JPS628324B2 - - Google Patents
Info
- Publication number
- JPS628324B2 JPS628324B2 JP55168119A JP16811980A JPS628324B2 JP S628324 B2 JPS628324 B2 JP S628324B2 JP 55168119 A JP55168119 A JP 55168119A JP 16811980 A JP16811980 A JP 16811980A JP S628324 B2 JPS628324 B2 JP S628324B2
- Authority
- JP
- Japan
- Prior art keywords
- tire
- ribs
- sidewall
- joint
- shoulder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000002787 reinforcement Effects 0.000 claims abstract description 12
- 230000003014 reinforcing effect Effects 0.000 claims description 32
- 239000011324 bead Substances 0.000 claims description 19
- 239000013013 elastic material Substances 0.000 claims description 14
- 230000006835 compression Effects 0.000 abstract description 10
- 238000007906 compression Methods 0.000 abstract description 10
- 229920001971 elastomer Polymers 0.000 abstract description 5
- 239000002657 fibrous material Substances 0.000 abstract description 2
- 239000000806 elastomer Substances 0.000 abstract 1
- 230000002093 peripheral effect Effects 0.000 description 7
- 238000005304 joining Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000012858 resilient material Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229920001875 Ebonite Polymers 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/01—Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C13/00—Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C15/00—Tyre beads, e.g. ply turn-up or overlap
- B60C15/02—Seating or securing beads on rims
- B60C15/028—Spacers between beads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C17/00—Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
- B60C17/0009—Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C3/00—Tyres characterised by the transverse section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C13/00—Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
- B60C13/02—Arrangement of grooves or ribs
- B60C2013/026—Arrangement of grooves or ribs provided at the interior side only
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は圧縮側壁タイヤ、特にしぼんだ状態で
走行するのに適したタイヤに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to compression sidewall tires, particularly tires suitable for running in deflated conditions.
従来の空気タイヤはビードからビードまで骨組
のまわりを伸長する層状補強構造体を有する。そ
のような補強体がない場合、タイヤはその空所が
加圧される時、締めつけられることなしに外方へ
膨大する傾向がある。近年では、側壁及びビード
区域に補強コードを必要としないような圧縮側壁
タイヤが開発されて来た。これらの区域はそのよ
うなコードがないために、このタイヤの製造は、
鋳造、注入、又は噴射成型の如き方法に特に適す
る。 Conventional pneumatic tires have a layered reinforcing structure that extends around a skeleton from bead to bead. Without such reinforcement, the tire tends to bulge outwards without tightening when its cavity is pressurized. In recent years, compression sidewall tires have been developed that do not require reinforcing cords in the sidewall and bead areas. Since these areas do not have such codes, the manufacture of this tire is
It is particularly suitable for methods such as casting, injection or injection molding.
この圧縮側壁タイヤに於て、外側壁はその放射
面での横断面が凹状外面と凸状内面を有するよう
に構成される。ここで使用する“放射面”はタイ
ヤの回転軸を包含する面である。圧縮側壁タイヤ
を操作する場合、側壁は、一端にあるリムと、他
端にある踏みベルトのような締め装置との間に締
めつけられる。タイヤの空所が普通のふくらみ圧
にふくらむ時、側壁に対する気圧による内部の力
が側壁の弾性材料を圧縮する傾向がある。その弾
性材料が或る時点をこえて圧縮される場合、その
内部の力は側壁を軸方向で外方へ膨脹させる。従
つて側壁はその側壁が締めつけられるように、こ
こで生じた力に抵抗するように、良好な設計上の
方法に従つて、充分な屈曲堅さと、彎曲性と、厚
みとを有していなければならない。 In this compression sidewall tire, the outer wall is configured such that its radial cross section has a concave outer surface and a convex inner surface. As used herein, "radial surface" is the surface that encompasses the axis of rotation of the tire. When operating a compression sidewall tire, the sidewall is tightened between a rim at one end and a tightening device, such as a treadle belt, at the other end. When the tire cavity is inflated to normal inflation pressure, internal forces due to air pressure against the sidewall tend to compress the elastic material of the sidewall. If the elastic material is compressed beyond a certain point, the internal forces cause the sidewalls to expand axially outward. Therefore, the sidewalls must have sufficient flexural stiffness, curvature, and thickness, in accordance with good design practice, to resist the forces created here so that the sidewalls are clamped. Must be.
しぼんだ状態で走行する時の従来のタイヤと同
様に、圧縮側壁タイヤに見られる第1の問題は、
タイヤがそのタイヤの足跡を通つて移動する時、
タイヤの各部分の移動間隔の間、タイヤの内面の
摩擦から生じる破壊的熱の発生である。しぼんだ
状態で走行する圧縮側壁タイヤに関するもう1つ
の問題は、肩部と側壁部分とが地面に対して摩擦
する事である。この摩擦は踏み部の放射方向で内
側にある肩部と側壁部分とがその踏み部の周囲よ
り小さな周囲を有するために生じる。タイヤの全
ての部分は同じ角速度で移動せねばならず、従つ
て、タイヤがしぼむ時に地面と接触する側壁及び
肩部分の線型速度は踏み部の線型速度より大でな
ければならない。従つて、側壁及び肩部の地面と
の摩擦はこれらの条件のもとで生じる。 As with conventional tires when driving deflated, the first problem seen with compression sidewall tires is
When a tire moves through its tire footprint,
During the travel interval of each part of the tire, there is a destructive heat generation resulting from the friction of the inner surface of the tire. Another problem with compression sidewall tires running deflated is the friction of the shoulder and sidewall portions against the ground. This friction occurs because the shoulder and sidewall portions radially inward of the tread have a circumference that is smaller than the circumference of the tread. All parts of the tire must move at the same angular velocity, so the linear velocity of the sidewall and shoulder parts that contact the ground when the tire deflates must be greater than the linear velocity of the tread. Therefore, friction of the side walls and shoulders with the ground occurs under these conditions.
本発明の構造体に於て、タイヤはしぼんだタイ
ヤに見られる摩耗や摩擦作用を最少限にするよう
に補強される。そのタイヤの肩部は又、外方へ伸
長し、側壁は、しぼんだ状態で走行する時、規則
正しい方法で折り曲がり、リム着座面より軸方向
で外方に位置する。この明細書及びクレームに使
用される“軸方向”という用語はタイヤの回転軸
に対して平行な線に沿つた方向を言う。“放射方
向”という用語はタイヤの回転軸に対して垂直な
方向をいう。 In the structure of the present invention, the tire is reinforced to minimize the wear and friction effects seen in deflated tires. The shoulders of the tire also extend outwardly, and the sidewalls fold in an orderly manner when driving in a deflated condition, and are located axially outwardly from the rim seating surface. As used in this specification and claims, the term "axial" refers to a direction along a line parallel to the axis of rotation of the tire. The term "radial" refers to the direction perpendicular to the axis of rotation of the tire.
