JPS6283403A - Production of high-hardness sintered alloy - Google Patents

Production of high-hardness sintered alloy

Info

Publication number
JPS6283403A
JPS6283403A JP60222518A JP22251885A JPS6283403A JP S6283403 A JPS6283403 A JP S6283403A JP 60222518 A JP60222518 A JP 60222518A JP 22251885 A JP22251885 A JP 22251885A JP S6283403 A JPS6283403 A JP S6283403A
Authority
JP
Japan
Prior art keywords
powder
sintered
sintering
ball mill
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60222518A
Other languages
Japanese (ja)
Inventor
Kazuaki Mino
美野 和明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60222518A priority Critical patent/JPS6283403A/en
Publication of JPS6283403A publication Critical patent/JPS6283403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To develop a high-hardness sintered alloy consisting of extremely fine crystal grains and having excellent wear resistance in a high-temp. corrosive environment by adding and mixing an oxide to and with a Cr-Ni-Co alloy powder having a specific compsn., subjecting the powder to a ball mill treatment to apply work strain thereto, then subjecting the powder to pressure molding and sintering. CONSTITUTION:The alloy powder having the compsn. consisting of 35-60% Cn, <=10% total of Al and Ti, <10% oxide such as Y2O3 and the balance Ni and Co is mixed and ground in a high-energy ball mill in the atm. atmosphere to apply the large work strain thereto. Such alloy powder 5 is packed between the inside surface of a steel pipe 4 and a cylindrical vessel 6 disposed therein and is sealed by a cap 7. The alloy powder is then subjected to pressure sintering by a high-temp. hydrostatic press. The sintered alloy layer of the ultrafine structure having <=1mum crystal grain is formed on the inside surface of the pipe 4 and the inside surface sintered layer having the excellent wear resistance even in the high-temp. corrosive environment is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は耐摩耗性の大きな高温耐蝕合金、換言すれば
高温腐食性の環境下で耐摩耗性が要求される機械装置部
品の材料として好適な焼結合金の製造方法に係る。
[Detailed Description of the Invention] (Industrial Application Field) This invention is a high-temperature corrosion-resistant alloy with high wear resistance, in other words, suitable as a material for mechanical equipment parts that require wear resistance in high-temperature corrosive environments. This invention relates to a method for producing a sintered alloy.

(従来技術) 耐高温腐食性の合金で炭化物や硼化物が析出するような
組成の溶着金属を金属表面に肉盛溶接して、これら析出
物によって金属表面に硬化層を形成する方法が、高温腐
食性の環境で耐摩耗性が要求される機械装置部品の表面
処理に採用されている。
(Prior art) A method in which a weld metal made of a high-temperature corrosion-resistant alloy with a composition in which carbides and borides are precipitated is overlay-welded onto the metal surface, and these precipitates form a hardened layer on the metal surface. It is used for surface treatment of mechanical equipment parts that require wear resistance in corrosive environments.

このような合金として例えばステライト合金があり、耐
高温腐食性を高めるため史にC「含有量を多くすること
は可能と思われるが、Crの増けにより材料の延性が低
下する上に、硬度を高めるため炭化物や硼化物を析出さ
せることによって更に延性が低下するので実用に供する
ことは困難であるというような問題が起こってくる。
Examples of such alloys include stellite alloys, and it seems possible to increase the C content in order to improve high-temperature corrosion resistance, but the increase in Cr reduces the ductility of the material and increases the hardness. Precipitating carbides and borides to increase the ductility further reduces the ductility, making it difficult to put it to practical use.

(発明が解決しようとする問題点) この発明は上記の如き問題点を解決するため炭化物や硼
化物の析出による硬化作用によるのではなく、結晶粒が
1μm以下の超微細組織とすることによって高い硬度を
有する焼結合金を得ることを目的とする。
(Problems to be Solved by the Invention) In order to solve the above-mentioned problems, the present invention does not rely on the hardening effect caused by the precipitation of carbides or borides, but by creating an ultra-fine structure with crystal grains of 1 μm or less. The purpose is to obtain a sintered alloy with hardness.

(問題点を解決するための手段) この発明は、金属粉末に酸化物粉末を配合した混合粉末
をボールミルで処理して加工歪を与え、該粉末を加圧成
形した成形体を結晶粒成長温度以下の温度で焼結して微
細粒組織の焼結体とすることを特徴とする高硬度焼結合
金の製造方法に係る。
(Means for Solving the Problems) This invention processes a mixed powder of metal powder and oxide powder in a ball mill to give processing strain, and press-molds the powder to form a molded body at a crystal grain growth temperature. The present invention relates to a method for producing a high-hardness sintered alloy, which is characterized in that it is sintered at the following temperature to form a sintered body with a fine grain structure.

