JPS6282590A - Enclosed magnetic recorder - Google Patents

Enclosed magnetic recorder

Info

Publication number
JPS6282590A
JPS6282590A JP22174785A JP22174785A JPS6282590A JP S6282590 A JPS6282590 A JP S6282590A JP 22174785 A JP22174785 A JP 22174785A JP 22174785 A JP22174785 A JP 22174785A JP S6282590 A JPS6282590 A JP S6282590A
Authority
JP
Japan
Prior art keywords
container
temperature
refrigerant
magnetic disk
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22174785A
Other languages
Japanese (ja)
Inventor
Toshibumi Okubo
俊文 大久保
Koji Otani
大谷 幸司
Kenji Kogure
木暮 賢司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22174785A priority Critical patent/JPS6282590A/en
Publication of JPS6282590A publication Critical patent/JPS6282590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)

Abstract

PURPOSE:To obtain an enclosed magnetic recorder that can reduce heat off-track phenomena and deterioration of each part of recorder with high density and high reliability, by storing the primary component elements of the recorder such as a magnetic recording medium, a head, etc. into an enclosed container together with a refrigerant which is evaporated by the temperature on the inside of the container and then condensed by the temperature on the outside of the container. CONSTITUTION:A refrigerant 21 is evaporated by the temperature at the inside of a container 3 and then condensed by the temperature outside the container 3 in an active mode of an enclosed magnetic reproducing device. The container 3 containing the primary component elements of a magnetic disk device has an opening part 11 at the side of a base 1 and is attached to the base 1 with contact secured between an end face 13 at the side of the part 11 and a side face 1a of the base 1. The temperature on the inside of the container 3 rises up in response to the rise of the temperature of the magnetic disk device. Then the heat caused by the temperature rise is received by the liquid refrigerant 21 via an inner wall 17 of the container 3. Thus the refrigerant 21 is evaporated. In this case, the inside of the container 3 is cooled by the latent heat of evaporation and vaporization. This prevents the rise of temperature of the magnetic disk device.

Description

【発明の詳細な説明】 [発明の技術分野〕 この発明は機構各部が密閉容器に収納された密閉型磁気
記録装置の放熱特性を向上させる技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a technique for improving the heat dissipation characteristics of a sealed magnetic recording device in which each mechanical part is housed in a sealed container.

[発明の技術的背碩とその問題点] 一般に、磁気ディスク装置には、大容量、高密度化を達
成するため、気体軸受の原理を応用し磁気記録媒体(磁
気ディスク)上にサブミクロンオーダの隙間をもって電
磁変換用ヘッドを浮動させる浮動へラドスライダが用い
られている。この浮動へラドスライダは高速回転する磁
気ディスクと極めて微小なすきまを介して動作している
ため、浮上すきまへの僅かな塵埃の混入によってもヘッ
ドと磁気ディスクとが接触し、ヘッドが1Ω傷(ヘッド
クラッシュ)する危険性をはらんでおり、装置の信頼性
を確保する上から装置内部、特に磁気ディスク・ヘッド
周辺の気体をでき得る限り高清浄状態に保つことが要請
される。
[Technical background of the invention and its problems] In general, in magnetic disk drives, in order to achieve large capacity and high density, the principle of gas bearings is applied to magnetic recording media (magnetic disks) with submicron order. A floating RAD slider is used to float the electromagnetic conversion head with a gap of . Since this floating RAD slider operates through an extremely small gap between the magnetic disk that rotates at high speed, even a small amount of dust entering the flying gap can cause the head to come into contact with the magnetic disk, resulting in a 1Ω scratch on the head. Therefore, in order to ensure the reliability of the device, it is necessary to keep the gas inside the device, especially around the magnetic disk head, as clean as possible.

これを実現させるために従来では、第7図に示すように
磁気ディスク101、これの回転支持系103、ヘッド
およびヘッド支持系105、ヘッド位置決め+[107
等の磁気ディスク装置の主要構成要素を外部環境から容
器109にて完全に密閉すると共に、発塵の原因となる
軸受摺動部分を附性流体等を用いて完全にシールする構
造がとられている。
In order to realize this, conventionally, as shown in FIG.
A structure is adopted in which the main components of the magnetic disk drive, such as the There is.

ところでこのような密閉形磁気ディスク装置においては
、複数積層された磁気ディスク101が、伯の主要構成
要素とともに高密度に実装された狭い空間の中で300
 Orpmないしそれ以上の高速回転をしている。この
ため密閉形磁気ディスク装置は磁気ディスク101表面
と内部の気体との粘性摩擦(圧損)に起因する発熱によ
り、かなりの4度上昇を受けることになる。また高速ラ
ンダムシーク動作を行なうヘッド位置決め機構107の
駆動部、スピンドル駆動モータ(回転支持系103)か
らの発熱も装置の温度上昇を助長する。
By the way, in such a sealed magnetic disk device, a plurality of stacked magnetic disks 101 are packed together with the main components in a narrow space with a high density.
It rotates at a high speed of Orpm or higher. For this reason, the sealed magnetic disk device is subjected to a considerable temperature rise of 4 degrees due to heat generation caused by viscous friction (pressure loss) between the surface of the magnetic disk 101 and the internal gas. Furthermore, heat generated from the drive unit of the head positioning mechanism 107 and the spindle drive motor (rotation support system 103) that perform high-speed random seek operations also contributes to a rise in the temperature of the apparatus.

磁気ディスク装置の温度上昇は装置の各構成部品の劣化
を促進し装置寿命を縮めることは言うまでもないが、最
も問題となるのは各部品の温度上昇に伴う熱膨張あるい
は温度分布の不均一に伴う熱膨張差による磁気ディスク
101のトラックずれ(熱オフトラック)であり、これ
がトラック密度の向上、ひいては磁気ディスク装置の記
録密度の向上を阻害する要因となっていた。
It goes without saying that a rise in the temperature of a magnetic disk device accelerates the deterioration of each component of the device and shortens the life of the device, but the biggest problem is due to thermal expansion or uneven temperature distribution due to the rise in temperature of each component. This is the track deviation (thermal off-track) of the magnetic disk 101 due to the difference in thermal expansion, and this has been a factor that hinders improvement in track density and, by extension, in the recording density of magnetic disk devices.

ところが、上述した従来装置では、容器109は略完全
な密閉構造であるため、冷却はもっばら容器109の壁
を伝導する熱を容器109の外壁に設けたフィンを通過
する冷却空気に放熱するのがせいぜいであった。
However, in the above-mentioned conventional device, since the container 109 has a nearly completely sealed structure, cooling mainly involves dissipating the heat conducted through the walls of the container 109 to the cooling air passing through fins provided on the outer wall of the container 109. was at best.

第8図には装置内部から容器109の壁を通じて外気に
至るまでの温度降下状態を一点鎖線で示しているが、容
器109壁面と空気との界面での温度差がかなりあり、
ここでの熱抵抗が大ぎいことがわかる。特に、この温度
差は容器109内壁の界面の方が外壁の界面よりも比較
的小さくなっていることがわかる。
In FIG. 8, the temperature drop from the inside of the device to the outside air through the wall of the container 109 is shown by a dashed-dotted line, but there is a considerable temperature difference at the interface between the wall of the container 109 and the air.
It can be seen that the thermal resistance here is large. In particular, it can be seen that this temperature difference is relatively smaller at the interface of the inner wall of the container 109 than at the interface of the outer wall.

これは容器109内の気体が磁気ディスク101の高速
回転に伴って数十m/sとかなり高速の流れを形成して
いるため、容器109の内壁面と内部気体との間の熱の
授受が外壁部に比べ比較的容易に行なわれるのに対し、
容器109の外壁部での空気流速はせいぜい数IIl/
S以下と小さく、熱伝達特性が相対的に悪いためである
と考えられる。
This is because the gas inside the container 109 forms a fairly high-speed flow of several tens of m/s due to the high-speed rotation of the magnetic disk 101, so heat exchange between the inner wall surface of the container 109 and the internal gas is difficult. While it is relatively easy to do compared to the outer wall,
The air flow velocity at the outer wall of the container 109 is at most several IIl/
It is thought that this is because the heat transfer characteristics are relatively poor, being as small as S or less.

いずれにしろ従来の密閉型磁気ディスク装置においては
容器109表面と空気との界面での熱抵抗が装置の敢然
特性の向上を阻む主要因であることは間違いなく、上述
のような磁気ディスク101と内部の気体との風損を主
体とする装置の温度上界に起因する熱オフトラックを低
減し、高速アクセス・高密度の密閉型磁気ディスク装置
を実現するためには、別途にかなり大規模な冷却装置を
必要とするという欠点を有していた。
In any case, in a conventional sealed magnetic disk device, there is no doubt that the thermal resistance at the interface between the surface of the container 109 and the air is the main factor that prevents the device from improving its characteristics. In order to reduce the thermal off-track caused by the upper temperature limit of the device, which is mainly caused by wind damage with the internal gas, and to realize a high-speed access, high-density sealed magnetic disk device, a fairly large-scale installation is required. It had the disadvantage of requiring a cooling device.

[発明の目的] この発明はこのような従来の問題点に着目してなされた
ちので、放熱特性を向上させることによって、磁気記録
媒体とヘッドとの相対的移動に起因する」損を主要因と
する装置内部の温度上昇を抑制し、熱オフトラックの少
ない高記録密度・高速アクセスを実現し得る密閉型磁気
ディスク装置の提供を目的とする。
[Purpose of the Invention] This invention has been made by focusing on such conventional problems, and by improving the heat dissipation characteristics, it is possible to eliminate the loss caused by the relative movement between the magnetic recording medium and the head as the main cause. The purpose of the present invention is to provide a sealed magnetic disk device that can suppress the temperature rise inside the device and realize high recording density and high-speed access with little thermal off-track.

[発明の概要] この目的を達成するためにこの発明は、磁気記録媒体お
よびヘッド等の磁気記録装置の主要構成要素を密閉され
た容器内に収納し、この容器の壁内部に空間を設け、前
記磁気記録装置の作動状態での前記容器内部の温度をも
って蒸発し、かつ容器外部の温度をもって凝縮する冷媒
を前記空間内に封入してなる構成とした。
[Summary of the Invention] In order to achieve this object, the present invention stores main components of a magnetic recording device such as a magnetic recording medium and a head in a sealed container, and provides a space inside the wall of the container. The space is filled with a refrigerant that evaporates at the temperature inside the container and condenses at the temperature outside the container when the magnetic recording device is in operation.

[発明の作用] 磁気記録装置の作動により容器内の;8度は上昇する。[Action of the invention] The temperature inside the container rises by 8 degrees due to the operation of the magnetic recording device.

この温度上昇による熱を容器の壁内部空間に封入された
冷媒が、容器内壁を介して受けて蒸発し、このときの蒸
発気化潜熱により容器内部が冷却される。蒸発した冷媒
は容器外壁を介した外気により冷やされて熱を放出し凝
縮する。このような冷媒の蒸発、凝縮のサイクルの繰り
返しにより容器内の放熱が行なわれ、装置内の温度上界
が防止される。
The refrigerant sealed in the inner space of the wall of the container receives heat due to this temperature rise through the inner wall of the container and evaporates, and the latent heat of evaporation at this time cools the inside of the container. The evaporated refrigerant is cooled by the outside air through the outer wall of the container, releases heat, and condenses. By repeating such a cycle of evaporation and condensation of the refrigerant, heat is radiated within the container, and an upper limit of the temperature within the apparatus is prevented.

[実施例] 以下、この発明の詳細な説明する。[Example] The present invention will be explained in detail below.

第1図および第2図はこの発明の第1の実施例を示して
おり、これによりまずその構成を説明する。
FIG. 1 and FIG. 2 show a first embodiment of the present invention, and the structure thereof will be explained first.

第1図に示すベース1には第2図に斜視図として示しで
ある容器3が、容器内部5を密閉して装着されている。
A container 3, which is shown in a perspective view in FIG. 2, is attached to the base 1 shown in FIG. 1 with the container interior 5 sealed.

この容器内部5には複数積層された磁気ディスク(la
気記録媒体)7が収納され、磁気ディスク7はスピンド
ル9により回転支持され、更にスピンドル9はベース1
内の図示しない駆動モータにより駆動される。この駆動
モータおよびスピンドル9等で駆動機構を構成している
Inside the container 5, a plurality of laminated magnetic disks (la
The magnetic disk 7 is rotatably supported by a spindle 9, and the spindle 9 is further connected to the base 1.
It is driven by a drive motor (not shown) inside. This drive motor, spindle 9, etc. constitute a drive mechanism.

また、容器内部5には図示していないが従来技術として
説明した第7図と略同様な磁気ディスク7に対し情報の
記録・再生を司るヘッドおよびヘッド支持系ならびにヘ
ッドを磁気ディスク上の所定の位置に位置決めするヘッ
ド位置決め機構が収納されている。
Although not shown inside the container 5, a head and a head support system for recording and reproducing information on a magnetic disk 7, which is substantially similar to that shown in FIG. A head positioning mechanism for positioning the head is housed.

これら磁気ディスク装置の主要構成要素を密閉収納する
容器3は、ベース1側に開口部11をもち、この開口部
11側の端面13をベース1の側面1aに当接させてベ
ース1に装着しである。この容器3の上部および開口部
11と反対側の側部ならびに容器3の艮手方向両端側の
断面半円状の部位の各壁内に、各部分が互いに連通し外
壁15と内壁17および端面13に囲まれた密封された
空間19が設けられている。そして、ヒートパイプの原
理に基づき、磁気ディスク装置の作動状態での容器内部
5の温度をもって然発し、かつ容器外部の温度をもって
凝縮する冷媒が前記空間19内の容器上面側に達するま
で封入されている。この冷媒21は第1図に示すように
液体状態で空間19内の容器内部5側壁而23の全体に
接触し、上部に僅かの空間を有するように封入されてい
る。
The container 3 that seals and stores the main components of the magnetic disk drive has an opening 11 on the base 1 side, and is attached to the base 1 with the end surface 13 on the side of the opening 11 in contact with the side surface 1a of the base 1. It is. The upper part of the container 3, the side opposite to the opening 11, and the walls of the portion of the container 3 having a semicircular cross section on both end sides in the arm direction are in communication with each other, and the outer wall 15, the inner wall 17, and the end surface are connected to each other. A sealed space 19 surrounded by 13 is provided. Based on the principle of a heat pipe, a refrigerant that is spontaneously generated at the temperature inside the container 5 when the magnetic disk device is in operation and condenses at the temperature outside the container is sealed in the space 19 until it reaches the upper surface of the container. There is. As shown in FIG. 1, the refrigerant 21 is in a liquid state and is in contact with the entire side wall 23 of the container interior 5 in the space 19, and is sealed with a small space above.

更に、容器3の上面には放熱フィン25が複数取付けら
れている。この放熱フィン25は容器内部5の熱を受け
て蒸発した冷媒21の冷」効果を向上させるためのもの
である。
Further, a plurality of radiation fins 25 are attached to the upper surface of the container 3. The radiation fins 25 are for improving the cooling effect of the refrigerant 21 that has evaporated by receiving the heat inside the container 5.

このような放熱機構をもった密閉型磁気ディスク装置に
おいて、この装置が作動すると、磁気ディスク7の高速
回転に伴う磁気ディスク7の表面と気体(空気)との粘
性摩擦(風損)に起因する発熱、更には、高速ランダム
シーク動作を行なうヘッド位置決め機構(図示せず)の
駆動部ならびにスピンドル9の駆動モータからの発熱に
より磁気ディスク装置の温度が上昇する。
In a sealed magnetic disk device with such a heat dissipation mechanism, when the device is operated, the magnetic disk 7 is rotated at high speed, resulting in viscous friction (windage loss) between the surface of the magnetic disk 7 and the gas (air). The temperature of the magnetic disk device increases due to heat generation and further heat generation from the drive unit of the head positioning mechanism (not shown) that performs high-speed random seek operations and the drive motor of the spindle 9.

磁気ディスク装置の温度上昇により、容器内部5の温度
が上界し、この温度上界による熱を容器3の内壁17を
介して液状の冷媒21が受けて、冷媒21は蒸発する。
As the temperature of the magnetic disk device increases, the temperature inside the container 5 rises, and the liquid refrigerant 21 receives heat due to this temperature upper limit via the inner wall 17 of the container 3, and the refrigerant 21 evaporates.

このときの蒸発気化潜熱により容器内部5が冷却され、
磁気ディスク装置の温度上昇が抑制される。蒸発した冷
媒は空間19の上方側に集まり、放熱フィン25および
容器3の外壁15を介して外気により冷却され放熱して
凝縮し、再び液状となって空間19内の下部側へ滴下す
る。このような冷媒の蒸発・凝縮のサイクルを繰り返す
ことで、磁気ディスク装置内の放熱が効率良く行なわれ
る。
The interior of the container 5 is cooled by the latent heat of evaporation at this time,
Temperature rise in the magnetic disk device is suppressed. The evaporated refrigerant gathers at the upper side of the space 19, is cooled by the outside air through the radiation fins 25 and the outer wall 15 of the container 3, radiates heat, condenses, becomes liquid again, and drips to the lower side of the space 19. By repeating such a cycle of evaporation and condensation of the refrigerant, heat dissipation within the magnetic disk device is performed efficiently.

第3図は第2の実施例を示している。この実施例は空間
19内の容器内部5側壁面23の図中で左側面と上面と
に微細な網目状の部材27を設置すると共に、放熱フィ
ン25を容器3の上面がら側面下部にまで伸ばしたもの
で、冷媒21の旧は前述の実施例に比べて少なく容器3
の側壁下端に僅か届く程度である。
FIG. 3 shows a second embodiment. In this embodiment, a fine mesh member 27 is installed on the left side and top surface of the side wall surface 23 of the container interior 5 in the space 19, and radiation fins 25 are extended from the top surface of the container 3 to the bottom of the side surface. Therefore, the old refrigerant 21 was used in less container 3 than in the above-mentioned embodiment.
It barely reaches the bottom edge of the side wall.

このような構成にすると、冷媒21は毛細管現象により
網目状部材27と空間1つの容器内部5側壁面23との
間に拡がるため、冷媒21のωを少なくでき、かつ前述
の実施例と同様に容器3の内壁17全体に冷媒21が接
触するので吸熱効果も同等に維持できる。また、放熱フ
ィン25を取り付けた放熱部は容器3の上面に加え側面
にも設けられているので放熱特性の向上が前述の実施例
に比較して格段に向上する。その他の構成および作用は
前述の実施例と同様である。
With this configuration, the refrigerant 21 spreads between the mesh member 27 and the side wall surface 23 of the container interior 5, which has one space, due to capillary action, so that ω of the refrigerant 21 can be reduced, and the same effect as in the previous embodiment can be achieved. Since the refrigerant 21 comes into contact with the entire inner wall 17 of the container 3, the heat absorption effect can also be maintained at the same level. In addition, since the heat dissipation section to which the heat dissipation fins 25 are attached is provided not only on the top surface of the container 3 but also on the side surface thereof, the heat dissipation characteristics are significantly improved compared to the above-mentioned embodiments. Other configurations and operations are similar to those of the previous embodiment.

第4図および第5図は第3の実施例を示す。この実施例
では容器3を、まず金属の押し出し加工等により、容器
3の長手方向に複数の独立した空間19を有する板材と
して形成後、曲げ加工を行なって板材の端部同志の継目
を溶接し、更にベース1側の開口部11と反対側に側板
29を密閉状態にて装着し、空間1つ内に冷媒21を封
入したものである。その他の構成および作用は第1図。
FIGS. 4 and 5 show a third embodiment. In this embodiment, the container 3 is first formed as a plate material having a plurality of independent spaces 19 in the longitudinal direction of the container 3 by extruding metal, etc., and then bent and welded together at the ends of the plate material. Furthermore, a side plate 29 is attached in a sealed state to the side opposite to the opening 11 on the base 1 side, and a refrigerant 21 is sealed in one space. Other configurations and functions are shown in Figure 1.

第2図に示した第1の実施例と同様である。なお、第4
図では容器内部5の磁気ディスク等は省略しである。
This is similar to the first embodiment shown in FIG. In addition, the fourth
In the figure, the magnetic disk and the like inside the container 5 are omitted.

第6図は第4の実施例を示す容器3の上面部付近の断面
図である。この実施例は、容器3の外壁15全因にわた
って多数の溝31を環状に形成して容器3の壁内部の空
間とし、この溝31を覆う密封部材33を外壁15に全
周にわたって接合して密封部材33と外壁15との間に
冷媒21を封入している。なお、この実施例では放熱フ
ィン25の配列は前述の各実施例の配列方向と直交する
方向にしである。このような構成においては、容器3の
内壁17における熱抵抗は従来と変わらないが、従来の
容器を溝31を設けることでそのまま刊用でき、極めて
簡単な構成で容器3の外壁15での熱抵抗を低減させる
ことができる。
FIG. 6 is a sectional view of the vicinity of the upper surface of the container 3 showing the fourth embodiment. In this embodiment, a large number of grooves 31 are formed in an annular shape over the entire outer wall 15 of the container 3 to form a space inside the wall of the container 3, and a sealing member 33 covering the grooves 31 is joined to the outer wall 15 over the entire circumference. A refrigerant 21 is sealed between the sealing member 33 and the outer wall 15. In this embodiment, the radiation fins 25 are arranged in a direction perpendicular to the arrangement direction of each of the above-described embodiments. In such a configuration, the thermal resistance at the inner wall 17 of the container 3 is the same as before, but the conventional container can be used as is by providing the groove 31, and the heat resistance at the outer wall 15 of the container 3 can be reduced with an extremely simple configuration. Resistance can be reduced.

なお、前述の第2〜第4の実施例では、第1の実施例と
同一構成要素には同一符号を付して説明しである。
In the second to fourth embodiments described above, the same components as those in the first embodiment are given the same reference numerals and explained.

[発明の効果1 以上のようにこの発明によれば、密閉型磁気記録装置の
容器壁内部に設けた空間に冷媒を封入し、この冷媒の蒸
発・凝縮により容器内を冷却するようにしたため、別途
に大規模な冷却機構を設けることな〈従来のように単に
放熱フィンを容器外壁に取付けたものに比べて格段の放
熱特性の向上が得られ、熱オフトラック、および装置各
部の劣化の少ない高密度、高信頼性の密閉型磁気記録装
置を実現できる。
[Effect of the invention 1 As described above, according to the present invention, a refrigerant is sealed in the space provided inside the container wall of a closed magnetic recording device, and the inside of the container is cooled by the evaporation and condensation of this refrigerant. There is no need to install a separate large-scale cooling mechanism (compared to the conventional method in which heat dissipation fins are simply attached to the outer wall of the container), the heat dissipation characteristics are significantly improved, and there is less heat off-track and deterioration of various parts of the equipment. A high-density, highly reliable sealed magnetic recording device can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例の密閉型磁気ディスク
装置の断面図、第2図は第1図の装置における容器の斜
視図、第3図はこの発明の第2の実施例の第1図と同様
な断面図、第4図はこの発明の第3の実施例の第1図と
同様な断面図、第5図は第4図の装置における容器の斜
視図、第6図はこの発明の第4の実施例の容器上面付近
の断面図、第7図は従来の密閉型磁気ディスク装置の断
面図、第8図は第7図の装置での容器壁の装置内部側と
外部とでの温度変化を示す説明図である。 3・・・容器 7・・・磁気ディスク(磁気記録媒体)19・・・空間 21・・・冷媒 第3図
FIG. 1 is a sectional view of a sealed magnetic disk device according to a first embodiment of the present invention, FIG. 2 is a perspective view of a container in the device of FIG. 1, and FIG. FIG. 4 is a sectional view similar to FIG. 1, FIG. 4 is a sectional view similar to FIG. 1 of the third embodiment of the present invention, FIG. 5 is a perspective view of the container in the apparatus of FIG. 7 is a sectional view of a conventional sealed magnetic disk drive; FIG. 8 is a sectional view of the inside and outside of the container wall of the device shown in FIG. 7; FIG. 3... Container 7... Magnetic disk (magnetic recording medium) 19... Space 21... Refrigerant Figure 3

Claims (1)

【特許請求の範囲】[Claims] 磁気記録媒体およびこの磁気記録媒体に対し情報の記録
・再生を司るヘッドと、前記磁気記録媒体とヘッドとの
相対的移動を発生させる駆動機構と、前記ヘッドを磁気
記録媒体上の所定の位置に位置決めするヘッド位置決め
機構とを有し、それらを密閉された容器内に収納してな
る密閉型磁気記録装置において、前記密閉された容器の
壁内部に空間を設け、前記密閉型磁気記録装置の作動状
態での容器内部の温度をもつて蒸発し、かつ、容器外部
の温度をもつて凝縮する冷媒を前記空間内に封入したこ
とを特徴とする密閉型磁気記録装置。
A magnetic recording medium, a head for recording and reproducing information on the magnetic recording medium, a drive mechanism for generating relative movement between the magnetic recording medium and the head, and a drive mechanism for positioning the head at a predetermined position on the magnetic recording medium. In a closed magnetic recording device having a head positioning mechanism for positioning and storing the head positioning mechanism in a sealed container, a space is provided inside the wall of the sealed container, and the operation of the closed magnetic recording device is 1. A closed magnetic recording device characterized in that a refrigerant that evaporates at a temperature inside the container and condenses at a temperature outside the container is sealed in the space.
JP22174785A 1985-10-07 1985-10-07 Enclosed magnetic recorder Pending JPS6282590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22174785A JPS6282590A (en) 1985-10-07 1985-10-07 Enclosed magnetic recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22174785A JPS6282590A (en) 1985-10-07 1985-10-07 Enclosed magnetic recorder

Publications (1)

Publication Number Publication Date
JPS6282590A true JPS6282590A (en) 1987-04-16

Family

ID=16771586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22174785A Pending JPS6282590A (en) 1985-10-07 1985-10-07 Enclosed magnetic recorder

Country Status (1)

Country Link
JP (1) JPS6282590A (en)

Similar Documents

Publication Publication Date Title
US4488192A (en) Cooling arrangement for hermetically sealed disk files
US6528909B1 (en) Motor shaft having an integral heat pipe
US20060026610A1 (en) Optical disk apparatus
JPH02130789A (en) Magnetic data recording device and method
JPS6271078A (en) Hermetic magnetic disc device
JPS6282590A (en) Enclosed magnetic recorder
JPH04307440A (en) Optical disk
JPS6282591A (en) Enclosed magnetic recorder
JPS5845112B2 (en) magnetic disk device
JPS6059660B2 (en) magnetic disk storage device
JPS60136984A (en) Magnetic disc device
JPS6057154B2 (en) disk pack
JPS61216175A (en) Magnetic disk memory device
JP2752830B2 (en) Magnetic disk drive
JPS59101077A (en) Magnetic disc storage device
JPS61233488A (en) Magnetic disc storage device
JPS59218668A (en) Magnetic disk device
JPS6260748B2 (en)
JPS61162875A (en) Magnetic disk device
JPS60133585A (en) Driving device of magnetic disc
JPH03100987A (en) Magnetic disk device
JP2004079048A (en) Disk device having cooling structure and casing used for the same
JPH0877527A (en) Information recording and reproducing disk device
KR100618976B1 (en) Heat sinking apparatus for hard disk drive
JPH0474358A (en) Magnetic disk device