タイヤの部分の内部接触がしぼんだ状態で使用
する間に生じる場合、そのタイヤはこの接触が主
に、側壁と肩部との間に生じるように構成され
る。肩部は踏み部から放射方向で内方へ伸長する
ように構成されるので、両内面間で生じる摩耗は
減少する。肩部は又、タイヤがしぼんだ状態で使
用される間、地面と接触しないように保持するた
めに堅固目的のリブを備えている。この事は重量
の増加は最低限に押えながら摩擦をなくすのに役
立つ。肩部の直立特性を保持するために、側壁と
肩部が合致する(接合部分)部分に輪による強化
が行われる。この“輪による強化”は物体のまわ
りにバンド又は輪を装着することにより生じる強
化を指していう。この輪による強化は又、側壁を
締めつけるのにも役立つ。 When internal contact of the portions of the tire occurs during deflated use, the tire is configured such that this contact occurs primarily between the sidewall and the shoulder. Because the shoulders are configured to extend radially inwardly from the treads, wear between the inner surfaces is reduced. The shoulder also includes stiffening ribs to keep the tire from contacting the ground during use in the deflated condition. This helps eliminate friction while minimizing weight increase. To maintain the upright character of the shoulder, ring reinforcement is provided where the sidewall and shoulder meet (junction). This "ring reinforcement" refers to the reinforcement that occurs when a band or ring is placed around an object. This ring reinforcement also serves to tighten the side walls.
簡単に言つて、本発明の一面は弾性材料で成る
環状本体と、その本体の外周にある周囲方向に伸
長する地面接触踏み部分と、その踏み部分に接合
し、その踏み部分から一対の接合部分まで軸方向
で外方に、放射方向で内方に伸長する一対の肩部
分と、前記接合部分からリムに装着するための一
対の間隔をおいて位置する装着部分まで放射方向
へ、又、軸方向で内方へ伸長する一対の側壁と、
前記接合部分間を伸長する周囲方向に連続する補
強層構造体と、前記各肩部分の少なくとも1方の
面にある複数の周囲方向に間隔をおいて位置する
補強リブと、そのリブは前記接合部分から前記踏
み部分まで伸長する事とで成り、ふくらみ状態と
しぼみ状態とに於て走行するのに適したタイヤを
包含する。 Briefly, one aspect of the present invention is an annular body made of an elastic material, a circumferentially extending ground-contacting tread portion on the outer periphery of the body, and a pair of joint portions connected to the tread portion and extending from the tread portion. a pair of shoulder portions extending axially outwardly and radially inwardly from said joining portion to a pair of spaced apart attachment portions for attachment to the rim; a pair of side walls extending inwardly in the direction;
a circumferentially continuous reinforcing layer structure extending between the joint portions; a plurality of circumferentially spaced reinforcing ribs on at least one surface of each shoulder portion; extending from the tread portion to the tread portion, and includes a tire suitable for running in an inflated state and a deflated state.
本発明のもう1つの面は、弾性材料で成る環状
本体と、前記本体の外周にある周囲方向に伸長す
る地面接触踏み部分と、前記踏み部分に接合し、
その踏み部分から一対の接合部分まで軸方向で外
方に、放射方向で内方に伸長する一対の肩部分
と、前記接合部分からリムに装着するための一対
の間隔をおいて位置する装着部分まで放射方向
へ、又、軸方向で内方に伸長する一対の側壁と、
前記接合部分間を伸長する周囲方向に連続する補
強層構造体と、前記各接合部分の外面にある少な
くとも1つの周囲方向に連続する補強リブと、そ
のリブは前記タイヤのまわりを完全に伸長する事
とで成り、ふくらんだ状態としぼんだ状態で走行
するのに適したタイヤを包含する。 Another aspect of the invention includes an annular body made of a resilient material, a circumferentially extending ground contacting tread portion at the outer periphery of the body, joined to the tread portion;
a pair of shoulder portions extending axially outwardly and radially inwardly from the tread portion to a pair of joint portions; and a pair of spaced apart mounting portions from the joint portions for attachment to the rim. a pair of side walls extending radially and axially inwardly to;
a circumferentially continuous reinforcing layer structure extending between the joints; and at least one circumferentially continuous reinforcing rib on an outer surface of each joint, the rib extending completely around the tire. It includes tires suitable for running in both inflated and deflated conditions.
本発明の更にもう1つの面は、弾性材料で成る
環状本体と、その本体の外周にある周囲方向に伸
長する地面接触踏み部分と、その踏み部分に接合
し、その踏み部分から一対の接合部分まで軸方向
で外方へ、放射方向で内方へ伸長する一対の肩部
分と、前記接合部分からリムに装着するための一
対の間隔をおいて位置する装着部分まで放射方向
へ、軸方向で内方へ伸長する一対の側壁と、前記
接合部分間を伸長する周囲方向へ連続する補強層
構造体と、その補強層構造体は前記踏み部分から
前記接合部分まで伸長する補強コードの少なくと
も2つの重なり層を有し、それら重なり層の1方
の層の前記コードは前記重なり層の他方の層の前
記コードに対して逆方向関係にあり、前記重なり
層の前記コードは前記タイヤの周囲面に対して35
〜55゜の角度に位置づけられる事とで成り、ふく
らみ状態としぼみ状態とで走行するのに適したタ
イヤを包含する。 Yet another aspect of the invention includes an annular body made of an elastic material, a circumferentially extending ground-contacting tread portion on the outer periphery of the body, and a pair of joint portions connected to the tread portion and extending from the tread portion. a pair of shoulder portions extending axially outwardly and radially inwardly from said joining portion to a pair of spaced apart attachment portions for attachment to the rim; a pair of side walls extending inward; a reinforcing layer structure continuous in the circumferential direction extending between the joint portions; and the reinforcing layer structure comprising at least two reinforcing cords extending from the step portion to the joint portion. overlapping layers, the cords of one layer of the overlapping layers being in an opposite directional relationship to the cords of the other layer of the overlapping layers, and the cords of the overlapping layer being in contact with the circumferential surface of the tire. against 35
The tire is positioned at an angle of ~55° and encompasses tires suitable for driving in both inflated and deflated conditions.
本発明の更にもう1つの面によれば、しぼみ状
態で走行するのに適した圧縮側壁タイヤが提供さ
れる。 According to yet another aspect of the invention, a compression sidewall tire suitable for running in a deflated condition is provided.
本発明の更にもう1つの面によれば、鋳造、注
入、又は噴射成型のような方法により容易に製造
されるタイヤが提供される。 According to yet another aspect of the invention, a tire is provided that is easily manufactured by methods such as casting, injection, or injection molding.
本発明の更にもう1つの面によれば、ふくらみ
状態及びしぼみ状態に走行する時、肩部と側壁を
支持する補強タイヤ構造体が提供される。 According to yet another aspect of the present invention, a reinforced tire structure is provided that supports shoulders and sidewalls during inflated and deflated conditions.
第1図を参照すれば、本発明は周囲方向へ伸長
する地面接触踏面12と、その踏面に接合する一
対の肩部14とリム20と接触するための一対の
装着部分18の所で終わる一対の側壁16とを有
する空気式タイヤ10に関する。一対の接合部分
22が肩部14と側壁16とを接続させる。これ
らのタイヤ10部分の各々はゴムやウレタンのよ
うな弾性材料で出来ているのが好ましい。タイヤ
10はそのタイヤの中央周囲面MPに対して対称
をなす。その中央周囲面MPはそのタイヤの回転
軸に対して垂直面であり、タイヤの2つの軸方向
の外端部間の中心線である。 Referring to FIG. 1, the present invention includes a circumferentially extending ground contacting tread 12, a pair of shoulders 14 joining the tread, and a pair terminating in a pair of mounting portions 18 for contacting a rim 20. The present invention relates to a pneumatic tire 10 having a sidewall 16 of. A pair of joints 22 connect shoulder 14 and sidewall 16. Each of these tire 10 sections is preferably made of a resilient material such as rubber or urethane. The tire 10 is symmetrical about its central circumferential plane MP. The central circumferential plane MP is a plane perpendicular to the axis of rotation of the tire and is the centerline between the two axially outer ends of the tire.