本発明において炭化物や硼化物の析出を伴わずに硬度の
高い焼結体が得られるのはボールミルによって大きな加
工歪が粉末に付与され、焼結時に再結晶して1μm以下
の超微細粒組織となることに主として基づく。
In the present invention, a highly hard sintered body without precipitation of carbides or borides is obtained because large processing strains are imparted to the powder by a ball mill, which recrystallizes during sintering to form an ultrafine grain structure of 1 μm or less. Primarily based on becoming.

焼結温度は結晶粒成長温度以下とし、温度が高すぎると
金属組織が粗くなるので好ましくない。
The sintering temperature is set to be below the crystal grain growth temperature; if the temperature is too high, the metal structure will become coarse, which is not preferable.

原料粉末が大きな加工歪を与えられているので、成形体
は結晶粒成長温度以下の加熱で容易に焼結すると共に、
再結晶して超微細粒組織となる。
Since the raw material powder is subjected to large processing strains, the compact is easily sintered by heating below the grain growth temperature, and
It recrystallizes and becomes an ultra-fine grain structure.

充分な耐高温腐食性を得るためにCr量を35%以上添
加しても、本発明の方法によれば充分に硬化した焼結体
が得られる。耐高温腐食性は結晶粒が細かいほど(すな
わち原子の粒界拡散促進による保護膜の早期生成により
)高まるが、この点からも従来の肉盛溶接やプラズマ溶
射による硬化法よりも耐高温腐食性に優れたものが得ら
れる。
Even if 35% or more of Cr is added to obtain sufficient high-temperature corrosion resistance, a sufficiently hardened sintered body can be obtained according to the method of the present invention. High-temperature corrosion resistance increases as the crystal grains become finer (i.e., due to the early formation of a protective film by promoting grain boundary diffusion of atoms); from this point of view, the high-temperature corrosion resistance is higher than that of conventional hardening methods such as overlay welding and plasma spraying. You can get excellent results.

Cr量は60%以−Fとすると硬化層が脆化するので上
限は60%とするのがよい。
If the Cr content is 60% or more -F, the hardened layer becomes brittle, so the upper limit is preferably 60%.

酸化物の添加は焼結中の結晶粒成長に対する抑制剤とし
て効果的である。ボールミルで処理中の酸化によっても
酸化物が生ずるが、予め添加しておいた方が品質管理の
点から望ま1〜く、その量が多くなると延性を著しく低
下させるようになるため10%以下とするのがよい。
The addition of oxides is effective as an inhibitor against grain growth during sintering. Oxides are also generated by oxidation during processing in a ball mill, but it is better to add them in advance from the standpoint of quality control. It is better to do so.

A1およびTiは耐高温腐食性および硬化に対して有効
であるが、添加量が多くなると脆化するようになるので
10%を限度とするのがよい。
A1 and Ti are effective for high-temperature corrosion resistance and hardening, but if added in a large amount, embrittlement occurs, so it is best to limit the amount to 10%.

本発明は焼結前に金属粉末に大きな加工歪をり−えてお
くことが特徴であるが、そのためには高エネルギボール
ミルが好適である。高エネルギボールミルは通常のボー
ルミルにボールを撹拌するためのインペラを備えたもの
であり、処理時間を短縮することができる。運転中ボー
ル同士の衝突により、その間に挟まれた粉末は大きな変
形を受けるが、効果的に処理するための条件の一例を挙
げれば次の通りである。
The present invention is characterized by subjecting the metal powder to a large processing strain before sintering, and a high-energy ball mill is suitable for this purpose. A high-energy ball mill is a normal ball mill equipped with an impeller for stirring the balls, and can shorten processing time. As the balls collide with each other during operation, the powder sandwiched between them undergoes significant deformation, but an example of the conditions for effective treatment is as follows.

ボールと粉末の重量比  20 インペラ回転速度   20Orpm 処理時間        30時間 通常のボールミルでは同様な処理効果を得るためにはこ
の数倍以−トの時間を要する。
Ball-to-powder weight ratio: 20 Impeller rotation speed: 20 rpm Processing time: 30 hours In order to obtain the same processing effect in a normal ball mill, several times longer time is required.

焼結前の成形体を作成するのには本発明の大きな加工歪
を付与された合金粉末を通例の通り金型に充填して加圧
成形する。また第1図に示すように表面の一部の硬度を
高めたい金属部品1の表面に歪を付与された処理粉末2
を載せ、プレス治具3を用いて真空または不活性ガス中
で加圧しながら再結晶温度以下の温度で焼結する。
In order to create a compact before sintering, the alloy powder to which large processing strains of the present invention have been applied is conventionally filled into a mold and press-molded. In addition, as shown in FIG. 1, a treated powder 2 has been strained on the surface of a metal part 1 whose hardness is desired to be increased in a part of the surface.
is placed and sintered using the press jig 3 at a temperature below the recrystallization temperature while pressurizing in vacuum or inert gas.

表面の硬度を高めたい部品1の高温強度が小さく、加圧
焼結中に変形を起こすような場合には予め本発明の歪付
与粉末を所望形状に成形焼結し、この焼結体をろう付?
JI412いは拡散ろう付4ノによって金属部品表面に
接合すれば、Lい。
If the high-temperature strength of the component 1 whose surface hardness is to be increased is low and deformation occurs during pressure sintering, the strain imparting powder of the present invention is shaped and sintered into the desired shape in advance, and this sintered body is waxed. With?
If it is bonded to the surface of a metal part using JI412 or diffusion brazing 4, it will be L.

また第2図のように内面硬度を高めたい管4の内面と円
筒状容器6の間に本発明の硬化処理粉末5を充填し、蓋
7でシールして図示しない歯温静水圧プレスで加圧焼結
して硬度の高い内面層を形成することもできる。
Further, as shown in FIG. 2, the hardened powder 5 of the present invention is filled between the inner surface of the tube 4 whose inner surface hardness is desired to be increased and the cylindrical container 6, sealed with a lid 7, and pressed with a tooth temperature isostatic press (not shown). It is also possible to form a hard inner layer by pressure sintering.

(実施例) 次に実施例について説明する。(Example) Next, an example will be described.

粒径5 pmのN+粉605グラム、−325メソシユ
のCr粉350グラム、−325メソシユのA1とTi
粉それぞれ20グラムおよび0.02μmのY2O3粉
5グラムの混合粉末を大気雰囲気の高エネルギボールミ
ル中で処理し、その粉末を圧力200kir/−の圧力
で成形した成形体を1050℃で1時間焼結した。35
%のCrを含むこの焼結体のビッカース硬さ11νは約
500であった。比較のため歪を与えずに混合した粉末
を同様にして焼結した焼結体の硬さは11ν200であ
った。
605 grams of N+ powder with a particle size of 5 pm, 350 grams of Cr powder with -325 methane, A1 and Ti with -325 methane powder.
A mixed powder of 20 grams of each powder and 5 grams of 0.02 μm Y2O3 powder was processed in a high-energy ball mill in an air atmosphere, and the powder was molded at a pressure of 200 kir/-, and the molded body was sintered at 1050°C for 1 hour. did. 35
The Vickers hardness 11ν of this sintered body containing % Cr was about 500. For comparison, the hardness of a sintered body obtained by sintering the mixed powder in the same manner without applying strain was 11ν200.

(効果) 以十述べたよ・うに本発明の方法によれば高エネルギボ
ールミル等で金属粉末を加工して大きな加工歪を1j、
えであるので、この金属粉末で成形した成形体を焼結す
るのに結晶粒成長温度以下の温度で加熱すると微細結晶
組織となり、高い硬度を示すようになる。
(Effects) As described above, according to the method of the present invention, metal powder is processed using a high-energy ball mill, etc., and a large processing strain of 1j,
Therefore, when a compact formed from this metal powder is sintered by heating at a temperature below the crystal grain growth temperature, it becomes a fine crystal structure and exhibits high hardness.

したがって炭化物や硼化物等の析出物によらな(とも硬
度を高めることができるので、析出物による廷性低下が
ないという利点がある。
Therefore, since the hardness can be increased without the presence of precipitates such as carbides and borides, there is an advantage that the hardness does not deteriorate due to the precipitates.

また結晶粒が細かいので優れた耐高温腐食性を示す等実
用トの効果がきわめて大きい。
In addition, since the crystal grains are fine, it exhibits excellent high-temperature corrosion resistance, which is extremely effective in practical applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を金属面に適用する状態の1例を
示す断面図、第2図は同じく円筒内面に適用する状態の
1例を示す断面図である。 1・・・硬化しようとする金属、2・・・歪付与粉末、
3・・・プレス、4・・・円筒、5・・・歪付与粉末、
6・・・円筒状容器、7・・・蓋 出願人代理人 弁理士 鴨志1)次男 第17 第2区
FIG. 1 is a cross-sectional view showing an example of the method of the present invention applied to a metal surface, and FIG. 2 is a cross-sectional view showing an example of the method applied to the inner surface of a cylinder. 1... Metal to be hardened, 2... Strain imparting powder,
3...Press, 4...Cylinder, 5...Strain imparting powder,
6...Cylindrical container, 7...Lid Applicant's agent Patent attorney Kamoshi 1) Second son 17th 2nd ward

Claims (1)

【特許請求の範囲】 1、金属粉末に酸化物粉末を配合した混合粉末をボール
ミルで処理して加工歪を与え、該粉末を加圧成形した成
形体を結晶粒成長温度以下の温度で焼結して微細粒組織
の焼結体とすることを特徴とする高硬度焼結合金の製造
方法。 2、混合粉末がCr35〜60%、AL+Ti10%以
下、酸化物10%以下、残部Ni+Coである特許請求
の範囲第1項記載の高硬度焼結合金の製造方法。 3、ボールミル処理粉末を金属表面上で加圧焼結して焼
結体とする特許請求の範囲第1項または第2項記載の高
硬度焼結合金の製造方法。
[Claims] 1. Processing a mixed powder of metal powder and oxide powder in a ball mill to give processing strain, and sintering the molded body obtained by press-molding the powder at a temperature below the crystal grain growth temperature. 1. A method for producing a high-hardness sintered alloy, characterized in that a sintered body having a fine grain structure is obtained. 2. The method for producing a high hardness sintered alloy according to claim 1, wherein the mixed powder is 35 to 60% Cr, 10% or less AL+Ti, 10% or less oxide, and the balance Ni+Co. 3. A method for producing a high-hardness sintered alloy according to claim 1 or 2, which comprises pressurizing and sintering ball-milled powder on a metal surface to form a sintered body.
JP60222518A 1985-10-05 1985-10-05 Production of high-hardness sintered alloy Pending JPS6283403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60222518A JPS6283403A (en) 1985-10-05 1985-10-05 Production of high-hardness sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60222518A JPS6283403A (en) 1985-10-05 1985-10-05 Production of high-hardness sintered alloy

Publications (1)

Publication Number Publication Date
JPS6283403A true JPS6283403A (en) 1987-04-16

Family

ID=16783681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60222518A Pending JPS6283403A (en) 1985-10-05 1985-10-05 Production of high-hardness sintered alloy

Country Status (1)

Country Link
JP (1) JPS6283403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145701A (en) * 1988-11-25 1990-06-05 Nippon Steel Weld Prod & Eng Co Ltd Titanium-aluminum alloy powder for compacting and manufacture thereof
EP2837969A1 (en) 2003-09-29 2015-02-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145701A (en) * 1988-11-25 1990-06-05 Nippon Steel Weld Prod & Eng Co Ltd Titanium-aluminum alloy powder for compacting and manufacture thereof
EP2837969A1 (en) 2003-09-29 2015-02-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device

Similar Documents

Publication Publication Date Title
JP4975916B2 (en) High toughness and high strength ferritic steel and its manufacturing method
EP1548138A1 (en) Nano-crystal austenitic metal bulk material having high hardness, high strength and toughness , and method for production thereof
JP3017764B2 (en) Abrasion resistant composite roll and method for producing the same
CN111560564B (en) Resource-saving high-nitrogen duplex stainless steel and near-net forming method thereof
US4710345A (en) Manufacturing method of super-heat-resisting alloy material
US4255193A (en) Method of manufacture of sintered pressed pieces of iron reinforced by iron oxides
EP0202886B1 (en) Canless method for hot working gas atomized powders
US3650729A (en) Internally nitrided steel powder and method of making
CN111020347B (en) High-density complex phase alloy material and preparation method thereof
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JPS6283403A (en) Production of high-hardness sintered alloy
Dunning et al. Advanced processing technology for high-nitrogen steels
JP2004143596A (en) Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method
JPS62196306A (en) Production of double layer tungsten alloy
JP5170560B2 (en) Method to improve ductility and strength of lightweight heat-resistant intermetallic compound by adding third element particles
CN111151762A (en) Preparation method of low-cost fine-grained low-oxygen titanium and titanium alloy powder
JPH0665601A (en) Ni-base alloy powder
CN112593161B (en) High-strength Sc composite nano oxide dispersion strengthening Fe-based alloy and preparation method thereof
JP4517088B2 (en) Method to improve ductility and strength of lightweight heat-resistant intermetallic compound by adding third element particles
JPH01275724A (en) Manufacture of dispersion strengthened heat-resistant alloy
JP2002285289A (en) High strength ferritic stainless steel and production method therefor
JPS6331540B2 (en)
JPH02129344A (en) Oxide-dispersed heat resisting steel and its production
JPS6330391B2 (en)