JPS6281508A - Optical 3-dimensional position measuring apparatus - Google Patents

Optical 3-dimensional position measuring apparatus

Info

Publication number
JPS6281508A
JPS6281508A JP22219785A JP22219785A JPS6281508A JP S6281508 A JPS6281508 A JP S6281508A JP 22219785 A JP22219785 A JP 22219785A JP 22219785 A JP22219785 A JP 22219785A JP S6281508 A JPS6281508 A JP S6281508A
Authority
JP
Japan
Prior art keywords
optical
light
light source
dimensional position
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22219785A
Other languages
Japanese (ja)
Inventor
Gohei Iijima
飯島 剛平
Sumihiro Ueda
上田 澄広
Masaaki Hirayama
平山 真明
Yasuo Nakano
康夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP22219785A priority Critical patent/JPS6281508A/en
Publication of JPS6281508A publication Critical patent/JPS6281508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To make a measuring action undisturbed by an action, etc. of a specimen, by measuring a 3-dimensional position of a space travelling body by an optically non-contacting method. CONSTITUTION:A light receiving element 14 representing an image of a light source 5 draws out a signal indicating the image position and provides it to an arithmetic operation means 8. The means 8, based upon this signal, allows an action of a supporting means that supports an optical detector 17 (2-dimensional position detector) free to displace respectively with respect to mutually intersecting 2 axes and drives the optical detecting means 17 and an image of the source 5 is developed in the specified position of a light receiving plane 19. This displacement is detected as a position on the 2 above mentioned shafts by the position detecting means 17. Signals representing each position on 2 above-mentioned axes from the position detecting means 14 is given to the means 8, where an arithmetic operation is conducted on a signal from light receiving element 14 and position detecting means 17 and a 3-dimensional position of the light source 5 is calculated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、たとえばロボットの腕などのように、空間を
^速度で移動する被測定物体などの3次元位置を追尾し
ながら計測する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for tracking and measuring the three-dimensional position of an object to be measured, such as a robot arm, which moves at a high speed in space.

背景技術 従来、空間を移動する物体たとえばロボットの腕などの
3次元位置の計測装置としては、■各間節部に取付けな
回松角度検出器の出力値から座標変換演算して求める計
測装置。
BACKGROUND ART Conventionally, as a measuring device for the three-dimensional position of an object moving in space, such as a robot's arm, there is a measuring device that calculates the three-dimensional position of an object that moves in space by performing coordinate transformation calculations from the output values of a circular angle detector attached to each internodal portion.

■被測定箇所に直接に、直動式ポテンショメータを3方
向からあてがって計測する計測装置。
■Measuring device that measures by directly applying a direct-acting potentiometer to the point to be measured from three directions.

■被測定箇所に発光ダイオードを貼り付け、その光を2
次元光点位置検出器を内蔵したカメラ2台で2方向から
観測し、3角測量の原理に基づいて計測する計測装置な
どがある。
■Attach a light emitting diode to the area to be measured and transmit the light to the
There is a measurement device that observes from two directions using two cameras with built-in dimensional light spot position detectors and performs measurements based on the principle of triangulation.

発明が解決しようとする問題点 上述したような従来技術の各計測装置では、以下のよう
な欠点がある。
Problems to be Solved by the Invention Each of the conventional measuring devices described above has the following drawbacks.

計測装置■は、間接的な計算により求めているので、ロ
ボット腕部のたわ菰や関節間距離の誤差などにより、計
算結果の信頼性が低い、計測装−■は直接的に計測でき
る利点はあるが、測距範囲が比較的短く、また接触式で
あるため被測定物に負荷を与えるとともに、治i4−設
定のわずられしさがあり不便である。計測装置■は非接
触で計測できるが、2台のカメラを固定して設置してい
るので、被測定物がカメラの視野からはずれると計測で
きず、測距範囲が比較的狭い。
Measurement device ■ uses indirect calculations, so the reliability of the calculation results is low due to errors in the robot arm's height and distance between joints.Measuring device -■ has the advantage of being able to measure directly. However, the distance measurement range is relatively short, and since it is a contact type, it puts a load on the object to be measured and is inconvenient because the settings are complicated. Measuring device (2) can perform non-contact measurements, but since it has two fixed cameras, it cannot be measured if the object to be measured is out of the camera's field of view, and the distance measurement range is relatively narrow.

本発明の目的は、上述の問題点を解決し、空間を移動す
る物体の3次元位置を、非接触で広範囲に亘り、高精度
に計測できる装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide an apparatus that can measure the three-dimensional position of an object moving in space over a wide range in a non-contact manner with high precision.

問題点を解決するための手段 本発明は、被測定物体に取付けられる光源と、光学的検
出手段であって、 光源の像が結像され、結像位置を表す信号を導出する2
次元の受光素子と、 受光素子と一体的に設けられ、光源の像を受光素子の受
光面に結像する光学系とを含むそのような光学的検出手
段と、 光学的検出手段を相互に交差する2紬に関してそれぞれ
変位可能に支持する手段と、 光学的検出手段の前記2軸上の各位置を検出する手段と
、 受光素子の出力信号に基づいて、前記支持手段によって
光学的検出手段を駆動して、前記光源の像を受光面の予
め定めた位置に結像させる第1演算手段と、 受光素子と位置検出手段との出力によって光源の3次元
の位置を演算する第2演算手段とを含むことを特徴とす
る光学式3次元位置計測装置である。
Means for Solving the Problems The present invention provides a light source attached to an object to be measured and an optical detection means, wherein an image of the light source is formed and a signal representing the imaged position is derived.
such an optical detection means including a dimensional light-receiving element, an optical system that is provided integrally with the light-receiving element and forms an image of the light source on the light-receiving surface of the light-receiving element; means for movably supporting the two pongees to be moved; means for detecting each position of the optical detection means on the two axes; and driving the optical detection means by the support means based on the output signal of the light receiving element. a first calculating means for forming an image of the light source on a predetermined position on a light receiving surface; and a second calculating means for calculating a three-dimensional position of the light source based on the outputs of the light receiving element and the position detecting means. An optical three-dimensional position measuring device is characterized in that it includes:

作  用 被測定物体に取付けられている光源からの光は、光学的
検出手段の光学系を介して、受光素子の受光面に結像す
る。光源の像が結像した受光素子は、結像位置を表わす
信号を導出し、第1演算手段おより第2演算手段に与え
る。第1演算手段はこの信号に基づいて、前記光学的検
出手段を相互に交差する2輪に関してそれぞれ変位可能
に支持する支持手段を動作させ、光学的検出手段を駆動
して前記光源の像を、受光面の予め定めた位置に結像さ
せるようにする。この変位は、位置検出手段によって、
前記2輪上の位置として検出される。この位置検出手段
からの前記2輪上の各位置を表わす信号は、第2演算手
段に与えられる。第2演算手段は、受光素子と位置検出
手段からの信号を演算処理し、光源の3次元の位置を算
出する。
Operation Light from a light source attached to the object to be measured forms an image on the light-receiving surface of the light-receiving element via the optical system of the optical detection means. The light-receiving element on which the image of the light source is formed derives a signal representing the image-forming position and supplies it to the first calculation means and the second calculation means. Based on this signal, the first calculation means operates supporting means that displaceably supports the optical detection means with respect to two mutually intersecting wheels, and drives the optical detection means to detect the image of the light source. The image is formed at a predetermined position on the light receiving surface. This displacement is detected by the position detection means.
It is detected as a position above the two wheels. Signals representing each position on the two wheels from the position detection means are given to the second calculation means. The second calculation means calculates the three-dimensional position of the light source by processing the signals from the light receiving element and the position detection means.

したがって本発明に成る位置計測装置は、被測定物体の
3次元位置を、被測定物体と接触することなく測定し、
またこの測定動作は被測定物体を追尾して行なわれる。
Therefore, the position measuring device according to the present invention measures the three-dimensional position of an object to be measured without contacting the object to be measured,
Further, this measurement operation is performed by tracking the object to be measured.

したがってこのような測定動作は、被測定物体がおかれ
る空間において比較的広範囲に亘り可能であり、また被
測定物体の運動などに関して阻害要因とならないので、
計測の正確さを期すことができる。また受光素子と位置
検出手段との検出性能を向上することによって、計測さ
れる被測定物体の3次元位置の測定精度を、格段に向上
することができる。
Therefore, such a measurement operation can be performed over a relatively wide range in the space in which the object to be measured is placed, and does not cause any impediments to the movement of the object to be measured.
Accuracy of measurement can be ensured. Furthermore, by improving the detection performance of the light receiving element and the position detecting means, the accuracy of measuring the three-dimensional position of the object to be measured can be significantly improved.

実施例 第1図は本発明の一実施例の構成を説明する系統図であ
る。第1図を参照して、光学式3次元位置計測装置(以
下計測装置と略称する)1、およびこれに関連する構成
について説明する。被測定物体であり空間を高速度で移
動するロボット2の腕3などの測定箇所4に、たとえば
発光ダイオードなどによって実現される光源5を取付け
る。
Embodiment FIG. 1 is a system diagram illustrating the configuration of an embodiment of the present invention. With reference to FIG. 1, an optical three-dimensional position measuring device (hereinafter abbreviated as measuring device) 1 and its related configuration will be described. A light source 5 realized by, for example, a light emitting diode is attached to a measurement point 4 such as an arm 3 of a robot 2 which is an object to be measured and moves at high speed in space.

ロボット2から離れた位置に、光学的検出手段であるた
とえば2台の光学装置6.7を設置する。
For example, two optical devices 6.7, which are optical detection means, are installed at a distance from the robot 2.

光学装置6,7の出力は、第2演算手段である演算装置
8に与えられ、後述されるように光源5の3次元位置を
算出する。
The outputs of the optical devices 6 and 7 are given to a calculation device 8, which is a second calculation means, and calculates the three-dimensional position of the light source 5, as will be described later.

第2図は光学装置6の簡略化した斜視図である。FIG. 2 is a simplified perspective view of the optical device 6.

光学*1fi6は旋回軸9と俯仰軸10の2軸がら成る
いわゆるジンバル構造を有する。すなわち旋回軸9は、
モータ11によって矢符Al、A2方向に角変位され、
旋回軸9に一体的に結合される枠体12に、角変位自在
に俯仰軸10が設けられる。
The optical *1fi6 has a so-called gimbal structure consisting of two axes, a rotation axis 9 and an elevation axis 10. In other words, the pivot axis 9 is
Angularly displaced in the direction of arrows Al and A2 by the motor 11,
An elevation shaft 10 is provided on a frame 12 that is integrally connected to the rotation shaft 9 so as to be freely angularly displaceable.

枠体12は、相互に直交する横支持部材36,37と縦
支持部材38.39とを含み、大略的に長方形状に構成
される。また旋回軸9は縦支持部材38.39と平行で
、横支持部材3f3,37の中点に結合され、俯仰軸1
0は、横支持部材36,37と平行で、縦支持部材38
.39の中点に角変位自在に結合される。俯仰軸10が
、モータ13によって矢符A3.A4方向に角変位され
ると、俯仰軸10に固定された光学筒14も、矢符A3
゜A4方向に角変位する。したがって光学筒14の細線
は、任意の方向を指すことができる。
The frame 12 includes mutually orthogonal lateral support members 36, 37 and longitudinal support members 38, 39, and is generally rectangular in shape. Further, the rotation axis 9 is parallel to the vertical support members 38, 39, and is connected to the midpoint of the horizontal support members 3f3, 37, and the elevation axis 1
0 is parallel to the horizontal support members 36 and 37 and is parallel to the vertical support member 38
.. 39 so as to be freely angularly displaceable. The elevation axis 10 is moved by the motor 13 to the arrow A3. When angularly displaced in the A4 direction, the optical tube 14 fixed to the elevation axis 10 also moves in the direction of arrow A3.
Angular displacement in the A4 direction. Therefore, the thin line of the optical barrel 14 can point in any direction.

またモータ11.13による旋回軸9および俯仰軸10
の矢符A 1 、A 2 :A 3 、A 4  方向
の角変位量θ、、θI2は、たとえばエンコーダ゛など
によって実現される位置検出手段である回松角検出器1
5.16によって、高精度で検出される。
Also, a rotation axis 9 and an elevation axis 10 by motors 11 and 13.
The angular displacements θ, θI2 in the directions of the arrows A 1 , A 2 :A 3 , A 4 are determined by the angle detector 1, which is a position detecting means realized by, for example, an encoder.
5.16, it is detected with high accuracy.

第3図は光学筒14の斜視図である。光学筒14は、受
光素子であり後述されるような具体的構成を有する2次
元位置検出器17を内蔵し、光学系であるレンズ18は
2次元位置検出器17の受光面19上に、外部からの光
A5を集光する。
FIG. 3 is a perspective view of the optical barrel 14. The optical tube 14 incorporates a two-dimensional position detector 17, which is a light-receiving element and has a specific configuration as will be described later, and a lens 18, which is an optical system, is placed on the light-receiving surface 19 of the two-dimensional position detector 17. Collects the light A5 from the

上述したような光学装置6に関する構成は、第1図に示
す光学装置7においても同様であり、光学装置7に言及
する必要がある場合には、光学装置6の構成を説明する
場合に用いた参照符9〜19に、添字aを付して示す、
モータ11a、13gによる旋回軸9aおよゾ俯仰輸1
0aの角変位量θ2.。
The configuration regarding the optical device 6 as described above is the same in the optical device 7 shown in FIG. Reference numbers 9 to 19 are shown with a subscript a,
Rotating shaft 9a and elevation 1 by motors 11a and 13g
Angular displacement amount θ2 of 0a. .

O22は、やはりエンコーダなどによって実現される位
置検出手段である回献角検出器15a=16aによって
、高精度で検出される。これらの旋回軸9.9aおよび
俯仰軸10=10aを含んで、支持手段が構成される1
回転角検出器15,16;15a。
O22 is detected with high precision by a rotation angle detector 15a=16a which is also a position detection means realized by an encoder or the like. The support means is constituted by including the pivot axis 9.9a and the elevation axis 10=10a.
Rotation angle detectors 15, 16; 15a.

16aが位置検出手段を構成する。16a constitutes a position detection means.

第4図は本発明の詳細な説明する斜視図である。FIG. 4 is a perspective view illustrating the present invention in detail.

#S2図および@4図を参照して、本発明の原理につい
て説明する。光学装置6の光軸21は、前述したような
ノンパル構造として実現される旋回軸9および俯仰軸1
0の軸線の交点R1を通るように構成される。また光学
装置17の光軸22は、やはリシンパル構造を成す旋回
軸9aおよび俯仰軸10aの軸線の交点R2を通るよう
に構成される。
The principle of the present invention will be explained with reference to Figure #S2 and Figure @4. The optical axis 21 of the optical device 6 includes the rotation axis 9 and the elevation axis 1 which are realized as a non-pulsating structure as described above.
It is configured to pass through the intersection point R1 of the zero axes. The optical axis 22 of the optical device 17 is configured to pass through the intersection R2 of the axes of the rotation axis 9a and the elevation axis 10a, which also form a resympal structure.

すなわちこれらの光学装置6.7に関して、相互に直交
するX紬、Y袖、Z袖から成る絶対座標系Σ。を設定す
る。この絶対座標系Σ。は、X輪が光学装置6の前記交
点R7と光学装置7の前記交点R2とを通り、Z軸が旋
回軸9,9&と平行であるように設定される。また俯仰
軸10,10aは、X−Y平面内にある。
That is, regarding these optical devices 6.7, an absolute coordinate system Σ consisting of mutually orthogonal X-sleeves, Y-sleeves, and Z-sleeves. Set. This absolute coordinate system Σ. is set so that the X wheel passes through the intersection R7 of the optical device 6 and the intersection R2 of the optical device 7, and the Z axis is parallel to the rotation axes 9, 9&. Further, the elevation axes 10 and 10a are within the XY plane.

光学装置6に内蔵されている2次元位置検出器17に関
して、相互に直交する3本の座標軸Xc。
Regarding the two-dimensional position detector 17 built into the optical device 6, three coordinate axes Xc are orthogonal to each other.

軸、Yel軸、Zc、紬から成るカメラ座標系ΣC1を
設定する。このカメラ座標系ΣC1は、Ycl軸が光軸
21上にあり、Xel軸が俯仰軸10と平行であり、Z
cl軸が旋回軸9と平行であるように設定される。また
前記光軸21は、2次元位置検出器17の中心を通り、
この光軸21と受光面19とは垂直である。
A camera coordinate system ΣC1 consisting of the Yel axis, the Zc axis, and the Tsumugi axis is set. In this camera coordinate system ΣC1, the Ycl axis is on the optical axis 21, the Xel axis is parallel to the elevation axis 10, and the Z
The cl axis is set to be parallel to the pivot axis 9. Further, the optical axis 21 passes through the center of the two-dimensional position detector 17,
This optical axis 21 and the light receiving surface 19 are perpendicular.

光学装置7に関しても、2次元位置検出器17aに関し
て相互に直交する3本の座標軸Xez輪、YO2輪、Z
c2軸から成るカメラ座標系ΣC2を設定する。このカ
メラ座標系ΣC2は、YO2輪が前記光軸22上にあり
、Xcz紬が俯仰軸10&と平行で、Zcz輪が旋回軸
9aと平行であるように設定される。また前記光軸22
は、2次元位置検出器17aの受光面19aの中心を通
り、受光面19mと垂直である。ここで、光学装置6の
レンズ18の主、T:F、をO8とし、光学装置7のレ
ンズ18aの主点を0□とする。
Regarding the optical device 7, three mutually orthogonal coordinate axes Xez wheel, YO2 wheel, and Z
A camera coordinate system ΣC2 consisting of c2 axes is set. This camera coordinate system ΣC2 is set so that the YO2 wheel is on the optical axis 22, the Xcz ring is parallel to the elevation axis 10&, and the Zcz wheel is parallel to the rotation axis 9a. Also, the optical axis 22
passes through the center of the light receiving surface 19a of the two-dimensional position detector 17a and is perpendicular to the light receiving surface 19m. Here, the principal point, T:F, of the lens 18 of the optical device 6 is assumed to be O8, and the principal point of the lens 18a of the optical device 7 is assumed to be 0□.

上述したような構成を有する光学IW16.?において
、光源5を絶対座標系Σ。における点Pにおき、これら
の座標成分(xwy*z)を算出する操作を、以下に説
明する。光源5による2次元位置検出器17.17a上
の結像位置Q、、Q2は、点Pと主点0+=Ozをそれ
ぞれ通る仮想直線と受光面19.19aとの交点である
Optical IW 16. having the configuration as described above. ? , the light source 5 is in the absolute coordinate system Σ. The operation of calculating these coordinate components (xwy*z) at point P in will be described below. The imaging positions Q, Q2 on the two-dimensional position detector 17.17a by the light source 5 are the intersections of the light-receiving surface 19.19a and the virtual straight line passing through the point P and the principal point 0+=Oz, respectively.

ここで3点P 、O、、Q 、は同一直線上にあるので
、 0 +P =ko +Q +            
   ・・・(1)が成り立つ、変形すると、 OP   00 + = k O+ Q +     
    ・・・(2)(OP −ORl) −(OO+
−OR、)= k O+ Q +・・・(3) (OP−OR,)−RIO,=kO,Q+  ・・・(
4)となる、ここで、カメラ座標系ΣC9を用いて、第
4式の左辺第2項と右辺とを表せば、 OP−OR+−T+a+=kT+b+   ・・・(s
 )ただし、 OP =[xtFvZ]    :絶対座標系 ・(6
)OR+= [D 110 to ]’:絶対座標系 
・・・(7)a、=EO,ΔF+eO]  :カメラ座
標系、、・(8)b+= [Hre  F +vV +
] ;7> / ラ座標系−(9)T。
Here, the three points P, O, and Q are on the same straight line, so 0 + P = ko + Q +
...(1) holds; when transformed, OP 00 + = k O+ Q +
...(2)(OP -ORl) -(OO+
-OR,)=k O+ Q+...(3) (OP-OR,)-RIO,=kO,Q+...(
4) Here, if we use the camera coordinate system ΣC9 to express the second term on the left side and the right side of Equation 4, we get OP-OR+-T+a+=kT+b+...(s
) However, OP = [xtFvZ]: Absolute coordinate system (6
)OR+= [D 110 to ]': Absolute coordinate system
... (7) a, = EO, ΔF + eO]: Camera coordinate system, ... (8) b + = [Hre F +vV +
];7>/La coordinate system-(9)T.

・・・(10) ;カメラ座標系ΣC1から絶対座標系Σ。への変換行列 F、   ;光学装置6の主点O8と交点R。...(10) ; From camera coordinate system ΣC1 to absolute coordinate system Σ. transformation matrix to F, ; Intersection R with the principal point O8 of the optical device 6.

との距離 ΔF、  ;光学装置6の主点01と受光面19との距
離 ここで変位角θ1.に関する基準状態は、光軸21がY
軸と平行の場合であり、第4図の矢符方向を正の変位方
向とする。変位角θI2に関する基準状態は、光軸21
がX−Y平面上にある場合であり、第4図の矢符方向を
正の変位方向とする。
Distance between the principal point 01 of the optical device 6 and the light-receiving surface 19 ΔF, where the displacement angle θ1. The reference state for this is that the optical axis 21 is Y
This is the case when the displacement is parallel to the axis, and the direction of the arrow in FIG. 4 is taken as the positive displacement direction. The reference state regarding the displacement angle θI2 is the optical axis 21
is on the XY plane, and the direction of the arrow in FIG. 4 is taken as the positive displacement direction.

3点P−02−Q2も、同一直線上にあるので、同様に
、 0P−OR2−Ta、=kTb2   ・・・(11)
ただし、 o p = [x*ytzl          −(
12)OR2= [D t、Oto ]L      
・・・(13)a2°[0!ΔF、、01’     
  −(14)bz= [)(z*−F 21V 2]
t”’ (15)■よ ・・・(16) ;カメラ座標系ΣC2から絶対座標系Σ。への変換行列 F2  ;光学装置7の主点0□と交点R2との距離 ΔF1 ;光学装置7の主点0□と受光面19aとの距
離 である、ここで変位角θ2.に関する基準状態は、光軸
22がY軸と平行の場合であり、第4図の矢符方向を正
の変位方向とする。変位角θ22に関する基準状態は、
光軸22がX−Y平面上にある場合であり、#44図の
矢符方向を正の変位方向とする。
Since the three points P-02-Q2 are also on the same straight line, similarly, 0P-OR2-Ta,=kTb2...(11)
However, op = [x*ytzl −(
12) OR2= [D t, Oto ]L
...(13) a2°[0! ΔF,,01'
-(14)bz= [)(z*-F 21V 2]
t"' (15) ■... (16); Transformation matrix F2 from camera coordinate system ΣC2 to absolute coordinate system Σ.; Distance ΔF1 between principal point 0□ of optical device 7 and intersection R2; Optical device 7 The reference state for the displacement angle θ2, which is the distance between the principal point 0□ and the light-receiving surface 19a, is when the optical axis 22 is parallel to the Y-axis, and the direction of the arrow in FIG. The reference state regarding the displacement angle θ22 is
This is a case where the optical axis 22 is on the XY plane, and the direction of the arrow in figure #44 is taken as the positive displacement direction.

ここで、第5式から、 x−B + = kA +          ”” 
(17)y−B 、=kA 2          ・
・・(18)z−B −= kA s        
  ”’ (19)・・・(20) ただし、 AI  = 609  θ 目 H,+sin  θ 
1leO3θ 12F  l  +  sinθ11s
inθ、、V、          ・ (21)A2
=sinθ++H+ −C09θ目eosθ+zFI=
cosθ目sinθ目V言      ・・・(22)
A、=         −5inθ 12FI   
    +cosθ 鵞2V、           
                、  (23)B、
=D        −5inθ l、eO8θ 12
ΔF1・・・(24) 13、==           cose lIC0
5012ΔF。
Here, from the fifth equation, x-B + = kA + ""
(17)y-B,=kA2・
...(18)z−B −= kA s
”' (19)...(20) However, AI = 609 θth H, +sin θ
1leO3θ 12F l + sinθ11s
inθ,,V, ・(21)A2
= sinθ++H+ −C09thθ eosθ+zFI=
Cos θ eye sin θ eye V word...(22)
A, = -5inθ 12FI
+cosθ Goose 2V,
, (23)B,
=D −5inθ l, eO8θ 12
ΔF1...(24) 13, == cose lIC0
5012ΔF.

・・・(25) 13 、=                 sin
θ12ΔF。
...(25) 13, = sin
θ12ΔF.

・・・(26) また第11式から、 x  B 、= kA −・= (27)y−BS=k
A5          ・・・(28)z  B s
= kA s          −(29)・・・(
30) ただし、 A 、= cose t+ H2+ sinθ21eo
sθ12F2+sinθ 21sinθ 2□■2  
         ・・・(31)A 5=sinθ 
z+Ht−eosθ 21cO9θ 22F2   e
O8θ 21g!nθ zzV t         
   −(32)A、=       −5inθz2
Fz+eosθ22■2−・・(33) B4=   D2    −5inθ 2+cos19
 22ΔF2・・・(34) 13s=           eoliθ 21co
sθ 22ΔF2・・・(35) B a=           sinθ 22ΔF2
  ・ (36)#&20式と第30式を達文させて解
くと、A、B2+A、AiB4−A、A4Bり・・・(
37) 十A 、A 、B 2+ A zA sB 4− A 
2A 、B S・・・(38) + A 4(B 2− B S)]+ 83     
・・・(39)を得る。
...(26) Also, from the 11th equation, x B , = kA −・= (27) y−BS=k
A5...(28)z B s
= kA s - (29)...(
30) However, A, = cose t+ H2+ sinθ21eo
sθ12F2+sinθ 21sinθ 2□■2
...(31)A5=sinθ
z+Ht-eosθ 21cO9θ 22F2 e
O8θ 21g! nθ zzV t
−(32)A, = −5inθz2
Fz+eosθ22■2-...(33) B4=D2-5inθ2+cos19
22ΔF2...(34) 13s= eoliθ 21co
sθ 22ΔF2...(35) B a= sinθ 22ΔF2
・ (36) #& When formula 20 and formula 30 are completed and solved, A, B2+A, AiB4-A, A4Bri...(
37) 10A, A, B 2+ A zA sB 4- A
2A, BS...(38) + A 4 (B 2 - BS)] + 83
...(39) is obtained.

第5図は本発明の全体の構成を示すブロック図である。FIG. 5 is a block diagram showing the overall configuration of the present invention.

2次元位置検出器17は、対を成す2岨の電極23,2
4; 25.2Gを含むたとえばホトダイオードとして
実現される。また2次元位置検出器17aも、やはり対
を成す2組の電極27,28:29,30を含むやはり
ホトダイオードとして実現される。ここで2次元位置検
出器17の結像位置Q1に結像した光源5(第1図参照
)からの入射光によって発生した電流は、電極23,2
4:25.26にそれぞれ分割され、それぞれ電流Il
l〜I 14として導出される。各電極23〜26の各
電流出力112〜r+<は、第2演算手段であり、たと
えばマイクロコンピュータなどによって実現される処理
回路31に与えられる。
The two-dimensional position detector 17 has two electrodes 23, 2 that form a pair.
4; realized as a photodiode, for example, containing 25.2G. The two-dimensional position detector 17a is also realized as a photodiode including two pairs of electrodes 27, 28: 29, 30. Here, the current generated by the incident light from the light source 5 (see FIG. 1) focused on the imaging position Q1 of the two-dimensional position detector 17 is transmitted to the electrodes 23 and 2.
4:25.26, respectively, and the current Il
It is derived as l~I14. The current outputs 112 to r+< of the electrodes 23 to 26 are provided to a processing circuit 31, which is a second calculation means and is realized by, for example, a microcomputer.

ここで前記結像位置Q1の座標(H,、Vl)は、下記
の第40式お上V第41式によって求められる。
Here, the coordinates (H, , Vl) of the imaging position Q1 are determined by the following equations 40 and 41.

上記第40式および$41式の演算は、たとえばマイク
ロコンピュータなどによって実現される処理回路31に
よって演算され、モータ駆動回路32.33と第2演算
手段である演算i置8に入力される。モータ駆動回路3
2.33は、前記結像位置Q1の座標値(H,、V、)
を、それぞれ零にする方向に、すなわち結像位置Q1に
向けてカメラ座標Σc1の原点が移動するようにモータ
11,13を駆動し、旋回軸9および俯仰軸10を回転
させる。この回転角θ93.θ1□は、回転角検出器1
5.16によってそれぞれ検出され、演算装置8に入力
される。
The above equations 40 and 41 are calculated by the processing circuit 31 realized by, for example, a microcomputer, and inputted to the motor drive circuit 32, 33 and the calculation i-8 which is the second calculation means. Motor drive circuit 3
2.33 is the coordinate value (H,,V,) of the imaging position Q1
The motors 11 and 13 are driven to rotate the rotation axis 9 and the elevation axis 10 so that the origin of the camera coordinate Σc1 moves in a direction to make each zero, that is, toward the imaging position Q1. This rotation angle θ93. θ1□ is rotation angle detector 1
5.16 and input to the arithmetic unit 8.

一方、2次元位置検出器17aも同様の動作を行ない、
各電極27,28: 29,30からの出力電流工2□
〜I24が、処理回路31に出力され、この電流値に対
応して、2次元位置検出器17に入射した光源5(第1
図参照)からの入射光の結像位!Q2の座標(I2.V
l)を表す信号が、処理回路31からモータ駆動回路3
4.35および演算装W18に与えられる。モータ駆動
回路34.35は、前述のモータ駆動回路32.33の
動作と同様な動作を行なう、〔たがって旋回軸9aおよ
び俯仰軸10aの回転角検出器15a、16aによって
検出された回転角を、それぞれθ21.θ2□とする。
On the other hand, the two-dimensional position detector 17a also performs the same operation,
Each electrode 27, 28: Output current from 29, 30 2□
~I24 is output to the processing circuit 31, and corresponding to this current value, the light source 5 (first
Image formation position of incident light from (see figure)! Coordinates of Q2 (I2.V
A signal representing l) is sent from the processing circuit 31 to the motor drive circuit 3.
4.35 and arithmetic unit W18. The motor drive circuits 34.35 perform operations similar to those of the motor drive circuits 32.33 described above [therefore, the rotation angles detected by the rotation angle detectors 15a, 16a of the rotation axis 9a and the elevation axis 10a are , respectively θ21. Let θ2□.

これらの信号も、やはり演算装置8に与えられる。These signals are also given to the arithmetic unit 8.

演算装g1Bでは、前記結像位置Q2の座標(I2゜V
z)を前記第40式および#41式において、変数I 
II〜T I4をそれぞれ変数■2□〜rz<に置き換
えた式によって算出する。したがって演算装置8は、前
記第37式〜第39式、第40式および第41式に基づ
いて、デー P HITV l?H2IV 21190
雷θ12.θ2..θ2□から、光源5の座標(X+F
eZ)を算出することができる。
In the computing device g1B, the coordinates (I2°V
z) in the 40th formula and #41 formula, the variable I
Calculate by formulas in which II to T I4 are replaced with variables ■2□ to rz<, respectively. Therefore, the arithmetic unit 8 calculates the data PHITV l? based on the 37th to 39th equations, the 40th equation, and the 41st equation. H2IV 21190
Lightning θ12. θ2. .. From θ2□, the coordinates of light source 5 (X+F
eZ) can be calculated.

この算出動作は、結像位置Qlt Q2が、受光面19
.19aの中心、すなわちカメラ座標系ΣelfΣc2
の原点に位置している場合でも、または原点とは異なる
位置にある場合でも、同様に打なわれる。
In this calculation operation, the imaging position Qlt Q2 is
.. 19a, that is, the camera coordinate system ΣelfΣc2
The ball will be hit in the same way even if it is located at the origin of the ball or if it is located at a different position from the origin.

以上のように本発明に従う計測装置1では、ロボット2
の腕3など空間を高速度で移動する被測定物体に対して
も、被測定箇所4を追尾することによって、空間的に広
範囲に亘る測定物体の計測を行なうことができる。した
がって本発明では、被測定物体が、光学vc置6,7の
視野から外れることはない。
As described above, in the measuring device 1 according to the present invention, the robot 2
Even for objects to be measured that move at high speed in space, such as the arm 3 of the robot, by tracking the point to be measured 4, it is possible to measure the object over a wide spatial area. Therefore, in the present invention, the object to be measured does not fall out of the field of view of the optical VCC positions 6 and 7.

また被測定箇所4に、たとえば発光ダイオードなどの光
源5を取付けるだけで計測動作を行なうことができるの
で、被測定物体の計測にあたって従来技術の計測装置■
のように、複雑な治具を必要とせず、したがって計測動
作を簡便に行なうことができる。
In addition, measurement can be performed simply by attaching a light source 5 such as a light emitting diode to the measurement point 4, so when measuring the object to be measured, the conventional measuring device
As shown in FIG.

また光を用いて、非接触で計測が行なわれるので、被測
定物体の運動に負荷や障害を与えることがない、*たエ
ンコーグなどによって実現される回転角検出器15.1
6において、高分解能の検出器・  を用いることによ
って、被検出物体の3次元位置を高精度に測定できる。
In addition, the rotation angle detector 15.1, which is realized by an encoder or the like, does not impose any load or hindrance on the movement of the object to be measured because the measurement is performed without contact using light.
In step 6, by using a high-resolution detector, the three-dimensional position of the detected object can be measured with high precision.

本発明を実現する構成は、前述の実施例で述べた構成に
限らず、他の広範囲な構成要素によって実現されること
ができる。すなわち、絶対座標系Σ。およびカメラ座標
系ΣcltΣc2は、直交座標系に限るものではない。
The configuration for realizing the present invention is not limited to the configuration described in the above-described embodiments, but can be realized by a wide range of other components. That is, the absolute coordinate system Σ. The camera coordinate system ΣcltΣc2 is not limited to an orthogonal coordinate system.

また支持手段はいわゆるノンパル構造に限らず、光学装
置6,7の光軸21゜22を、所望する任意の方向に設
定できる広範囲な構成を用いることができる。
Further, the supporting means is not limited to a so-called non-pulsating structure, and a wide range of structures can be used in which the optical axes 21.degree. 22 of the optical devices 6, 7 can be set in any desired direction.

効  果 以上のように本発明に従えば、被測定物体に光源を取付
け、光源からの光が入射する光学的検出手段を設けた。
Effects As described above, according to the present invention, a light source is attached to the object to be measured, and an optical detection means to which light from the light source enters is provided.

光学的検出手段は、受光素子と、受光素子の受光面に光
源からの光を結像させる光学系とを含んで構成される。
The optical detection means includes a light receiving element and an optical system that forms an image of the light from the light source on the light receiving surface of the light receiving element.

この光学的検出手段は、相互に交差する2軸に関してそ
れぞれ変位可能に支持する手段によって支持され、位置
検出手段によって前記光学的検出手段の前記2軸上の各
位置が検出される。また前記受光素子の出力信号に基づ
いて、前記支持手段によって光学的検出手段を駆動して
、前記光源の像を受光面の予め定めた位置に結像させる
第1演算手段が設けられ、受光素子と位置検出手段との
出力によって光源の3次元の位置を演算する、第2演算
手段とが設けられる。
This optical detection means is supported by means for supporting it so that it can be displaced with respect to two mutually intersecting axes, and each position of the optical detection means on the two axes is detected by the position detection means. Also provided is a first calculation means for driving an optical detection means by the supporting means based on an output signal of the light receiving element to form an image of the light source on a predetermined position on the light receiving surface, and second calculating means for calculating the three-dimensional position of the light source based on the outputs of the position detecting means and the position detecting means.

したがって本発明に基づ(計測動作は、被測定物体の移
動に伴なって、光学的検出手段は常に光源からの光が前
記受光面に入射するようにこれを追尾し、かつ光によっ
て非接触で計測が行なわれる。したがって計測動作が被
測定物体の運動などの障害要因となることはなく、空間
的に広範囲に亘って移動すゐ被測定物体の位置計測を行
なうことができる。また第2演算手段によって算出され
る被測定物体の3次元位置の算出は、位置検出手段と受
光素子とからの出力によって行なわれる。
Therefore, according to the present invention, as the object to be measured moves, the optical detection means always tracks the light from the light source so that it is incident on the light receiving surface, and the optical detection means uses the light to non-contact. Therefore, the measurement operation does not interfere with the movement of the object to be measured, and the position of the object to be measured can be measured over a wide range of space. The three-dimensional position of the object to be measured is calculated by the calculation means based on outputs from the position detection means and the light receiving element.

したがって位置検出手段の分解能を所望の程度に設定す
ることによって、得られる被測定物体の3次元位置の計
測精度を所望の程度に設定することができる。
Therefore, by setting the resolution of the position detection means to a desired level, it is possible to set the measurement accuracy of the obtained three-dimensional position of the object to be measured to a desired level.

【図面の簡単な説明】[Brief explanation of drawings]

#41図は本発明の一実施例の計測装置1の簡略化した
系統図、第2図は光学波ra4の斜視図、第3図は光学
fif114の斜視図、第4図は本発明の詳細な説明す
る図、第5図は本実施例の全体の構成を示すブロック図
である。 1・・・計測装置、3・・・腕、4・・・被測定箇所、
5・・・光源、6.7・・・光学装置、8・・・演算装
置、9.9a・・・旋回軸、10.10a・・・俯仰軸
、11,11a、13.13a・・・モータ、14,1
4a・・・光学筒、15゜15a=16,16a・・・
回転角検出器、17.17a・・・2次元位置検出器、
18・・・レンズ、19・・・受光面、31・・・処理
回路
Figure #41 is a simplified system diagram of the measuring device 1 according to an embodiment of the present invention, Figure 2 is a perspective view of optical wave RA4, Figure 3 is a perspective view of optical fif 114, and Figure 4 is a detailed diagram of the present invention. FIG. 5 is a block diagram showing the overall configuration of this embodiment. 1... Measuring device, 3... Arm, 4... Point to be measured,
5... Light source, 6.7... Optical device, 8... Arithmetic device, 9.9a... Rotating axis, 10.10a... Elevation axis, 11, 11a, 13.13a... Motor, 14,1
4a...Optical tube, 15°15a=16,16a...
Rotation angle detector, 17.17a... two-dimensional position detector,
18... Lens, 19... Light receiving surface, 31... Processing circuit

Claims (1)

【特許請求の範囲】 被測定物体に取付けられる光源と、 光学的検出手段であつて、 光源の像が結像され、結像位置を表す信号を導出する2
次元の受光素子と、 受光素子と一体的に設けられ、光源の像を受光素子の受
光面に結像する光学系とを含むそのような光学的検出手
段と、 光学的検出手段を相互に交差する2軸に関してそれぞれ
変位可能に支持する手段と、 光学的検出手段の前記2軸上の各位置を検出する手段と
、 受光素子の出力信号に基づいて、前記支持手段によつて
光学的検出手段を駆動して、前記光源の像を受光面の予
め定めた位置に結像させる第1演算手段と、 受光素子と位置検出手段との出力によつて光源の3次元
の位置を演算する第2演算手段とを含むことを特徴とす
る光学式3次元位置計測装置。
[Scope of Claims] A light source attached to an object to be measured; and an optical detection means, which forms an image of the light source and derives a signal representing the imaged position.
such an optical detection means including a dimensional light-receiving element, an optical system that is provided integrally with the light-receiving element and forms an image of the light source on the light-receiving surface of the light-receiving element; means for supporting the optical detection means so as to be displaceable about two axes; means for detecting each position of the optical detection means on the two axes; and means for detecting the positions of the optical detection means on the two axes; a first calculating means for driving an image of the light source to form an image of the light source at a predetermined position on a light receiving surface; and a second calculating means for calculating a three-dimensional position of the light source based on the outputs of the light receiving element and the position detecting means. What is claimed is: 1. An optical three-dimensional position measuring device comprising: calculation means.
JP22219785A 1985-10-05 1985-10-05 Optical 3-dimensional position measuring apparatus Pending JPS6281508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22219785A JPS6281508A (en) 1985-10-05 1985-10-05 Optical 3-dimensional position measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22219785A JPS6281508A (en) 1985-10-05 1985-10-05 Optical 3-dimensional position measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6281508A true JPS6281508A (en) 1987-04-15

Family

ID=16778663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22219785A Pending JPS6281508A (en) 1985-10-05 1985-10-05 Optical 3-dimensional position measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6281508A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259204A (en) * 1988-04-08 1989-10-16 Hitachi Ltd Three-dimensional automatic position detecting device
JPH02243914A (en) * 1989-03-16 1990-09-28 Yorozu Jidosha Kogyo Kk Three-dimensional coordinate measuring instrument
JPH0560560A (en) * 1991-09-02 1993-03-09 Fuji Photo Optical Co Ltd Target collimator of position measuring plotter
JPH05314243A (en) * 1992-04-03 1993-11-26 Sony Corp Three-dimensional shape restoring method
JPH0686012U (en) * 1993-12-28 1994-12-13 財団法人鉄道総合技術研究所 Strain measuring device for construct
JP2010169633A (en) * 2009-01-26 2010-08-05 Nikon Corp Shape measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833105A (en) * 1981-08-05 1983-02-26 ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン Device for discriminating one element among plurality of element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833105A (en) * 1981-08-05 1983-02-26 ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン Device for discriminating one element among plurality of element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259204A (en) * 1988-04-08 1989-10-16 Hitachi Ltd Three-dimensional automatic position detecting device
JPH02243914A (en) * 1989-03-16 1990-09-28 Yorozu Jidosha Kogyo Kk Three-dimensional coordinate measuring instrument
JPH0560560A (en) * 1991-09-02 1993-03-09 Fuji Photo Optical Co Ltd Target collimator of position measuring plotter
JPH05314243A (en) * 1992-04-03 1993-11-26 Sony Corp Three-dimensional shape restoring method
JPH0686012U (en) * 1993-12-28 1994-12-13 財団法人鉄道総合技術研究所 Strain measuring device for construct
JP2010169633A (en) * 2009-01-26 2010-08-05 Nikon Corp Shape measurement device

Similar Documents

Publication Publication Date Title
JP3079186B2 (en) Structure measurement system
JP3511450B2 (en) Position calibration method for optical measuring device
JPS6279306A (en) Inspection machine with free probe
US20030043362A1 (en) Six dimensional laser tracking system and method
JPH08500460A (en) Method and apparatus for determining the three-dimensional position of a movable object such as a sensor or tool carried by a robot
CN112424563A (en) Multi-dimensional measurement system for accurately calculating position and orientation of dynamic object
CN108827264A (en) Mobile workbench and its mechanical arm optics target positioning device and localization method
Hernández et al. A new low cost system for autonomous robot heading and position localization in a closed area
JPS6281508A (en) Optical 3-dimensional position measuring apparatus
JPH116710A (en) Distance measuring apparatus
Leigh-Lancaster et al. Development of a laser tracking system
JPH0755439A (en) Three-dimensional shape measuring equipment
JPH08254409A (en) Three-dimensional shape measuring and analyzing method
Armstrong et al. RGR-3D: simple, cheap detection of 6-DOF pose for teleoperation, and robot programming and calibration
JPS59214703A (en) Position measuring device utilizing laser light
JP3600763B2 (en) Method and apparatus for controlling irradiation position of wedge prism
JPH1089957A (en) Three-dimensional measuring method for structure member
JP2736558B2 (en) Position measuring method and device
JPS63131016A (en) Measuring method
US12026895B2 (en) Monocular vision-based method for measuring displacement and trajectory of planar motion
US20220044422A1 (en) Monocular vision-based method for measuring displacement and trajectory of planar motion
RU2769636C1 (en) System for contactless determination of the coordinates of a mobile robot and a method for its implementation
JP3239682B2 (en) Segment position measurement method
JPS61189405A (en) Non-contacting shape measuring instrument
JP2738964B2 (en) Dimension measurement device for structural members