踏み面の幅はタイヤが普通のふくらみ圧と負荷
のもとにある時、タイヤの足跡に於て地面と接触
するタイヤの軸方向への外側端部により限定され
る。タイヤの足跡は、普通の負荷をかけた車に普
通の方法で装着され、普通のふくらみ圧までふく
らんだ場合、地面と接触するタイヤが残す踏みマ
ークを指していう。普通の負荷のふくらみ圧はタ
イヤが普通の状態のもとで作動するように仕組ま
れた圧力である。 The width of the tread is limited by the axially outer edge of the tire that contacts the ground in the tire's footprint when the tire is under normal inflation pressures and loads. Tire footprint refers to the tread marks left by a tire that makes contact with the ground when it is mounted in the normal way on a normally loaded car and inflated to normal inflation pressure. Normal load inflation pressure is the pressure at which the tire is designed to operate under normal conditions.
肩部14の各々は、踏み面12から軸方向で外
方へ、放射方向で内方に伸長する。側壁16の
各々はタイヤ10の最大断面幅SDが接合部22
の位置となるように、それぞれの装着部分18の
各々から軸方向で外方へ、放射方向で外方へ伸長
する。タイヤの最大断面幅は、タイヤの回転軸に
対して平行な線で測つた時、文字、即ち目印を除
いて、タイヤの軸方向への最外側表面間でそのタ
イヤの放射面で取つた横断面の最大距離である。
従つて、接合部分22はそのタイヤが普通のふく
らみ圧と負荷のもとにある時のタイヤ10の軸方
向への最外側部分である。 Each of the shoulders 14 extends axially outwardly and radially inwardly from the tread surface 12. Each of the side walls 16 has a maximum cross-sectional width SD of the tire 10 at the joint portion 22.
Extending axially outwardly and radially outwardly from each of the respective attachment portions 18 so as to be in a position of . The maximum cross-sectional width of a tire is the transverse plane taken by the radial plane of the tire between the axially outermost surfaces of the tire, excluding text or landmarks, when measured in a line parallel to the tire's axis of rotation. This is the maximum distance between surfaces.
Thus, the joint portion 22 is the axially outermost portion of the tire 10 when the tire is under normal inflation pressures and loads.
第1,3図に示すように、肩部14の長さは側
壁16の長さと大体同じであるが、その肩部と側
壁の長さは設計上の理由で変えることも出来る。
更に、各側壁16の断面の高さ(Sh)はタイヤ
10の断面の高さSHの半分より小さい方が好ま
しい。このタイヤ10の断面の高さ(SH)は、
この明細書及び特許請求の範囲の目的のために、
タイヤが普通のふくらみ圧のもとにあつて、負荷
がかかつていない時、装着部分の放射方向への最
内側着座面と踏み面12の外側で、放射方向への
最外側点との間で回転軸に対して垂直な線に沿つ
た距離である。側壁の放射方向への最外側点はそ
のタイヤの補強層のコードの放射方向への最内側
点Yとして限定される。各側壁の断面の高さ
(Sh)は装着部分の放射方向への最内側着座面
と、側壁の放射方向への最外側点との間でタイヤ
の放射面に於ける回転軸に対して垂直な線に沿つ
た距離である。 As shown in FIGS. 1 and 3, the length of shoulder 14 is approximately the same as the length of sidewall 16, although the lengths of the shoulder and sidewall may vary for design reasons.
Further, the cross-sectional height (Sh) of each side wall 16 is preferably smaller than half of the cross-sectional height SH of the tire 10. The height (SH) of the cross section of this tire 10 is
For the purposes of this specification and claims:
When the tire is under normal inflation pressure and no load is applied, between the radially innermost seating surface of the mounting portion and the radially outermost point on the outside of the tread surface 12. It is the distance along a line perpendicular to the axis of rotation. The radially outermost point of the sidewall is defined as the radially innermost point Y of the cord of the reinforcing layer of the tire. The cross-sectional height (Sh) of each sidewall is perpendicular to the axis of rotation in the radial plane of the tire between the radially innermost seating surface of the mounting part and the radially outermost point of the sidewall. It is the distance along the line.
側壁16は高弾性係数の弾性材料で作るのが好
ましく、第1,3図に示すように、凹状外面27
と凸状内面29を有する。この種の側壁の形をも
つタイヤ10は従来、よく知られており、一般に
“圧縮側壁”タイヤと呼ばれる。側壁16は普通
のタイヤに一般に見られる壁より事実上、肉厚の
壁を有する。肩部14は比較的肉薄の壁を有し、
肩部の壁の厚みは側壁16の厚みよりうすい。 The sidewall 16 is preferably made of a high modulus of elastic material and has a concave outer surface 27, as shown in FIGS.
and a convex inner surface 29. Tires 10 with sidewall shapes of this type are well known in the art and are commonly referred to as "compression sidewall" tires. The sidewalls 16 have substantially thicker walls than those typically found in conventional tires. The shoulder 14 has a relatively thin wall;
The wall thickness of the shoulder portion is thinner than the thickness of the side wall 16.
タイヤ10は又両接合部分22間を伸長する補
強層構造体30を有する。この構造体30は補強
コード層32を有する。この層32は接合部分2
2間を伸長し、その各接合部分内にあつて、その
コード層32は堅固装置、即ちビード35のまわ
りで重なり関係に折り曲がり、放射方向への内層
32aと放射方向への外層32bとを形成する。
この実施例に於て、ビード35は10%の伸び状態
で少なくとも100Kg/cm2の弾性係数を有し、この
強度は取り巻き弾性材料の強度より大きい。その
ビードはタイヤ10のまわりを完全に周囲方向へ
伸長し、弾性材料、即ちゴム材で作るのが好まし
いが、これに制限されるものではない。例えば、
ビード35は繊維材料で作られることも出来る。
ビード35のまわりの放射方向への内層32の折
り曲げ部分はタイヤ10の周囲のまわりで閉鎖ル
ープをなして伸長し、補強層構造体30から力を
伝達し、リム20と接合部分22との間に側壁1
6を締めつけるために、事実上、堅固な折り返し
輪36を形成する。その折り返し輪36は屈曲
し、第1図に示すように、凹状内面41と凸状外
面43を有する。 The tire 10 also includes a reinforcing layer structure 30 extending between the joint portions 22. This structure 30 has a reinforcing cord layer 32. This layer 32 is the joining part 2
2 and within each junction thereof, the cord layer 32 is folded in overlapping relation around a rigid device or bead 35, forming a radially inner layer 32a and a radially outer layer 32b. Form.
In this embodiment, the bead 35 has an elastic modulus of at least 100 Kg/cm 2 at 10% elongation, which strength is greater than the strength of the surrounding elastic material. The bead extends completely circumferentially around the tire 10 and is preferably, but not limited to, made of a resilient material, ie, rubber. for example,
The bead 35 can also be made of fibrous material.
The folded portion of the inner layer 32 in the radial direction around the bead 35 extends in a closed loop around the circumference of the tire 10 to transfer forces from the reinforcing layer structure 30 and between the rim 20 and the interface portion 22. side wall 1
6, effectively forming a rigid folded loop 36. The folding ring 36 is bent and has a concave inner surface 41 and a convex outer surface 43, as shown in FIG.
