waveform peak-to-peak value) corresponding to the difference in magnetic properties between the laser treated part 5 and the untreated part (as is the build-up layer 2), and the results are shown in Table 1 as the signal output. Also listed.

【0026】表1の信号出力の値と図4での試料番号位
置を検討すると、閉領域(点A、B、C、Dで囲まれた
領域)アの範囲内で信号出力がある程度得られ、さらに
、図1での閉領域(点E、F、G、Hで囲まれた領域)
イの範囲内で大きな信号出力が得られる。上述の実施例
ではリング形状であったが、板(さらには棒)を基体と
して、その上に肉盛層を形成し、その一部を本発明にし
たがって再溶融急冷処理して信号パターンを形成するこ
ともできる。
When considering the signal output values in Table 1 and the sample number positions in FIG. , Furthermore, the closed area in Figure 1 (area surrounded by points E, F, G, and H)
A large signal output can be obtained within the range of A. Although the ring shape was used in the above embodiment, a plate (or even a rod) is used as the base, a build-up layer is formed on it, and a part of it is re-melted and rapidly cooled according to the present invention to form a signal pattern. You can also.

【0027】[0027]

【発明の効果】以上説明したように、本発明に係る信号
パターンの形成方法では、従来よりも広い組成範囲での
ステンレス鋼を用いて、先にシェフラー状態図でのフェ
ライト・オーステナイト共存組織にしておいてからその
一部をもっと早い冷却速度となる再溶融急冷処理で組織
を即ち磁気特性を変化させ、その変化を信号検出に利用
している。そこで、本願発明では、従来方法でのマルテ
ンサイト化のための強加工は必要ないし、非晶質化のた
めに必要とされる特定の組成合金の用意と相当速い冷却
速度といった限定が緩やかな条件で済む。さらに、マル
テンサイト組織に比較してフェライト・オーステナイト
共存(混合)組織では耐食性が向上する。
[Effects of the Invention] As explained above, in the method for forming a signal pattern according to the present invention, stainless steel with a wider composition range than before is used, and the ferrite-austenite coexistence structure in the Schaeffler phase diagram is first formed. After that, a part of it is remelted and rapidly cooled to a faster cooling rate to change its structure, that is, its magnetic properties, and this change is used for signal detection. Therefore, in the present invention, there is no need for strong working to make martensite as in the conventional method, and the conditions are less restrictive, such as preparing a specific alloy composition required for making it amorphous and a fairly fast cooling rate. That's enough. Furthermore, corrosion resistance is improved in a ferrite-austenite coexistence (mixed) structure compared to a martensitic structure.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】ステンレス鋼を含む鋼のシェフラー状態図であ
る。
FIG. 1 is a Schaeffler phase diagram of steel including stainless steel.

【図2】リングロータの肉盛層にYAGレーザによる再
溶融急冷処理を施している斜視図である。
FIG. 2 is a perspective view showing the overlay layer of the ring rotor undergoing remelting and rapid cooling treatment using a YAG laser.

【図3】磁気特性の検出器のブロックダイヤグラムであ
る。
FIG. 3 is a block diagram of a detector of magnetic properties.

【図4】試料No.1〜23を記入したステンレス鋼を
含む鋼のシェフラー状態図である。
FIG. 4 Sample No. It is a Schaeffler phase diagram of steel including stainless steel with numbers 1 to 23 filled in.

【符号の説明】[Explanation of symbols]

1…リング 2…肉盛層 3…YAGレーザ 4…集光レンズ 5…スポット処理部 1...Ring 2... Overlay layer 3...YAG laser 4...Condensing lens 5...Spot processing section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  部品の表面に、添付図面のシェフラー
状態図に示すように点A(15.2%Cr当量、8.0
%Ni当量)、B(21.2%Cr当量、3.2%Ni
当量)、C(40.0%Cr当量、13.0%Ni当量
)、D(37.0%Cr当量、30.0%Ni当量)で
囲まれる範囲内のオーステナイトとフェライトの共存組
織を有するステンレス鋼層を配置し、該部品表面を所定
寸法に機械加工し、そして、前記ステンレス鋼の表面に
レーザなどの高密度エネルギーを所定信号パターン形状
に印加して局部的に再溶融急冷凝固させて、該高密度エ
ネルギーを印加しない前記ステンレス鋼部分の組織とは
磁気特性を異なるようにすることを特徴とする磁気特性
変化を利用した信号パターンの形成方法。
Claim 1: On the surface of the part, point A (15.2% Cr equivalent, 8.0
%Ni equivalent), B (21.2%Cr equivalent, 3.2%Ni equivalent)
It has a coexistence structure of austenite and ferrite within the range surrounded by C (40.0% Cr equivalent, 13.0% Ni equivalent), D (37.0% Cr equivalent, 30.0% Ni equivalent). A stainless steel layer is arranged, the surface of the component is machined to a predetermined dimension, and high-density energy such as a laser is applied to the surface of the stainless steel in a predetermined signal pattern shape to locally remelt and rapidly solidify. . A method for forming a signal pattern using a change in magnetic properties, characterized in that the structure of the stainless steel portion to which the high-density energy is not applied is made to have different magnetic properties.
【請求項2】  高密度エネルギーによる再溶融急冷凝
固処理の後に、前記部品に仕上げ表面加工を施すことを
特徴とする請求項1記載の形成方法。
2. The forming method according to claim 1, wherein the part is subjected to a finishing surface treatment after being remelted and rapidly solidified using high-density energy.
【請求項3】  前記部品が非磁性金属で作られている
ことを特徴とする請求項1記載の形成方法。
3. The method of claim 1, wherein the component is made of a non-magnetic metal.
JP3022319A 1991-02-15 1991-02-15 Method of forming signal pattern using change in magnetic characteristics Expired - Fee Related JP2616504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3022319A JP2616504B2 (en) 1991-02-15 1991-02-15 Method of forming signal pattern using change in magnetic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3022319A JP2616504B2 (en) 1991-02-15 1991-02-15 Method of forming signal pattern using change in magnetic characteristics

