JPS6282591A - Enclosed magnetic recorder - Google Patents

Enclosed magnetic recorder

Info

Publication number
JPS6282591A
JPS6282591A JP22174885A JP22174885A JPS6282591A JP S6282591 A JPS6282591 A JP S6282591A JP 22174885 A JP22174885 A JP 22174885A JP 22174885 A JP22174885 A JP 22174885A JP S6282591 A JPS6282591 A JP S6282591A
Authority
JP
Japan
Prior art keywords
container
heat
space
magnetic disk
heat absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22174885A
Other languages
Japanese (ja)
Inventor
Toshibumi Okubo
俊文 大久保
Koji Otani
大谷 幸司
Kenji Kogure
木暮 賢司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22174885A priority Critical patent/JPS6282591A/en
Publication of JPS6282591A publication Critical patent/JPS6282591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)

Abstract

PURPOSE:To obtain an enclosed magnetic recorder that can reduce heat-off track phenomena and deterioration of each part of the recorder with high density and high reliability, by providing a heat absorbing space inside a container of the recorder and a heat dissiparing space outside the container with is linked to said heat absorbing space respectively and putting the refrigerants into both spaces to cool the inside of the container by the evaporation and condensation of those refrigerants. CONSTITUTION:A container 3 storing the primary component elements of a magnetic disk device contains a heat absorbing member 17 having a heat absorbing space 15 inside a form shaped along the upper inner wall, the side inner wall and the inner walls at both end parts in the lengthwise direction having a semicircular form respectively of the container 3. An end of a link pipe 19 is connected to the upper surface of the member 17. While a heat dissipating member 23 having a heat dissipating space 21 formed inside the container 3 along its upper outer wall is connected to the other end of the pipe 19. Then a heat transmitting refrigerant 31 that fills approximately the space 15 is enclosed into both spaces linking with each other. The refrigerant 31 is evaporated within the space 15 by the temperature of the container inside 5 and then condensed within the space 21 by the temperature on the outside of the container 3 in an active mode of the magnetic disk device.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は機構各部が密閉容器内に収納された密閉型磁
気記録装置の放熱特性を向上させる技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a technique for improving the heat dissipation characteristics of a closed magnetic recording device in which each mechanical part is housed in a closed container.

[発明の技術的背景とその問題点] 一般に、磁気ディスク装置には、大容渚、高富度化を達
成するため、気体軸受の原理を応用し磁気記録媒体(磁
気ディスク)上にサブミクロンオーダの隙間をもって電
磁変換用ヘッドを浮動させる浮動へラドスライダが用い
られている。この浮動へラドスライダは高速回転する磁
気ディスクと極めて微小な隙間を介して動作しているた
め、浮上隙間への僅かな塵埃によってもヘッドと磁気デ
ィスクとが接触し、ヘッドが損傷(ヘッドクラッシュ)
する危険性をはらんでおり、装置の信頼性を確保する上
から装置内部、特に磁気ディスク・ヘッド周辺の気体を
でき得る限り高清浄状態に保つことが要請される。
[Technical background of the invention and its problems] In general, in order to achieve large capacity and high enrichment, magnetic disk devices apply the principle of gas bearings to magnetic recording media (magnetic disks) with submicron order. A floating RAD slider is used to float the electromagnetic conversion head with a gap of . Since this floating RAD slider operates through an extremely small gap between the magnetic disk that rotates at high speed, even a small amount of dust in the floating gap can cause the head to come into contact with the magnetic disk, causing damage to the head (head crash).
Therefore, in order to ensure the reliability of the device, it is required to keep the gas inside the device, especially around the magnetic disk head, as clean as possible.

これを実現させるために従来では、第9図に示すように
磁気ディスク101、これの回転支持系103、ヘッド
およびヘッド支持系105、ヘツド位置決め機構107
等の磁気ディスク装置の主要構成要素を外部環境から容
器109にて完全に密閉すると共に、発塵の原因となる
軸受摺動部分を磁性流体等を用いて完全にシールする構
造がとられている。
In order to realize this, conventionally, as shown in FIG.
The structure is such that the main components of the magnetic disk device such as the above are completely sealed from the external environment in a container 109, and the sliding parts of the bearings that cause dust are completely sealed using magnetic fluid or the like. .

ところでこのような密閉型磁気ディスク装置においては
、複数積層された磁気ディスク101が、他の主要構成
要素とともに高密度に実装された狭い空間の中で300
 Orpmないしそれ以上の高速回転をしている。この
ため密閉型磁気ディスク装置は磁気ディスク表面と内部
の気体との粘性a!擦(風損)に起因する発熱により、
かなりの温度上昇を受けるこになる。また高速ランダム
シーク動作を行うヘッド位置決め機構107の駆動部、
スピンドル駆動モータ(回転支持系103)からの発熱
も装置の温度上昇を助長する。
By the way, in such a sealed magnetic disk device, 300 stacked magnetic disks 101 are packed together with other main components in a narrow space with high density.
It rotates at a high speed of Orpm or higher. Therefore, in a sealed magnetic disk drive, the viscosity between the magnetic disk surface and the internal gas is a! Due to heat generation due to friction (windage damage),
This will result in a considerable temperature rise. Further, a drive unit of the head positioning mechanism 107 that performs a high-speed random seek operation,
Heat generated from the spindle drive motor (rotary support system 103) also contributes to an increase in the temperature of the device.

磁気ディスク装置の温度上昇は装置の各構成部品の劣化
を促進し装置寿命を縮めることは言うまでもないが、最
も問題となるのは各部品の温度上昇に伴う熱膨張あるい
は温度分布の不均一に伴う熱膨張差による磁気ディスク
101のトラックずれ(熱オフトラック)であり、これ
がトラック音度の向上、ひいては磁気ディスク装置の記
録密度の向上を阻害する要因となっていた。
It goes without saying that a rise in the temperature of a magnetic disk device accelerates the deterioration of each component of the device and shortens the life of the device, but the biggest problem is due to thermal expansion or uneven temperature distribution due to the rise in temperature of each component. This is the track deviation (thermal off-track) of the magnetic disk 101 due to the difference in thermal expansion, and this has been a factor that has hindered improvement in the track sound intensity and, by extension, in the recording density of the magnetic disk device.

ところが、上述した従来装置では、容器109は略完全
な密閉構造であるため、冷却はもっばら容器109の壁
を伝導する熱を容器109の外壁に設けたフィンを通過
する冷却空気に放熱するのがせいぜいであった。
However, in the above-mentioned conventional device, since the container 109 has a nearly completely sealed structure, cooling mainly involves dissipating the heat conducted through the walls of the container 109 to the cooling air passing through fins provided on the outer wall of the container 109. was at best.

第10図には装置内部から容器109の壁を通じて外気
に至るまでの温度降下状態を一点鎖線で示しているが、
容器109壁面と空気との界面での温度差がかなりあり
、ここでの熱抵抗が大きいことがわかる。特に、この温
度差は容器109内壁の界面の方が外壁の界面よりも比
較的小さくなっていることがわかる。これは容器109
内の気体が磁気ディスク101の高速回転に伴って数十
m/Sとかなり高速の流れを形成しているため、容器1
09の内壁面の内部気体との間の熱の授受が外壁面に比
べ比較的容易に行われるのに対し、容器109の外壁部
での空気流速はせいぜい数m/S以下と小さく、熱伝達
特性が相対的に悪いためであると考えられる。
In FIG. 10, the temperature drop state from the inside of the device to the outside air through the wall of the container 109 is shown by a dashed line.
It can be seen that there is a considerable temperature difference at the interface between the wall surface of the container 109 and the air, and the thermal resistance here is large. In particular, it can be seen that this temperature difference is relatively smaller at the interface of the inner wall of the container 109 than at the interface of the outer wall. This is container 109
Due to the high speed rotation of the magnetic disk 101, the gas inside the container 1 forms a fairly high-speed flow of several tens of m/s.
While the inner wall of container 109 exchanges heat with the internal gas relatively easily compared to the outer wall, the air flow velocity on the outer wall of container 109 is low, at most several m/s or less, and heat transfer is difficult. This is thought to be due to relatively poor characteristics.

いずれにしろ従来の密閉型磁気ディスク装置においては
容器109表面と空気との界面での熱抵抗が装置の放熱
特性の向上を阻む主要因であることは間違いなく、上述
のような磁気ディスク101と内部の気体との風損を主
体とする装置の温度上界に起因する熱オフトラックを低
減し、高速アクセス・高密度の密閉型磁気ディスク装置
を実現するためには、別途にかなり大規模な冷部装置を
必要とするという欠点を有していた。
In any case, in a conventional sealed magnetic disk device, there is no doubt that the thermal resistance at the interface between the surface of the container 109 and the air is the main factor that hinders the improvement of the heat dissipation characteristics of the device. In order to reduce the thermal off-track caused by the upper temperature limit of the device, which is mainly caused by wind damage with the internal gas, and to realize a high-speed access, high-density sealed magnetic disk device, a fairly large-scale installation is required. This had the disadvantage of requiring a cooling unit.

[発明の目的] この発明はこのような従来の問題点に着目してなされた
もので、放熱特性を向上させることによって、磁気記録
媒体ヘッドとの相対的移動に起因する風損を主要因とす
る装置内部の温度上昇を抑制し、熱オフトラックの少な
い高記録密度・高速アクセスを実現し得る音間型磁気デ
ィスク装置の提供を目的とする。
[Purpose of the Invention] The present invention was made by focusing on such conventional problems, and by improving heat dissipation characteristics, windage loss caused by relative movement with a magnetic recording medium head can be eliminated as a main factor. The purpose of the present invention is to provide an inter-sonic magnetic disk device that can suppress the temperature rise inside the device and realize high recording density and high-speed access with little thermal off-track.

し発明の概要] この目的を達成するためにこの発明は、磁気記録媒体お
よびヘッド等の磁気記録装置の主要構成要素を密閉され
た容器内に収納し、この容器内部に吸熱空間を形成する
吸熱部材を設けると共に、この吸熱空間に連通し吸熱空
間より上方側の容器外部に放熱空間を形成する放熱部材
を設け、この吸熱および放熱空間内に前記密閉型磁気記
録装置の作動状態での容器内部の温度をもって蒸発し、
かつ容器外部の温度をもって凝縮する冷却を封入してな
る構成とした。
[Summary of the Invention] To achieve this object, the present invention stores main components of a magnetic recording device such as a magnetic recording medium and a head in a sealed container, and forms an endothermic space inside the container. At the same time, a heat dissipating member is provided which communicates with the heat absorbing space and forms a heat dissipating space outside the container above the heat absorbing space, and within this heat absorbing and heat dissipating space, the inside of the container in the operating state of the sealed magnetic recording device is provided. evaporates at a temperature of
In addition, the structure is such that a cooling element that condenses at the temperature outside the container is enclosed.

[発明の作用] 磁気記録装置の作動により容器内の温度が上昇する。こ
の温度上昇による熱を容器内部の吸熱空間内の冷媒が奪
って蒸発し、このときの蒸発気化潜熱により容器内部が
冷却される。蒸発した冷媒は容器外部の放熱空間に流出
し、ここで冷媒の運んできた熱が外気により冷されて凝
縮する。このような冷媒の蒸発、凝縮サイクルの繰り返
しにより容器内の放熱が行われ、装置内の温度上昇が抑
制される。
[Operation of the invention] The temperature inside the container increases due to the operation of the magnetic recording device. The refrigerant in the endothermic space inside the container absorbs the heat due to this temperature rise and evaporates, and the latent heat of vaporization at this time cools the inside of the container. The evaporated refrigerant flows into the heat radiation space outside the container, where the heat carried by the refrigerant is cooled by the outside air and condensed. By repeating such a cycle of evaporation and condensation of the refrigerant, heat is radiated within the container, and a rise in temperature within the apparatus is suppressed.

[実施例] 以下、この発明の詳細な説明する。[Example] The present invention will be explained in detail below.

第1図〜第3図はこの発明の第1の実施例を示しており
、これによりまずその構成を説明する。
FIGS. 1 to 3 show a first embodiment of the present invention, and the structure thereof will be explained first.

ベース1には容器3が、容器内部5を密閉して装着され
ている。この容器内部5には複数積層された磁気ディス
ク(磁気記録媒体)7が収納され、磁気ディスク7はス
ピンドル9により回転支持され、更にスピンドル9はベ
ース1内の図示しない駆動モータにより駆動される。こ
の駆動モータおよびスピンドル9等で駆動機構を構成し
ている。
A container 3 is attached to the base 1 with the interior 5 of the container sealed. A plurality of stacked magnetic disks (magnetic recording media) 7 are housed inside the container 5, and the magnetic disks 7 are rotatably supported by a spindle 9, which is further driven by a drive motor (not shown) inside the base 1. This drive motor, spindle 9, etc. constitute a drive mechanism.

また、容器内部5には図示していないが従来技術として
説明した第9図と略同様な磁気ディスク7に対し情報の
記録・再生を司るヘッドおよびヘッド支持系ならびにヘ
ッドを磁気ディスク上の所定の位置に位置決めするヘッ
ド位置決め機構が収納されている。
Although not shown inside the container 5, a head and a head support system for recording and reproducing information are mounted on a magnetic disk 7, which is substantially similar to that shown in FIG. A head positioning mechanism for positioning the head is housed.

これら磁気ディスク装置の主要構成要素を密閉収納する
容器3は、ベース1側に開口部11をもら、この開口部
11側の端面13をベース1の側面1aに当接させてベ
ース1に装着しである。
The container 3 that seals and stores the main components of the magnetic disk drive is attached to the base 1 with an opening 11 on the base 1 side and with the end surface 13 on the side of the opening 11 in contact with the side surface 1a of the base 1. It is.

容器3内には容器3上部側内壁、側部側内壁ならびに断
面が半円状の容器3長手方向両端部側内壁にそれぞれ沿
った形状の内部に吸熱空間15を有する吸熱部材17が
収納されている。この吸熱部材17の内面側には、吸熱
空間15内の体積を増加させ、かつ容器内部5の気体と
の接触面積を増加させる凸状部17aが複数設けられて
いる。
A heat absorbing member 17 having a heat absorbing space 15 inside the container 3 is housed in a shape along the inner wall on the upper side of the container 3, the inner wall on the side side, and the inner wall on both ends in the longitudinal direction of the container 3 having a semicircular cross section. There is. The inner surface of the heat absorbing member 17 is provided with a plurality of convex portions 17a that increase the volume within the heat absorbing space 15 and increase the contact area with the gas inside the container 5.

吸熱部材17の上面には連通管1つの一端が接続され、
連通管19の他端には、容器3の上面外壁に沿って配設
された内部に放熱空間21を備えた放熱部材23が接続
されており、放熱部材23の上面には放熱フィン25が
複数取付けられている。
One end of one communication pipe is connected to the upper surface of the heat absorbing member 17,
The other end of the communication pipe 19 is connected to a heat radiating member 23 that is disposed along the outer wall of the upper surface of the container 3 and has a heat radiating space 21 inside. installed.

これらの互いに接続された吸熱部材17、連通管19お
よび放熱部材23の容器3への取付けは、容器3上面の
略中央に形成された切欠部27に連通管19部分を容器
3の開口部11側から挿入して行なわれる。連通管19
と切欠部27との間はシール材29によりシールされて
いる。
The heat absorption member 17, the communication pipe 19, and the heat radiation member 23 connected to each other are attached to the container 3 by inserting the communication pipe 19 into the opening 11 of the container 3 through a notch 27 formed approximately at the center of the upper surface of the container 3. It is inserted from the side. Communication pipe 19
A sealing material 29 is used to seal the space between and the notch 27 .

そして、吸熱部材17、連通管19ならびに放熱部材2
3内の互いに連通した空間内には、吸熱空間15内を略
満す熱伝達冷媒31が密封されている。この冷媒31は
磁気ディスク装置の作動状態での容器内部5の温度をも
って吸熱空間15内で蒸発し、かつ容器外部の温度をも
って放熱空間21内で凝縮するもので、蒸発時に容器内
部5の熱を吸収し、凝縮時にこの吸収した熱を外部に放
出する。すなわち、この放熱機構はヒートバイブり原理
に基づいて冷却作用を行なう。
The heat absorbing member 17, the communication pipe 19 and the heat dissipating member 2
A heat transfer refrigerant 31 that substantially fills the heat absorption space 15 is sealed in a space that communicates with each other. This refrigerant 31 evaporates in the heat absorption space 15 at the temperature inside the container 5 when the magnetic disk device is in operation, and condenses in the heat radiation space 21 at the temperature outside the container. The absorbed heat is released to the outside during condensation. That is, this heat dissipation mechanism performs a cooling action based on the heat vibration principle.

なお、放熱フィン25の第1図中で左側方には放熱効果
を向上さぜるためのファン33が配設されている。
A fan 33 is disposed on the left side of the heat radiation fin 25 in FIG. 1 to improve the heat radiation effect.

このような放熱機構をもった密閉型磁気ディスク装置に
おいて、この装置が作動すると、磁気ディスク7の高速
回転に伴う磁気ディスク7の表面と気体(空気)との粘
性摩擦(風損)に起因する発熱、更には、高速ランダム
シーク動作を行なうヘッド位置決め機構(図示せず)の
駆動部ならびにスピンドル9の駆動モータからの発熱に
より磁気ディスク装置の温度が上昇し、容器内部5の温
度も上昇する。
In a sealed magnetic disk device with such a heat dissipation mechanism, when the device is operated, the magnetic disk 7 is rotated at high speed, resulting in viscous friction (windage loss) between the surface of the magnetic disk 7 and the gas (air). The temperature of the magnetic disk device rises due to heat generation and further heat generation from the drive unit of the head positioning mechanism (not shown) that performs high-speed random seek operations and the drive motor of the spindle 9, and the temperature inside the container 5 also rises.

この温度上昇による熱を吸熱空間15内の熱伝達冷媒3
1が吸収して液状の熱伝達冷媒31は蒸発する。このと
きの蒸発気化潜熱により容器内部5が冷却され、磁気デ
ィスク装置の温度上昇が抑制される。蒸発した冷媒は、
連通管19を通って放熱空間21に流入し、放熱フィン
25等を介して外気により冷却され放熱して凝縮し、再
び液状となって吸熱空間15に滴下する。このような熱
伝達冷媒の蒸発・凝縮のサイクルを繰り返すことで、磁
気ディスク装置内の放熱が効率良く行なわれる。
The heat due to this temperature rise is transferred to the heat transfer refrigerant 3 in the heat absorption space 15.
1 is absorbed and the liquid heat transfer refrigerant 31 evaporates. The latent heat of evaporation at this time cools the inside of the container 5, thereby suppressing a rise in temperature of the magnetic disk device. The evaporated refrigerant is
It flows into the heat radiation space 21 through the communication pipe 19, is cooled by the outside air through the heat radiation fins 25, radiates heat, condenses, becomes liquid again, and drips into the heat absorption space 15. By repeating such a cycle of evaporation and condensation of the heat transfer refrigerant, heat within the magnetic disk device is efficiently radiated.

第4図は上述した第1図の実施例中の吸熱部材17、連
結管19および放熱部材23が一体化された放熱機構の
他の実施例を示したものである。
FIG. 4 shows another embodiment of the heat radiating mechanism in which the heat absorbing member 17, the connecting pipe 19, and the heat radiating member 23 in the embodiment shown in FIG. 1 described above are integrated.

これは放熱部材23の両端側を中央部側に対し上方に位
置させるべく放熱部材23を傾斜させることで、放熱空
間21内で凝縮した熱伝達冷媒がスムーズに吸熱空間1
5に滴下するようにしている。
By tilting the heat dissipating member 23 so that both ends of the heat dissipating member 23 are positioned above the center side, the heat transfer refrigerant condensed in the heat dissipating space 21 can be smoothly transferred to the heat absorbing space 21.
I try to drip it at 5.

なお、ここでは前述の実施例と同一構成要素には同一符
号を付しである。
Note that here, the same components as in the above-described embodiment are given the same reference numerals.

第5図は第2の実施例を示している。この実施例は、容
器内部5に設置した吸熱部材17と、容器外部に設置し
た放熱部材23とを容器3上面の側壁付近に容1liS
3の長手方向に沿って設けた貫通孔35を通して直接結
合し、吸熱空間15と放熱空間21とを連通させたもの
である。貫通孔35と吸熱部材17あるいは放熱部材2
3との間はシール部材29によりシールされている。こ
のような構造にすると、吸熱空間15と放熱空間21と
の間での熱伝達冷媒31の循環抵抗を軽減でき1、冷却
効率のより一層の向上が期待できる。
FIG. 5 shows a second embodiment. In this embodiment, a heat absorbing member 17 installed inside the container 5 and a heat radiating member 23 installed outside the container are placed near the side wall of the upper surface of the container 3.
The heat absorption space 15 and the heat radiation space 21 are directly connected through a through hole 35 provided along the longitudinal direction of the heat absorption space 15 and the heat radiation space 21 . Through hole 35 and heat absorbing member 17 or heat dissipating member 2
3 is sealed by a sealing member 29. With such a structure, the circulation resistance of the heat transfer refrigerant 31 between the heat absorption space 15 and the heat radiation space 21 can be reduced 1, and a further improvement in cooling efficiency can be expected.

第6図は第3の実施例を示している。この実施例は、容
器3の内部および外部に設置される吸熱部材17および
放熱部材23を板状部材で形成し、この板状部材の外縁
部を屈曲させ、この屈曲端部を容器3の内壁および外壁
にそれぞれ接合することで、容器3をも利用して吸熱空
間15および放熱空間21を形成し、この同空間15.
21を容器3に穿設した連通孔37により連通させたも
のである。この構造では、吸熱部材17I3よび放熱部
材23の加工は、前述の各実施例での袋状に形成する場
合に比べて容易であり、特に、放熱機構を付加すること
による容器内部5の容積の減少が前述の各実施例に比較
して少なくて済み、容器内部が同一の容積をもつ装置間
では、内部容積が大きくとれて容器内部5の温度上昇が
少なくなる。
FIG. 6 shows a third embodiment. In this embodiment, the heat absorbing member 17 and the heat dissipating member 23 installed inside and outside the container 3 are formed of plate-like members, the outer edge of the plate-like member is bent, and the bent end is connected to the inner wall of the container 3. and the outer wall, thereby forming a heat absorption space 15 and a heat radiation space 21 using the container 3, and the same space 15.
21 are communicated with each other through a communication hole 37 formed in the container 3. In this structure, processing of the heat absorbing member 17I3 and the heat dissipating member 23 is easier than in the case of forming the heat absorbing member 17I3 and the heat dissipating member 23 into a bag shape in each of the above-described embodiments. The reduction is smaller than in each of the above-mentioned embodiments, and between devices having the same volume inside the container, the internal volume can be increased and the temperature rise inside the container 5 can be reduced.

なお、ここでは容器内部5に収納される磁気ディスク等
は省略しである。
Note that the magnetic disk and the like housed inside the container 5 are omitted here.

第7図および第8図は第4の実施例を示している。この
実施例は、第6図の実施例と同様に、吸熱部材17と放
熱部材23とをそれぞれ板状部材で形成し、この板状部
材の外縁部を屈曲させ、この各屈曲端部17a、23a
を互いに接合して吸熱空間15および放熱空間21を形
成している。
FIGS. 7 and 8 show a fourth embodiment. In this embodiment, as in the embodiment shown in FIG. 6, the heat absorbing member 17 and the heat dissipating member 23 are each formed of a plate-like member, and the outer edge of the plate-like member is bent, and each bent end portion 17a, 23a
are joined to each other to form a heat absorption space 15 and a heat radiation space 21.

また、放熱部材23の上面には、放熱フィン25が複数
設けられているが、この放熱フィン25の下部側には放
熱空間21に連通する第2の放熱空間41が形成されて
いる。そして、熱伝達冷媒31は吸熱空間15を略満た
す形で封入されている。
Further, a plurality of heat dissipation fins 25 are provided on the upper surface of the heat dissipation member 23, and a second heat dissipation space 41 communicating with the heat dissipation space 21 is formed below the heat dissipation fins 25. The heat transfer refrigerant 31 is enclosed in a manner that substantially fills the heat absorption space 15.

一方、容器3の上面には、互いに接合した吸熱部材17
、放熱部材23の外形司法より若干大きな矩形状の貫通
孔43が穿設されてり、この貫通孔43に容器内部5側
に吸熱部材17を配置した上でシール材2つを介して放
熱機構が取付けられている。
On the other hand, on the upper surface of the container 3, there are heat absorbing members 17 connected to each other.
A rectangular through hole 43, which is slightly larger than the outer diameter of the heat radiating member 23, is bored, and the heat absorbing member 17 is placed in the through hole 43 on the inside 5 side of the container, and the heat radiating mechanism is inserted through two sealants. is installed.

このような構成にすると、放熱機構はこの放熱機構に対
し比較的余裕のある大きさのn通孔43に配置するため
、放熱機構を比較的加工公差に捉ねれずに容易に製作で
き、また吸熱空間15と放熱空間21とが一体的となっ
ているため、熱伝達冷媒の蒸発・凝縮に伴なう循環が極
めてスムーズに行なわれ、冷却効率が高くなる。更に、
放熱フィン25の一部に蒸発後の熱伝達冷媒が入り込む
ことになるので、放熱面積が増加する結果となり、冷却
効率をより一層向上させることができる。
With this configuration, the heat dissipation mechanism is arranged in the n-through hole 43, which has a relatively large size for the heat dissipation mechanism, so that the heat dissipation mechanism can be easily manufactured without being constrained by processing tolerances. Since the heat absorption space 15 and the heat radiation space 21 are integrated, circulation due to evaporation and condensation of the heat transfer refrigerant is performed extremely smoothly, resulting in high cooling efficiency. Furthermore,
Since the heat transfer refrigerant after evaporation enters a portion of the heat radiation fins 25, the heat radiation area increases, and the cooling efficiency can be further improved.

なお、上述の第2〜第4の各実施例では第1の実施例と
同一構成要素には同一符号を付してあり、説明していな
い他の構成および作用は第1の実施例と同様である。
In each of the second to fourth embodiments described above, the same components as those in the first embodiment are given the same reference numerals, and other structures and operations that are not explained are the same as in the first embodiment. It is.

[発明の効果] 以上のようにこの発明によれば、密閉型磁気記録装置の
容器内部に吸熱空間を、容器外部に吸熱空間に連通ずる
放熱空間をそれぞれ設け、この両空間内に冷媒を封入し
、この冷媒の蒸発・凝縮により容器内を冷却するように
したため、別途に大規模な冷却機構を設けることなく、
従来のように単に放熱フィンを容器外壁に取付けたもの
に比べて格段の放熱特性の向上が得られ、風損等に起因
する装置内部の温度上昇を抑制でき、熱オフトラックお
よび装置各部の劣化の少ない高富度・高信頼性の密閉型
磁気記録装置の実現が可能となる。
[Effects of the Invention] As described above, according to the present invention, a heat absorption space is provided inside the container of a sealed magnetic recording device, and a heat radiation space communicating with the heat absorption space is provided outside the container, and a refrigerant is sealed in both spaces. However, since the inside of the container is cooled by evaporation and condensation of this refrigerant, there is no need to install a separate large-scale cooling mechanism.
Compared to the conventional method of simply attaching heat dissipation fins to the outer wall of the container, the heat dissipation characteristics are significantly improved, and the temperature rise inside the equipment due to wind damage can be suppressed, reducing heat off-track and deterioration of various parts of the equipment. This makes it possible to realize a sealed magnetic recording device with high richness and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例の密閉型磁気ディスク
装置の断面図、第2図は第1図のII−II断面図、第
3図は第1図の放熱機構および容器等の分解斜視図、第
4図は第1図における放熱機構の他の例を示す断面図、
第5図は第2の実施例の放熱機構を示す斜視図、第6図
は第3の実施例の密閉型磁気ディスク装置の断面図、第
7図は第4の実施例の放熱機構を示す斜視図、第8図は
第7図における放熱機構の拡大された断面図、第9図は
従来の密閉型磁気ディスク装置の断面図、第10図は第
9図の装置での容器壁の装置内部側と外部側とでの温度
変化を示す説明図である。 3・・・容器 7・・・磁気ディスク(磁気記録媒体)15・・・吸熱
空間 17・・・吸熱部材21・・・放熱空間 23・
・・放熱部材31・・・熱伝達冷媒 3 : 容器 15 : 吸熱空間 17 : 吸熱部材 第2図 第4図 第5図 第6図
FIG. 1 is a sectional view of a sealed magnetic disk device according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line II-II in FIG. 1, and FIG. An exploded perspective view, FIG. 4 is a sectional view showing another example of the heat dissipation mechanism in FIG. 1,
FIG. 5 is a perspective view showing the heat dissipation mechanism of the second embodiment, FIG. 6 is a cross-sectional view of the sealed magnetic disk device of the third embodiment, and FIG. 7 is the heat dissipation mechanism of the fourth embodiment. A perspective view, FIG. 8 is an enlarged sectional view of the heat dissipation mechanism in FIG. 7, FIG. 9 is a sectional view of a conventional sealed magnetic disk device, and FIG. 10 is a container wall device in the device of FIG. 9. FIG. 3 is an explanatory diagram showing temperature changes between the inside and the outside. 3... Container 7... Magnetic disk (magnetic recording medium) 15... Heat absorption space 17... Heat absorption member 21... Heat radiation space 23.
...Heat radiation member 31...Heat transfer refrigerant 3: Container 15: Heat absorption space 17: Heat absorption member Fig. 2 Fig. 4 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 磁気記録媒体およびこの磁気記録媒体に対し情報の記録
・再生を司るヘッドと、前記磁気記録媒体とヘッドとの
相対的移動を発生させる駆動機構と、前記ヘッドを磁気
記録媒体上の所定の位置に位置決めするヘッド位置決め
機構とを有し、それらを密閉された容器内に収納してな
る密閉型磁気記録装置において、前記密閉された容器内
部に吸熱空間を形成する吸熱部材を設けると共に、この
吸熱空間に連通し吸熱空間より上方側の容器外部に放熱
空間を形成する放熱部材を設け、この吸熱および放熱空
間内に前記密閉型磁気記録装置の作動状態での容器内部
の温度をもつて蒸発し、かつ容器外部の温度をもって凝
縮する冷媒を封入したことを特徴とする密閉型磁気記録
装置。
A magnetic recording medium, a head for recording and reproducing information on the magnetic recording medium, a drive mechanism for generating relative movement between the magnetic recording medium and the head, and a drive mechanism for positioning the head at a predetermined position on the magnetic recording medium. In a sealed magnetic recording device having a head positioning mechanism for positioning and housing the head positioning mechanism in a sealed container, a heat absorbing member forming a heat absorption space is provided inside the sealed container, and the heat absorption space is A heat radiating member is provided to form a heat radiating space outside the container above the heat absorbing space, and evaporates in this heat absorbing and heat radiating space at the temperature inside the container when the sealed magnetic recording device is in operation. A closed magnetic recording device characterized in that a refrigerant that condenses at a temperature outside the container is sealed.
JP22174885A 1985-10-07 1985-10-07 Enclosed magnetic recorder Pending JPS6282591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22174885A JPS6282591A (en) 1985-10-07 1985-10-07 Enclosed magnetic recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22174885A JPS6282591A (en) 1985-10-07 1985-10-07 Enclosed magnetic recorder

Publications (1)

Publication Number Publication Date
JPS6282591A true JPS6282591A (en) 1987-04-16

Family

ID=16771598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22174885A Pending JPS6282591A (en) 1985-10-07 1985-10-07 Enclosed magnetic recorder

Country Status (1)

Country Link
JP (1) JPS6282591A (en)

Similar Documents

Publication Publication Date Title
JP4321413B2 (en) Disk array device
JP2792304B2 (en) Cooling device for integrated circuits
US6528909B1 (en) Motor shaft having an integral heat pipe
US20060026610A1 (en) Optical disk apparatus
US6147834A (en) Disk drive with forced convection cooling
US5936646A (en) Image processing equipment with thermally efficient heat dissipating element
JPS63153343A (en) Control-module cooling device
JPS6282591A (en) Enclosed magnetic recorder
JPS6282590A (en) Enclosed magnetic recorder
JPH0228638Y2 (en)
JPS61233488A (en) Magnetic disc storage device
WO2001035199A1 (en) Heat transfer apparatus using refrigerant and computer having the same
JP2006040376A (en) Heat radiation apparatus of electronic equipment for disk, and heat radiation method of electronic equipment for disk
JPH05256589A (en) Heat-pipe type cooling structure for box body
EP3935634A1 (en) Externally-cooled tape drive
JP4041023B2 (en) Wiring board
US6762907B2 (en) Disc drive having integral base cooling
JPH04174269A (en) Electronic refrigerator
JPS6057154B2 (en) disk pack
JPS60133585A (en) Driving device of magnetic disc
JPH03228279A (en) Magnetic disk device
JPS60136984A (en) Magnetic disc device
JP2004079048A (en) Disk device having cooling structure and casing used for the same
JP2008310855A (en) Electronic device
JPS6129200A (en) Heat radiating system