第1,3図に示すように、事実上、伸長出来な
い環状の踏み面補強ブレーカー構造体44が踏み
面12の放射方向で内側に位置する。第4図に示
すように、この構造体44はタイヤ10の中央周
囲面MPに対して鋭角に方向づけられた平行コー
ドの2つのブレーカー層45,46を有する。こ
の1方の層の角度は他方の層の角度に対して反対
方向に向いている。この環状ブレーカー構造体4
4は踏み面12の補強のために、タイヤ10のま
わりを周囲方向へ伸長し、従来の構造体で作ら
れ、うまい工学的やり方に一貫した所望の材料で
作られる。放射方向への外側ブレーカー層45の
軸方向の幅は踏み面12の軸方向の幅に事実上、
等しくて、放射方向にみて外側ブレーカー層が内
側ブレーカー層に重なるように、その放射方向へ
の内側ブレーカー層46の軸方向の幅より大きい
のが好ましい。 As shown in FIGS. 1 and 3, a virtually non-extensible annular tread reinforcing breaker structure 44 is located radially inboard of the tread 12. As shown in FIGS. As shown in FIG. 4, this structure 44 has two breaker layers 45, 46 of parallel cords oriented at an acute angle to the central circumferential surface MP of the tire 10. The angle of one layer is oriented in the opposite direction to the angle of the other layer. This annular breaker structure 4
4 extends circumferentially around the tire 10 for reinforcement of the tread 12 and is of conventional construction and of any desired material consistent with good engineering practice. The axial width of the outer breaker layer 45 in the radial direction is substantially equal to the axial width of the tread surface 12.
It is preferably equal and greater than the axial width of the inner breaker layer 46 in the radial direction so that the outer breaker layer overlaps the inner breaker layer in the radial direction.
放射方向への外層32は折り返し輪36から肩
部14を通つて伸長し、好ましくは、放射方向へ
の内側ブレーカー層46のそれぞれの軸方向への
外縁部に隣接し、放射方向への外側ブレーカー層
45の軸方向への外縁部に対して軸方向に内側に
ある踏み面12の放射方向にみて内側点まで伸長
するのがよい。層32がこの実施例のように、踏
み面12の放射方向で内側にあるタイヤ10の冠
部分47を完全に横切つて軸方向へ伸長する場
合、ブレーカー構造体44を省略することが出来
る。ブレーカー構造体44の備える場合、層32
は各肩部14から環状ブレーカー構造体のそれぞ
れの辺縁部48に重なる位置まで内側を軸方向へ
伸長する必要がある。そのような場合、タイヤ1
0の各肩部分は補強コードの別個の層により補強
される。 A radially outer layer 32 extends from the fold ring 36 through the shoulder 14 and is preferably adjacent the axially outer edge of each of the radially inner breaker layers 46 and extends from the radially outer breaker layer 46 . It may extend to a point radially inboard of the tread surface 12 that is axially inboard with respect to the axially outer edge of the layer 45 . If the layer 32 extends axially completely across the crown portion 47 of the tire 10 radially inboard of the tread surface 12, as in this embodiment, the breaker structure 44 may be omitted. When included in breaker structure 44, layer 32
should extend axially inwardly from each shoulder 14 to a position overlapping the respective edge 48 of the annular breaker structure. In such a case, tire 1
Each shoulder section of the 0 is reinforced with a separate layer of reinforcing cord.
本発明は好ましい実施例に於て、層32のコー
ドの角度aはタイヤ10の中央周囲面MPに対し
て45゜をなすが、この角度は35゜と45゜の間であ
る。層32の放射方向への内側層32aにあるコ
ードの角度aはその層32の重なり合う放射方向
への外側層32bのコードの角度bと反対向きで
ある。層32のこれらのコードは主として、剪断
応力に対してタイヤ10を補強する。 In a preferred embodiment of the present invention, the cord angle a of layer 32 is 45° with respect to the central circumferential plane MP of tire 10, but the angle is between 35° and 45°. The angle a of the cords in the radially inner layer 32a of layer 32 is opposite the angle b of the cords in the overlapping radially outer layer 32b of that layer 32. These cords of layer 32 primarily reinforce tire 10 against shear stresses.
肩部14にあるリブ49のような補強装置はタ
イヤ10がしぼんで、しかも普通の負荷がかかつ
ている時、肩部14が地面と接触しないで保持さ
れるように肩部を支持する。それらのリブ49は
堅いゴム等の固形部材を有するが、第2図に示す
ように、肩部14の内面50と外面51の両方に
あつて、タイヤ10のまわりの周囲方向に間隔を
おいて位置する複数個のリブで成るのが好まし
い。内面50にあるリブ49は接合部分22から
タイヤ10の内面に沿つて、第1図のXで示す位
置まで伸長するのが好ましく、この位置Xは少な
くとも踏み面12の軸方向への外縁Eより軸方向
で内側にある。位置Xの各々は、次のように位置
づけるのが好ましい。即ち、位置Xと中央周囲面
MPとの間の距離Dが位置Xと踏み面12の軸方
向への外縁部Eとの間の距離Tより小さくならな
いようにする。位置Xは距離Dが距離Tとほぼ同
じとなるように位置ずけるのが好ましい。位置X
が中央周囲面MPに一層接近して位置づけられる
場合、リブ49を長くすることによる効果を増す
ことなしに、重量だけを増すことになる。 Reinforcing devices such as ribs 49 on the shoulder 14 support the shoulder so that the shoulder 14 remains out of contact with the ground when the tire 10 is deflated and under normal loads. The ribs 49, which are made of a solid material such as hard rubber, are located on both the inner surface 50 and the outer surface 51 of the shoulder 14 and are spaced circumferentially around the tire 10, as shown in FIG. Preferably, it consists of a plurality of positioned ribs. The ribs 49 on the inner surface 50 preferably extend from the joining portion 22 along the inner surface of the tire 10 to a position indicated by X in FIG. It is located inside in the axial direction. Preferably, each of the positions X is positioned as follows. That is, position X and the central peripheral surface
The distance D between MP and the tread surface 12 should not be smaller than the distance T between the position X and the outer edge E of the tread surface 12 in the axial direction. Preferably, the position X is positioned such that the distance D is approximately the same as the distance T. position
If the ribs 49 are located closer to the central peripheral surface MP, they will only increase the weight without increasing the effect of lengthening the ribs 49.
肩部14の外面51にあるリブ49はタイヤ1
0のまわりで周囲方向で間隔をおいた位置に位置
ずけられ、接合部分22から踏み面の外縁Eまで
伸長する。 The rib 49 on the outer surface 51 of the shoulder 14 is connected to the tire 1.
0 and extending from the joint portion 22 to the outer edge E of the tread surface.
リブ49は本文中に説明するように肩部14を
補強するのに適した特性をもつゴムのような弾性
材料で作られる。適切な材料の例としてはシヨア
A硬度が70〜85で、45Kg/cm2以上の静的弾性係数
を有し、ヒステレシス値が低く、この化合物を24
時間テストで25%圧縮した時、10%の範囲の低い
圧縮硬化値を有するような弾性ゴム化合物があ
る。 Ribs 49 are made of a resilient material, such as rubber, having properties suitable for reinforcing shoulder 14 as described herein. Examples of suitable materials include a Shore A hardness of 70-85, a static modulus of elasticity greater than 45 Kg/ cm2 , a low hysteresis value, and a
There are elastomeric rubber compounds that have compression set values as low as 10% when compressed by 25% in a time test.
リブ49は硬化又は加硫中、タイヤ10のそれ
ぞれの表面に成型されるのが好ましい。しかしな
がら、所望であれば、うまい工学的方法に従つ
て、どれかの方法により形成し、タイヤ10を硬
化させる前かあとに、何らかの方法でそれぞれの
タイヤ表面に接合されることも出来る。 Ribs 49 are preferably molded into each surface of tire 10 during curing or vulcanization. However, if desired, and in accordance with good engineering practice, they can be formed by any method and bonded to the respective tire surface in some way, either before or after curing the tire 10.
第2図を参照すれば、リブ49はそれぞれのタ
イヤ表面に対してほぼ波形の外観を与えるように
複数の溝52がリブ49間に交互に位置するよう
に間隔をおいて位置づけられる。リブ49が各々
は好ましくはタイヤ10の放射面に位置づけられ
るが、リブと、このリブを通る放射面とにより形
成される角度はいづれの方向へも10゜も変化す
る。リブ49の好ましい横断面の形は第2図に示
すように、屈曲回転体である。しかしながら三角
形又は四角形歯のような他の横断面の形も使用す
ることが出来る。 Referring to FIG. 2, the ribs 49 are spaced such that a plurality of grooves 52 alternate between the ribs 49 to provide a generally wavy appearance to the respective tire surface. Although the ribs 49 are each preferably located on a radial surface of the tire 10, the angle formed by the ribs and the radial surface passing through the ribs varies by as much as 10 DEG in either direction. A preferred cross-sectional shape of the rib 49 is a curved rotating body, as shown in FIG. However, other cross-sectional shapes can also be used, such as triangular or square teeth.
リブ49の働きは、放射方向へ、即ち、しぼん
だタイヤが足跡を通つて移動する時、地面と肩部
14との接触を防ぐためにタイヤ10が横切る路
面に対してほぼ垂直な方向へ肩部分を補強するこ
とである。リブ49の各々は最少量の材料により
補強を最も有効に行なうように配置される。かく
して、重量を最低限にしかも増すことなしにリブ
49を幾何学的に配置することにより最適強度を
与える。 The action of the ribs 49 is to move the shoulder portion in a radial direction, i.e. in a direction approximately perpendicular to the road surface traversed by the tire 10, to prevent contact between the shoulder portion 14 and the ground as the deflated tire moves through the footprint. The purpose is to reinforce the Each of the ribs 49 is arranged to provide the most effective reinforcement with the least amount of material. The geometrical arrangement of the ribs 49 thus provides optimum strength while minimizing and without increasing weight.
放射方向へのリブ49の補強性を更に改善する
ために、肩部14の内側と外側にそれぞれあるリ
ブと溝52は一側のものが他側にあるものと向い
合うように一致して間隔をおいて位置する。普
通、硬化工程中に生じ易い層補強構造体30のコ
ードの波形のうねりもそのような間隔どりにより
防ぐことが出来る。 To further improve the reinforcing properties of the ribs 49 in the radial direction, the ribs and grooves 52 on the inner and outer sides of the shoulder 14 are spaced congruently so that those on one side face those on the other side. It is located at a distance. Such spacing also prevents the corrugation of the cords of the layered reinforcement structure 30, which would normally occur during the curing process.
“一致して間隔をおいて位置する”ということ
は、肩部14の表面50,51にあるリブ49と
溝52がお互いに向かい合つて位置することを意
味する。これは第2図に示すように、リブの形成
がなくて、肩部の厚みに等しいような、肩部14
に於けるタイヤ10の最低厚みeと、肩部の厚み
に内面50にあるリブ49の最大厚みと外面51
にあるリブの最大厚みとを加えたものに等しい最
大厚みtとを交互に備える。肩部14に於ける最
大厚みtの範囲は負荷とタイヤの寸法次第で決ま
る。最大厚みに対する最小厚みの比(e/t)は
0.3〜0.7が好ましい。ここで用いている“厚み”
という言葉は、測定される構造体に対して直角な
線に沿つた放射面の大きさを言う。 "Concordantly spaced apart" means that the ribs 49 and grooves 52 on the surfaces 50, 51 of the shoulder 14 are located opposite each other. As shown in FIG.
The minimum thickness e of the tire 10 at
and a maximum thickness t equal to the sum of the maximum rib thickness t and the maximum rib thickness t. The range of maximum thickness t at shoulder 14 depends on the load and tire dimensions. The ratio of the minimum thickness to the maximum thickness (e/t) is
0.3 to 0.7 is preferred. “Thickness” used here
The term refers to the size of the emitting surface along a line perpendicular to the structure being measured.
リブ49の1つの幅Wは溝52の一点から隣接
溝の対応点までの距離である。横に並んで間隔を
おいて位置するリブ49の数Nの総合幅はW×N
の積に等しい。2W/t−e比は0.5〜5の範囲が
好ましい。 The width W of one rib 49 is the distance from one point in the groove 52 to the corresponding point in the adjacent groove. The total width of the number N of ribs 49 arranged horizontally at intervals is W×N
is equal to the product of The 2W/te ratio is preferably in the range of 0.5 to 5.
再度、第1,3図を参照すれば、周囲リブ53
のような3つの周囲方向に連続する補強強化部材
が各接合部分22の外面に形成され、それを強化
する。各リブ53は輪の強化のためにタイヤ10
のまわりを周囲方向へ中断しないで伸長する。リ
ブ53は波形表面を備えるように間隔をおいて位
置し、タイヤの操作中、しぼんだ時、そのタイヤ
の軸方向で外方向へ横にふくらむのを防ぐような
充分な強度を有する弾性材料で作られる。リブ5
3も又、タイヤ10がふくらんだ時、接合部分2
2とリム20との間に側壁16を閉じ込めるよう
に働く。周囲リブ53は硬化中、タイヤ10の表
面に対して成型される。しかしながら、所望であ
れば、それらの周囲リブ53はタイヤ10の硬化
前後のいづれかに、うまい工学的設計に一貫した
工程及び方法で、それぞれ形成され、接合部分2
2の表面に接合される。 Referring again to FIGS. 1 and 3, the peripheral rib 53
Three circumferentially continuous reinforcing reinforcing members, such as , are formed on the outer surface of each joint portion 22 to strengthen it. Each rib 53 is attached to the tire 10 to strengthen the wheel.
Extends uninterrupted circumferentially around the . The ribs 53 are spaced apart to provide a corrugated surface and are made of a resilient material of sufficient strength to prevent bulging laterally outward in the axial direction of the tire when deflated during operation of the tire. Made. rib 5
3 also, when the tire 10 is inflated, the joint part 2
2 and the rim 20 to confine the side wall 16. Peripheral ribs 53 are molded to the surface of tire 10 during curing. However, if desired, those peripheral ribs 53 can be formed either before or after curing the tire 10, in a process and manner consistent with good engineering design, and the joining portion 2
It is joined to the surface of 2.
しぼんだ状態でタイヤ10が走行する間側壁1
6は、タイヤの横断面の形が事実上、第3図に示
すようになるように屈曲する。側壁16は10%の
伸長で測定した時、弾性係数が50Kg/cm2以下とな
らないような弾性化合物で作られる。この側壁1
6は又、屈曲堅固性、彎曲性及び厚みの結合体を
有し、タイヤ10の全ての走行状態でリム20と
接合部分22との間に側壁を閉じ込めるように良
好な工学的設計に従つて決定される。 While the tire 10 is running in a deflated state, the side wall 1
6 is bent so that the cross-sectional shape of the tire is effectively as shown in FIG. The side walls 16 are made of an elastic compound such that the modulus of elasticity is not less than 50 Kg/cm 2 when measured at 10% elongation. This side wall 1
6 also has a combination of flexural rigidity, curvature and thickness, according to good engineering design, to confine the sidewall between the rim 20 and the joint 22 in all driving conditions of the tire 10. It is determined.
放射方向リブ49及び周囲リブ53の中に切断
繊条等が備えられる。周囲方向に伸長する棒部材
(図示せず)も又、更に強度を増すために交叉結
合を備えるリブ49間に配置することも出来る。
タイヤ10の内面間の摩耗を減らすために、タイ
ヤの空所に適切な潤滑剤54を配置し、しぼんだ
状態での走行中のタイヤの冷却を行なう。 Cutting fibers or the like are provided in the radial ribs 49 and the peripheral ribs 53. Circumferentially extending bar members (not shown) may also be placed between the ribs 49 with cross-joints for further strength.
To reduce wear between the inner surfaces of the tire 10, a suitable lubricant 54 is placed in the cavity of the tire to provide cooling of the tire during deflated driving.
普通のタイヤに使用されるようなワイヤビード
を装着部分18にもたせる必要はないので、タイ
ヤ10が装着されるリム20は図面に示すように
装着部分を事実上包囲するように構成され、更に
しぼんだ状態でタイヤを使用する時、リム上に装
着部分を保持する装置を備える。 Since it is not necessary to provide the mounting portion 18 with a wire bead as is used in conventional tires, the rim 20 to which the tire 10 is mounted is configured to virtually surround the mounting portion as shown in the drawings, and is further deflated. A device is provided to hold the mounting portion on the rim when the tire is used in this condition.
第1図に示すように、リム20は中心リング5
6と2つの外側リング58,60を有する。中心
リング56と外側リングの1方58又は60は、
放射方向へ内側で軸方向へ内側及び外側面の位置
で各装着部分18を事実上、包囲する。装着部分
18をリム20に対してシールし、タイヤの空所
のシールを行なうために中心リング56に装着座
62,64を備える。 As shown in FIG.
6 and two outer rings 58,60. The center ring 56 and one of the outer rings 58 or 60 are
Radially inwardly and axially inwardly surrounding each mounting portion 18 at the axially inward and lateral surface locations. Mounting seats 62, 64 are provided on the center ring 56 for sealing the mounting portion 18 to the rim 20 and sealing the tire cavity.
リム20の周囲のまわりに間隔をおいて位置す
る少なくとも3個の自動係止用保持ラツチ66が
リム組立体を固定し、外側リング58,60を横
方向への力に対して、即ち軸方向へそれに作用す
る力に対して保持する。安全ねじ(図示せず)や
その類似締め具を更に加えてリムの係止を保証す
る。 At least three self-locking retention latches 66 spaced around the circumference of the rim 20 secure the rim assembly and hold the outer rings 58, 60 against lateral forces, i.e., axially. to hold against forces acting on it. Additional safety screws (not shown) or similar fasteners may be added to ensure locking of the rim.
本発明を例示する目的で、或る代表的な実施例
と詳細について示して来たけれども、本発明の本
旨と範囲から離れることなしに、種々の変形が可
能であることは、この技術に熟達した人々にとつ
て明らかであろう。 Although certain representative embodiments and details have been shown for the purpose of illustrating the invention, those skilled in the art will recognize that various modifications can be made without departing from the spirit and scope of the invention. It will be obvious to those who have done so.
第1図は本発明を実施したタイヤの放射面で取
つた部分断面図であり、このタイヤは負荷をかけ
ないでふくらんだ状態でリムに装着して示されて
いる。第2図は第1図の―線に沿つて取つた
タイヤの一部の拡大部分横断面図であり、第3図
は第1図のそれに類似した部分横断面図であつ
て、タイヤは普通の負荷をかけてしぼんだ状態で
示されている。第4図は第1図の―線に沿つ
て取つた踏み部分の部分図であつて、ブレーカー
と補強層とのコードの角度関係を示すために一
部、切除して示されている。
10……タイヤ、12……地面接触踏み部、1
4……肩部、16……側壁、18……装着部分、
20……リム、22……接合部分、27……凹状
外面、29……凸状内面、30……補強層構造
体、32……層、32a……放射方向への内層、
32b……放射方向への外層、35……ビード、
36……折り返し輪、41……凹状内面、43…
…凸状外面、44……事実上伸長しない環状踏み
部補強ブレーカー構造体、45,46……ブレー
カー層、46……冠部分、48……ブレーカー構
造体の辺縁、49……リブ、50……肩部の内
部、51……肩部の外面、52……溝、53……
周囲リブ、54……潤滑材、56……中心リン
グ、58,60……外側リング、62,64……
装着座。
FIG. 1 is a partial sectional view taken in a radial plane of a tire embodying the invention, the tire being shown mounted on a rim in an unloaded, inflated condition. 2 is an enlarged partial cross-sectional view of a portion of the tire taken along the line - in FIG. 1, and FIG. 3 is a partial cross-sectional view similar to that of FIG. It is shown in the deflated state under a load of . FIG. 4 is a partial view of the tread portion taken along the line - in FIG. 1, with a portion cut away to show the angular relationship of the cord between the breaker and the reinforcing layer. 10...Tire, 12...Ground contact tread, 1
4... Shoulder part, 16... Side wall, 18... Mounting part,
20... Rim, 22... Joint portion, 27... Concave outer surface, 29... Convex inner surface, 30... Reinforcement layer structure, 32... Layer, 32a... Inner layer in the radial direction,
32b... outer layer in the radial direction, 35... bead,
36...Folding ring, 41...Concave inner surface, 43...
... Convex outer surface, 44 ... Annular tread reinforcing breaker structure that does not extend virtually, 45, 46 ... Breaker layer, 46 ... Crown portion, 48 ... Edge of breaker structure, 49 ... Rib, 50 ... Inside of shoulder, 51 ... Outer surface of shoulder, 52 ... Groove, 53 ...
Peripheral rib, 54... Lubricating material, 56... Center ring, 58, 60... Outer ring, 62, 64...
Mounting seat.
Claims (1)
向に伸長する地面に接触する踏み部分と、該踏み
部分の各軸方向外端および該外端から軸方向外側
および放射方向内側に伸びる肩部分と、リムの上
に装着するための一対の間隔を置いて位置する装
着部分と、各装着部分から軸方向および放射方向
外側に伸びる側壁と、肩部分および側壁のおのお
のに接続する一対の接合部分と、タイヤが正規の
膨脹圧および荷重がかけられているときには接合
部分におけるタイヤの幅が最大の断面となり、前
記肩部分の厚さは側壁の厚さよりも薄くなり、タ
イヤの外周方向に伸びおのおのの肩部分を通り、
かつ少くとも踏み面の軸方向内側の点まで伸びて
いる補強コード層と、正規の荷重の下でタイヤが
しぼんだときに地面との接触を肩部分の外側で保
持する手段と、該手段は各肩部分の内面および外
面の周方向に一定の間隔をおいた複数のリブを含
み、各リブはリブを通る前記タイヤの放射方向の
平面に対して0゜から10゜の角度に配置され、踏
み部のおのおのの軸方向外縁の各接合部分から伸
びる各肩部分の内面のリブと、踏み部のおのおの
の軸方向外縁の各接合部分から伸びる各肩部分の
外面のリブと、各肩部分の内面および外面のリブ
は一致した場所にありそれによつて各肩部分がそ
の上に形成されたどんなリブもない所で肩部分の
厚さに等しい最小厚さを有し、かつ前記最小厚さ
に、肩部分の内面のリブの最大厚さと肩部分の外
面のリブの最大厚さを加えた最大厚さを有する、
ふくらんだ状態あるいはしぼんだ状態で好適に走
行する空気圧縮側壁タイヤ。 2 各肩部分の最小厚さと最大厚さの比が0.3か
ら0.7の間にある、特許請求の範囲第1項記載の
空気圧縮側壁タイヤ。 3 前記各リブの幅の2倍と、各肩部分の最大厚
さから最小厚さを差引いた値の比が0.5ないし5
の間にある、特許請求の範囲第1項記載の空気圧
縮側壁タイヤ。 4 ビードが前記接合部分のおのおのに配置さ
れ、各接合部分の中の補強コード層が前記ビード
の1つの周りに折返しを形成するように折りたた
まれ、各ビードは弾性材料からなり、かつ伸び率
10%における弾性係数が少くとも100Kg/cm2であ
る、特許請求の範囲第1項ないし第3項のうちの
いずれか1項に記載の空気圧縮側壁タイヤ。 5 複数の周方向に連続した補強リブが前記接合
部分のおのおのの外面に設けられ、前記各周方向
に連続した補強リブは、タイヤに対してフープ強
度が中断されないように伸び、かつ弾性材料は、
タイヤがしぼんでいるときの作用の間に軸方向外
方におけるタイヤの横のふくらみを限定するに十
分な強度をもつように作られている、特許請求の
範囲第1項ないし第3項のうちのいずれか1項に
記載の空気圧縮側壁タイヤ。 6 複数の周方向に連続した補強リブが前記接合
部分のおのおのの外面に設けられ、前記各周方向
に連続したリブはタイヤに対してフープ強度が中
断されないように伸び、かつ弾性材料はタイヤが
しぼんでいるときの作用の間に軸方向外方におけ
るタイヤの横のふくらみを限定するに十分な強度
をもつように作られ、かつ前記周方向に連続した
補強リブはおのおの伸び率10%において50Kg/cm2
より大きい弾性係数をもつ、特許請求の範囲第1
項ないし第3項のうちのいずれか1項に記載の空
気圧縮側壁タイヤ。 7 複数の周方向に連続した補強リブが前記接合
部分のおのおのの外面に設けられ、前記各周方向
に連続したリブはタイヤに対してフープ強度が中
断されないように伸び、かつ弾性材料はタイヤが
しぼんでいるときの作用の間に軸方向外方におけ
るタイヤの横のふくらみを限定するに十分な強度
をもつように作られ、かつビードが前記接合部分
のおのおのに配置され、各接続部分の補強コード
層は前記ビードの1つの周りに折返しを形成する
ように折りたたまれ、各ビードは弾性材料でな
り、かつ伸び率10%において少くとも100Kg/cm2
の弾性係数を有する、特許請求の範囲第1項ない
し第3項のうちのいずれか1項に記載の空気圧縮
側壁タイヤ。 8 複数の周方向に連続した補強リブが前記接続
部分のおのおのの外面に設けられ、前記各周方向
に連続したリブはタイヤに対してフープ強度が中
断されないように伸び、かつ弾性材料はタイヤが
しぼんでいるときの作用の間に軸方向外方におけ
るタイヤの横のふくらみを限定するに十分な強度
に作られ、かつ前記周方向に連続したリブは伸び
率10%で50Kg/cm2以上の弾性係数を有し、またビ
ードが前記接合部分のおのおのに配置され、各接
合部分の補強コード層は前記ビードの1つの周り
に折返しを形成するように折たたまれ、各ビード
は弾性材料でなり、かつ伸び率10%において少く
とも100Kg/cm2の弾性係数を有する、特許請求の
範囲第1項ないし第3項のうちのいずれか1項に
記載の空気圧縮側壁タイヤ。[Claims] 1. An annular body made of an elastic material, a ground-contacting step portion extending circumferentially around the outer periphery of the main body, each axially outer end of the step portion, and axially outward and a shoulder portion extending radially inwardly, a pair of spaced apart mounting portions for mounting over the rim, a side wall extending axially and radially outward from each mounting portion, and each of the shoulder portion and side wall a pair of joint portions connected to the tire, and when the tire is under normal inflation pressure and load, the tire width at the joint portion is the maximum cross section, and the thickness of the shoulder portion is thinner than the thickness of the sidewall; It extends toward the outer circumference of the tire and passes through each shoulder.
and a layer of reinforcing cord extending to at least an axially inward point of the tread; and means for maintaining ground contact on the outside of the shoulder portion when the tire is deflated under normal loads; a plurality of circumferentially spaced ribs on the inner and outer surfaces of each shoulder portion, each rib being disposed at an angle of 0° to 10° with respect to a radial plane of the tire passing through the rib; ribs on the inner surface of each shoulder portion extending from each joint on each axial outer edge of the tread; ribs on the outer surface of each shoulder portion extending from each joint on each axial outer edge of the tread; The ribs on the inner and outer surfaces are in congruent locations such that each shoulder has a minimum thickness equal to the thickness of the shoulder without any ribs formed thereon, and , has a maximum thickness that is the sum of the maximum thickness of the ribs on the inner surface of the shoulder portion and the maximum thickness of the ribs on the outer surface of the shoulder portion,
A pneumatic sidewall tire that runs well in an inflated or deflated state. 2. The pneumatic sidewall tire of claim 1, wherein the ratio of the minimum thickness to the maximum thickness of each shoulder portion is between 0.3 and 0.7. 3 The ratio of twice the width of each rib to the value obtained by subtracting the minimum thickness from the maximum thickness of each shoulder portion is 0.5 to 5.
The pneumatic sidewall tire according to claim 1, which is located between. 4. Beads are disposed at each of said joints, a reinforcing cord layer in each joint is folded to form a fold around one of said beads, each bead being of an elastic material and having an elongation rate.
Pneumatic sidewall tire according to any one of claims 1 to 3, having a modulus of elasticity at 10% of at least 100 Kg/cm 2 . 5. A plurality of circumferentially continuous reinforcing ribs are provided on the outer surface of each of the joint parts, and each of the circumferentially continuous reinforcing ribs extends so that the hoop strength is not interrupted with respect to the tire, and the elastic material is ,
Any of claims 1 to 3, constructed to have sufficient strength to limit lateral bulge of the tire axially outward during operation when the tire is deflated. The pneumatic sidewall tire according to any one of the above. 6. A plurality of circumferentially continuous reinforcing ribs are provided on the outer surface of each of the joint portions, and each of the circumferentially continuous ribs extends so that the hoop strength is not interrupted with respect to the tire, and the elastic material is such that the tire is Said circumferentially continuous reinforcing ribs are constructed to have sufficient strength to limit the lateral bulge of the tire axially outward during deflation action, and each of said circumferentially continuous reinforcing ribs has a weight capacity of 50 Kg at 10% elongation. / cm2
Claim 1 having a larger elastic modulus
The pneumatic sidewall tire according to any one of items 1 to 3. 7. A plurality of circumferentially continuous reinforcing ribs are provided on the outer surface of each of the joint portions, each of the circumferentially continuous ribs extends so as not to interrupt the hoop strength with respect to the tire, and the elastic material is such that the tire is constructed to be of sufficient strength to limit lateral bulge of the tire axially outward during deflation action, and with beads disposed at each of said joints to provide reinforcement at each joint; The cord layer is folded to form a fold around one of said beads, each bead being of elastic material and having an elongation of at least 100 Kg/cm 2 at 10%.
A pneumatic sidewall tire according to any one of claims 1 to 3, having an elastic modulus of . 8. A plurality of circumferentially continuous reinforcing ribs are provided on the outer surface of each of the connecting portions, each of the circumferentially continuous ribs extends so as not to interrupt the hoop strength with respect to the tire, and the elastic material is such that the tire is Said circumferentially continuous ribs are made of sufficient strength to limit the lateral bulge of the tire in the axially outward direction during deflation action, and said circumferentially continuous ribs have an elongation of not less than 50 kg/cm 2 at a rate of 10%. having a modulus of elasticity, and a bead is disposed at each of said joint sections, the reinforcing cord layer of each joint section is folded to form a fold around one of said beads, and each bead is made of an elastic material. A pneumatic sidewall tire according to any one of claims 1 to 3, having a modulus of elasticity of at least 100 Kg/cm 2 at 10% elongation.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9969379A | 1979-12-03 | 1979-12-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5690708A JPS5690708A (en) | 1981-07-23 |
JPS628324B2 true JPS628324B2 (en) | 1987-02-21 |
Family
ID=22276169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16811980A Granted JPS5690708A (en) | 1979-12-03 | 1980-12-01 | Compression side wall tire |
Country Status (11)
Country | Link |
---|---|
JP (1) | JPS5690708A (en) |
AU (1) | AU531138B2 (en) |
BR (1) | BR8007786A (en) |
CA (1) | CA1128410A (en) |
DE (1) | DE3043818A1 (en) |
FR (1) | FR2470697A1 (en) |
GB (1) | GB2065040B (en) |
IT (1) | IT1134563B (en) |
LU (1) | LU82968A1 (en) |
MX (1) | MX151665A (en) |
ZA (1) | ZA806696B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2529834A1 (en) * | 1982-07-08 | 1984-01-13 | Michelin & Cie | PNEUMATIC ENVELOPE COMPRISING A BODY WITHOUT REINFORCING REINFORCEMENT FRAME IN THE FLANKS AND AT THE TOP, AND A SUMMIT REINFORCEMENT |
JPS6181207A (en) * | 1984-09-28 | 1986-04-24 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
ATE298672T1 (en) * | 1999-08-05 | 2005-07-15 | Pirelli | TIRES FOR MOTOR VEHICLE WHEELS |
KR100808301B1 (en) | 2006-10-23 | 2008-02-27 | 금호타이어 주식회사 | Slip and separation preventer of tire |
EP2853414B1 (en) | 2010-02-01 | 2019-09-18 | Galileo Wheel Ltd. | Locomotion assembly for a land vehicle |
WO2013014676A1 (en) * | 2011-07-27 | 2013-01-31 | Galileo Wheel Ltd. | Tire for surface vehicle |
WO2018009606A1 (en) * | 2016-07-06 | 2018-01-11 | Bridgestone Americas Tire Operations, Llc | Post-cure sidewall stabilizing reinforcement and method of manufacturing |
JP7040139B2 (en) * | 2018-03-06 | 2022-03-23 | 横浜ゴム株式会社 | Pneumatic tires |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL135522B (en) * | 1965-07-31 | |||
FR2178113A2 (en) * | 1971-07-30 | 1973-11-09 | Pirelli | Tyre carcass - with sidewall surface patterns to inhibit slip when rolling collapsed |
BE786510A (en) * | 1971-07-30 | 1973-01-22 | Pirelli | TIRE FOR VEHICLE WHEELS |
GB1426913A (en) * | 1971-07-30 | 1976-03-03 | Pirelli | Pneumatic tyre for vehicle wheels |
FR2177803B2 (en) * | 1971-07-30 | 1978-01-20 | Pirelli | |
IT963744B (en) * | 1972-08-04 | 1974-01-21 | Pirelli | PERFECTED TIRE FOR VEHICLE WHEELS |
GB1471883A (en) * | 1973-05-15 | 1977-04-27 | Dunlop Ltd | Pneumatic tyres |
GB1574715A (en) * | 1976-01-27 | 1980-09-10 | Dunlop Ltd | Pneumatic tyre and wheel assembly |
US4405007A (en) * | 1977-06-27 | 1983-09-20 | The Goodyear Tire & Rubber Company | Pneumatic safety tire |
-
1980
- 1980-09-26 CA CA361,874A patent/CA1128410A/en not_active Expired
- 1980-10-30 ZA ZA00806696A patent/ZA806696B/en unknown
- 1980-11-10 AU AU64229/80A patent/AU531138B2/en not_active Ceased
- 1980-11-10 GB GB8036012A patent/GB2065040B/en not_active Expired
- 1980-11-13 MX MX184745A patent/MX151665A/en unknown
- 1980-11-20 FR FR8024621A patent/FR2470697A1/en active Granted
- 1980-11-20 DE DE19803043818 patent/DE3043818A1/en active Granted
- 1980-11-28 LU LU82968A patent/LU82968A1/en unknown
- 1980-11-28 BR BR8007786A patent/BR8007786A/en unknown
- 1980-12-01 JP JP16811980A patent/JPS5690708A/en active Granted
- 1980-12-02 IT IT26387/80A patent/IT1134563B/en active
Also Published As
Publication number | Publication date |
---|---|
FR2470697A1 (en) | 1981-06-12 |
GB2065040A (en) | 1981-06-24 |
JPS5690708A (en) | 1981-07-23 |
LU82968A1 (en) | 1981-03-26 |
CA1128410A (en) | 1982-07-27 |
AU6422980A (en) | 1981-06-11 |
BR8007786A (en) | 1981-06-16 |
FR2470697B1 (en) | 1984-05-25 |
ZA806696B (en) | 1981-10-28 |
MX151665A (en) | 1985-01-30 |
AU531138B2 (en) | 1983-08-11 |
IT1134563B (en) | 1986-08-13 |
DE3043818C2 (en) | 1988-02-18 |
GB2065040B (en) | 1984-03-14 |
DE3043818A1 (en) | 1981-07-02 |
IT8026387A0 (en) | 1980-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3935892A (en) | Pneumatic tired wheel | |
US4019551A (en) | Chipperless radial ply tire | |
US4067374A (en) | Pneumatic tire | |
EP0604820B1 (en) | An improved earthmover tire | |
US4147751A (en) | Method of making a pneumatic tire | |
US4235273A (en) | Pneumatic tires | |
US4248286A (en) | Safety support assembly for pneumatic tires | |
US4077455A (en) | Radial ply pneumatic tire and rim assembly | |
JPS6228002B2 (en) | ||
CA1126635A (en) | Pneumatic safety tire | |
JPH0362561B2 (en) | ||
JP3487908B2 (en) | Tire structure for heavy vehicles | |
US4936365A (en) | Anisotropic tire | |
US4341249A (en) | Compression sidewall tire reinforced for deflated operation | |
JP2002511039A (en) | Belt for tire having tread pattern of circumferential rib | |
JP4383662B2 (en) | Tire with triangular crown reinforcement | |
JP6053055B2 (en) | All-steel radial construction for agricultural tires | |
JPH01156107A (en) | Pneumatic tire | |
JPS5810242B2 (en) | Tire, rim assembly | |
JPS628324B2 (en) | ||
JP2899198B2 (en) | High speed heavy duty tire | |
CN109789741B (en) | Pneumatic tire with annular sidewall concavity | |
TW458904B (en) | Earthmover-type tire with reversed carcass ply turnup and removable track belt | |
US4170254A (en) | Tire with a straight sidewall | |
JP3377448B2 (en) | Run flat tire |