Publications (2)

Publication Number Publication Date
JPH04259385A true JPH04259385A (en) 1992-09-14
JP2616504B2 JP2616504B2 (en) 1997-06-04

Family

ID=12079404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3022319A Expired - Fee Related JP2616504B2 (en) 1991-02-15 1991-02-15 Method of forming signal pattern using change in magnetic characteristics

Country Status (1)

Country Link
JP (1) JP2616504B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803582A2 (en) * 1996-04-26 1997-10-29 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US10072943B2 (en) 2011-03-03 2018-09-11 Rls Merilna Tehnika D.O.O. Method of scale substrate manufacture
DE102018128433A1 (en) 2018-11-08 2020-05-14 Technische Universität Wien Method for processing a component having an information area, component with an information area and measuring system
CN111693563A (en) * 2020-05-08 2020-09-22 新兴际华集团有限公司 Method for analyzing structure and performance of iron-based remelted layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174913A (en) * 1987-12-29 1989-07-11 Japan Atom Energy Res Inst Preparation of heat-resistant and corrosion-resistant magnetic scale
JPH0287014A (en) * 1988-09-26 1990-03-27 Japan Atom Energy Res Inst Preparation of magnetic scale
JPH02158912A (en) * 1988-12-09 1990-06-19 Sumitomo Metal Ind Ltd Magnetic recording steel products and production thereof
JPH0312047A (en) * 1989-06-08 1991-01-21 Sumitomo Metal Ind Ltd Steel plate for information recording and recording method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174913A (en) * 1987-12-29 1989-07-11 Japan Atom Energy Res Inst Preparation of heat-resistant and corrosion-resistant magnetic scale
JPH0287014A (en) * 1988-09-26 1990-03-27 Japan Atom Energy Res Inst Preparation of magnetic scale
JPH02158912A (en) * 1988-12-09 1990-06-19 Sumitomo Metal Ind Ltd Magnetic recording steel products and production thereof
JPH0312047A (en) * 1989-06-08 1991-01-21 Sumitomo Metal Ind Ltd Steel plate for information recording and recording method using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803582A2 (en) * 1996-04-26 1997-10-29 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
EP0803582A3 (en) * 1996-04-26 1997-11-12 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US6143094A (en) * 1996-04-26 2000-11-07 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
EP1178123A1 (en) * 1996-04-26 2002-02-06 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US6521055B1 (en) 1996-04-26 2003-02-18 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US6949148B2 (en) 1996-04-26 2005-09-27 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US10072943B2 (en) 2011-03-03 2018-09-11 Rls Merilna Tehnika D.O.O. Method of scale substrate manufacture
DE102018128433A1 (en) 2018-11-08 2020-05-14 Technische Universität Wien Method for processing a component having an information area, component with an information area and measuring system
WO2020094808A1 (en) 2018-11-08 2020-05-14 Technische Universität Wien Method for processing a component having an information area, component having an information area, and measurement system
CN111693563A (en) * 2020-05-08 2020-09-22 新兴际华集团有限公司 Method for analyzing structure and performance of iron-based remelted layer

Also Published As

Publication number Publication date
JP2616504B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
Sun et al. Effect of laser scan length on the microstructure of additively manufactured 17-4PH stainless steel thin-walled parts
Yasavol et al. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel
US3240639A (en) Ferro-carbon alloys of improved microstructure and process for their manufacture
Preece et al. The effect of laser quenching the surfaces of steels on their cavitation erosion resistance
JP2616504B2 (en) Method of forming signal pattern using change in magnetic characteristics
JP4327907B2 (en) Continuous caster roll stainless steel surface cladding
Ion et al. Laser surface modification of a 13.5% Cr, 0.6% C steel
Deepati et al. Influence of surface-active elements on GTA welds with respect to metallographic analysis and temperature distribution
JPS6283620A (en) Magnetic scale
JP2508940B2 (en) Method of forming signal pattern using high density energy source
JPH059562A (en) Formation of signal pattern utilizing change of magnetic property
JPH087041B2 (en) Method of forming signal pattern using change in magnetic characteristics
JP3422979B2 (en) Dimple processing method and apparatus for drum for thin cast continuous casting machine
JPH03294486A (en) Production of member having amorphous layer
Syed Ahmed Laser surface modification of steel
JPH0552585A (en) Manufacture of magnetic scale
JPS62227095A (en) Production of magnetic scale
Lewis et al. Practical implications of electron-beam surface melting
JPH0312047A (en) Steel plate for information recording and recording method using the same
Hlawka et al. Characterisation of M42 type high speed steel after laser melting treatment
Nakao Surface treatment by laser quenching
JPH04204321A (en) Magnetic graduation and its manufacture
JPH07297462A (en) Magnetostrictive material, magnetostriction detecting body for magnetostrictive torque sensor using it, and its manufacture
JPH11216582A (en) Manufacture of rod with magnetic scale, and piston rod
JPH05209707A (en) Steel for magnetic scale and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees