JPH02243914A - Three-dimensional coordinate measuring instrument - Google Patents

Three-dimensional coordinate measuring instrument

Info

Publication number
JPH02243914A
JPH02243914A JP6449489A JP6449489A JPH02243914A JP H02243914 A JPH02243914 A JP H02243914A JP 6449489 A JP6449489 A JP 6449489A JP 6449489 A JP6449489 A JP 6449489A JP H02243914 A JPH02243914 A JP H02243914A
Authority
JP
Japan
Prior art keywords
coordinates
camera
measurement point
detected
dimensional coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6449489A
Other languages
Japanese (ja)
Other versions
JPH0827183B2 (en
Inventor
Shinya Oyama
信也 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yorozu Corp
Original Assignee
Yorozu Jidosha Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yorozu Jidosha Kogyo KK filed Critical Yorozu Jidosha Kogyo KK
Priority to JP1064494A priority Critical patent/JPH0827183B2/en
Publication of JPH02243914A publication Critical patent/JPH02243914A/en
Publication of JPH0827183B2 publication Critical patent/JPH0827183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Manipulator (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure the three-dimensional coordinates of a measurement point by providing a means which calculates the three-dimensional coordinate position of the measurement point and the position error of the three- dimensional coordinate position of a standard detected previously by a detecting means as to the measurement point. CONSTITUTION:A master object is set on a master table 10 and a robot 3 is moved to a predetermined position to pick up the image of a part to be detected by a camera 5. Then the center position coordinates of the master object on image picked-up camera coordinates are detected by a camera control means 8 and its data is sent and stored in the memory of an arithmetic means. Then when a measurement starting command is inputted from the means 8, a robot control means 7 moves an arm 4 to a 1st measurement point, the center coordinates of the detected part of a center positioning member 22 in the visual field of the camera 5 are detected, and its data is sent to the means 6. The means 6 calculates the difference between the measured coordinates and previously stored master coordinates to be transformed into work coordinates. Then the part to be measured is image picked up by similar means at >=2 different angles as to one measurement point to find three-dimensional coordinates.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光学的手段を使用した測定装置であって、空
間の点の座標を自動的に測定する三次元測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a three-dimensional measuring device that uses optical means and that automatically measures the coordinates of a point in space.

(従来の技術) 例えば自動車にあっては、1つの部品と他の部品とを組
み付けて中間組立部品(以下、サブアッシと言う)を完
成させたり、このサブアッシを重体に組み付けて1つの
完成車を製造する際においては、その組み付は精度が完
成車の品質を左右する最も重要な要因であることは言う
までもない。
(Prior art) For example, in the case of automobiles, one part and another part are assembled to complete an intermediate assembly (hereinafter referred to as a sub-assembly), and this sub-assembly is assembled into a heavy body to form a complete vehicle. It goes without saying that during manufacturing, the precision of assembly is the most important factor that affects the quality of the finished vehicle.

特に自動車のような多部品から構成されるものにあって
は、1つの部品の構造を改良することにより、組み付は
誤差を極力小さくしたり、組み付は誤差を吸収しえる開
発が従来より進められている。
Particularly in the case of automobiles, which are made up of many parts, it has been possible to minimize assembly errors by improving the structure of a single part, or to develop systems that can absorb assembly errors. It is progressing.

他方、製造過程、例えばプレス加工や樹脂成形における
部品精度を確保したり、各製造過程における検査精度を
向上させたりすることも進められている。
On the other hand, efforts are being made to ensure component accuracy in manufacturing processes, such as press working and resin molding, and to improve inspection accuracy in each manufacturing process.

このような製造品の製造精度を測定する手段の一つとし
て、三次元測定装置が知られており、該装置は光学的手
段を用いて精度良く、しかも迅速に製造品の411定点
を測定し得るように概ね構成されている。すなわち、第
12図に示すように、被測定物1を固定搭載するマスク
テーブル10と、このマスクテーブル10に対して固定
された光学的手段であるカメラ5と、このカメラ5によ
って撮像されたデータを演算する画像処理装置11とか
ら構成される装置 結果を記録紙13に出力する記録装置12などが付加さ
れている。そして、マスクテーブル10上の基準点14
と、被測定物1の測定点2とがカメラ5の視野内に入る
ように当該カメラ5を設置し、予め基準点14に対する
測定点2のマスク位置データを画像処理装置11内のメ
モリに格納しておく。この状態で、製造品1をマスクテ
ーブル10上の所定位置にセラ1・シ、カメラ5により
製造品1の測定点2とマスクテーブル10の基準点14
との位置関係を画像処理装置14により演算する。この
とき前述したi1111定点のマスク位置データ(Xo
 、 Yo )と、実際に測定された測定点(X+ 、
Y,)とのそれぞれの基準点を画像処理装置11内の演
算部で一致させ、 ΔX=X,ーX.,  ΔY=Y,ーY。
A three-dimensional measuring device is known as one of the means for measuring the manufacturing accuracy of such manufactured products, and this device uses optical means to accurately and quickly measure 411 fixed points on manufactured products. It is generally configured to obtain That is, as shown in FIG. 12, there is a mask table 10 on which the object to be measured 1 is fixedly mounted, a camera 5 which is an optical means fixed to this mask table 10, and data imaged by this camera 5. An image processing device 11 that calculates , and a recording device 12 that outputs the results onto recording paper 13 are added. Then, the reference point 14 on the mask table 10
The camera 5 is installed so that the measurement point 2 of the object 1 is within the field of view of the camera 5, and the mask position data of the measurement point 2 with respect to the reference point 14 is stored in advance in the memory in the image processing device 11. I'll keep it. In this state, the manufactured product 1 is placed at a predetermined position on the mask table 10 by the camera 1, and the camera 5 is used to measure the measurement point 2 of the manufactured product 1 and the reference point 14 of the mask table 10.
The image processing device 14 calculates the positional relationship between the two. At this time, the mask position data (Xo
, Yo) and the actually measured measurement point (X+,
Y,) are matched with each other by a calculation unit in the image processing device 11, and ΔX=X, -X. , ΔY=Y, -Y.

を演算する構成になっており、これによって測定点の位
置座標を容易に算出することができるようになっている
The structure is such that the position coordinates of the measurement point can be easily calculated.

(発明が解決しようとする課題) ところが、」−述した従来の三次元測定装置にあっては
、カメラの撮像方向に対して直交する平面内の位置(前
記X−Y平面)は、容易に測定できるように構成されて
いるが、カメラの撮像方向(そなわち、第12図におけ
るZ軸方向)の測定点の位置測定は、カメラの焦点距離
によって演算されるようになっていることから、測定値
の誤差が大きいという欠点がある。
(Problem to be Solved by the Invention) However, in the conventional three-dimensional measuring device mentioned above, the position within the plane perpendicular to the imaging direction of the camera (the X-Y plane) cannot be easily determined. However, the position measurement of the measurement point in the imaging direction of the camera (that is, the Z-axis direction in Fig. 12) is calculated based on the focal length of the camera. , the disadvantage is that the error in the measured values is large.

また、カメラ5はマスクテーブル10に対して所定位置
に固定されているため、被測定物10面{j4成が複雑
な場合などにあっては、それぞれの測定点に専用のカメ
ラを設置しなければならず、測定装置が大型化及び複雑
化し、またコスト的にも不利である。
In addition, since the camera 5 is fixed at a predetermined position relative to the mask table 10, if the 10-plane configuration of the object to be measured is complex, a dedicated camera must be installed at each measurement point. Not only that, but the measuring device becomes larger and more complicated, and it is also disadvantageous in terms of cost.

しかも、このように多数のカメラを設けたとしても、被
測定物の形状が変わればそのまま使用することができず
、汎用性に極めて乏しい。
Moreover, even if such a large number of cameras are provided, if the shape of the object to be measured changes, the device cannot be used as is, and its versatility is extremely poor.

そこで本発明者らは、産業用ロボットが6する汎用性に
着目し、Δ{り定点の三次元座標を正確にしかも迅速に
測定することができ、さらに汎用性に富んだ測定装置を
提供すべく鋭意研究した結果、本発明を完成するに至っ
た。
Therefore, the present inventors focused on the versatility of industrial robots, and aimed to provide a measuring device that can accurately and quickly measure the three-dimensional coordinates of a fixed point using Δ{. As a result of intensive research, we have completed the present invention.

したがって、本発明は、測定点の三次元座標を正確にし
かも迅速に測定することができ、さらに汎用性に富んだ
測定装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a measuring device that can accurately and quickly measure the three-dimensional coordinates of a measuring point and is also highly versatile.

(課題を解決するだめの手段) 上記目的を達成するための本発明は、被測定物の複数の
測定点に近接して作動するように予めティーチングされ
た産業用ロボットのアームに前記測定点の位置を検出す
る位置検出手段を設け、当該測定点の三次元座標位置と
前記検出手段により予め検出された前記測定点に対する
標準点の三次元座標位置との位置誤差を演算する演算手
段を白。
(Means for Solving the Problems) The present invention for achieving the above-mentioned object has an industrial robot arm that has been taught in advance to operate in close proximity to a plurality of measurement points on an object to be measured. A position detection means for detecting a position is provided, and a calculation means for calculating a position error between the three-dimensional coordinate position of the measurement point and the three-dimensional coordinate position of a standard point with respect to the measurement point detected in advance by the detection means is shown in white.

してなる三次元座標測定装置である。This is a three-dimensional coordinate measuring device.

(作用) このように構成した本発明にあっては、まず被測定物の
4{リ定点のそれぞれのマスク位置座標を演算手段に格
納しておく。そして、被測定物を所定位置に設置した後
に、産業用ロボットが予めティーチングされた軌跡に沿
って被測定物に対して作動させると、ロボットのアーム
に取り付けられた位置検出手段が各測定点を撮像7し、
この撮像データを演算手段に入力して、前記マスク位置
座標と比較演算する。これにより標準点に対する測定点
の位置誤差を得ることができる。
(Function) In the present invention configured as described above, first, the mask position coordinates of each of the four fixed points of the object to be measured are stored in the calculation means. After setting the object to be measured at a predetermined position, when the industrial robot operates on the object along a pre-taught trajectory, the position detection means attached to the arm of the robot detects each measurement point. Imaging 7,
This imaging data is input to a calculation means and compared with the mask position coordinates. This makes it possible to obtain the positional error of the measurement point with respect to the standard point.

(実施例) 以下、本発明の一実施例を図面に基づいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は、本発明の一実施例に係る三次元座標/Ill
l定装置を示す概念図、第2図は、同実施例の三次元測
定装置に使用する中心位置決め部材を示す斜視図、第3
図は、第2図の■一■線に沿う断面図、第4図は第2図
のIV−IV線に沿う断面図、第5、6図は、同実施例
のロボット制御手段及びカメラ制御手段、演算手段の制
御を示すフローチャート、第7〜11図は、同実施例の
座標変換方法を示す説明図である。
FIG. 1 shows three-dimensional coordinates/Ill according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram showing the three-dimensional measuring device, and FIG. 2 is a perspective view showing the center positioning member used in the three-dimensional measuring device of the same embodiment.
The figure is a cross-sectional view taken along the line 1--2 in FIG. 2, FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. Flowcharts showing control of the means and calculation means, and FIGS. 7 to 11 are explanatory diagrams showing the coordinate transformation method of the same embodiment.

まず、第1図に示すように、本実施例の三次元座標測定
装置は、アーム4を備えた産業用ロボット3と、位置検
出手段であるカメラ5と、産業用ロボットの制御手段7
と、カメラの制御手段8と、演算手段6と、記録手段9
とから構成されている。
First, as shown in FIG. 1, the three-dimensional coordinate measuring device of this embodiment includes an industrial robot 3 equipped with an arm 4, a camera 5 serving as a position detection means, and a control means 7 for the industrial robot.
, camera control means 8 , calculation means 6 , and recording means 9
It is composed of.

産業用ロボット3は、従来より公知の多軸駆動型口ホッ
トであって、その先端にアーム4を備えている。このロ
ボットのアーム4は、ロボット制御手段7から送信され
る制御信号が、ロボット3の各軸に設けられたアクチュ
エータ(不図示)に人力され、同様に各軸に設けられた
エンコーダ(不図示)によって制御されつつ、予めティ
ーチングされた軌跡」二を動き、前記カメラ5を被測定
物1の測定点2に近接する位置に、順次移動させるよう
になっている。
The industrial robot 3 is a conventionally known multi-axis drive type robot, and is equipped with an arm 4 at its tip. The arm 4 of this robot is configured such that a control signal transmitted from the robot control means 7 is manually applied to an actuator (not shown) provided on each axis of the robot 3, and an encoder (not shown) similarly provided on each axis. The camera 5 is sequentially moved to a position close to the measurement point 2 of the object 1 by moving along a pre-taught trajectory while being controlled by the camera 1 .

アーム4先端に取り付けられたカメラ5は、内部にCC
D (Charge Coupled Device)
素子を有し、撮像する視野から人力した光が、このCC
Dの各画素において、その光の強さ相当の電荷として蓄
積され、各画素毎に出力信号となって、前記カメラ制御
手段8に送信される、例えば、第1図に示すように、自
動車のメンバ20にスポット溶接されたブラケット21
の中心位置が、標準位置に対してどれだけずれているか
を検査する場合、まず後述する中心位置決め部材22を
ブラケット21にセットする。この中心位置決め部月2
2には、球形状の被検出部23が形成されており、この
被検出部23以外の部分が黒く塗装されている。したが
って、この被検出部23からの反射光が入射したCCD
の画素は、周囲の部分に対して明るくなり、これらの各
画素の信号がカメラ制御手段8にそれぞれ送られ、ここ
で被検出部23の中心位置を適確に検出することができ
る。
The camera 5 attached to the tip of the arm 4 is equipped with a CC
D (Charge Coupled Device)
This CC has an element and the light that is manually generated from the field of view to be imaged is
In each pixel of D, a charge corresponding to the intensity of the light is accumulated, and the output signal for each pixel is transmitted to the camera control means 8. For example, as shown in FIG. Bracket 21 spot welded to member 20
When inspecting how much the center position of the center position has deviated from the standard position, first, a center positioning member 22, which will be described later, is set on the bracket 21. This center positioning part month 2
2 is formed with a spherical detected portion 23, and the portion other than the detected portion 23 is painted black. Therefore, the CCD on which the reflected light from the detected part 23 is incident
The pixels become brighter than the surrounding areas, and the signals of each of these pixels are sent to the camera control means 8, where the center position of the detected portion 23 can be detected accurately.

このような被検出部23をHする中心位置決め部拐22
の一例としては、第2〜4図に示すものがある。図中「
21」は、自動車の車体のメンバ(不図示)などにスポ
ット溶接されたブラケットであり、ボルト孔24.24
が形成され、2つの縦壁25,25間に例えばロアアー
ムの端部を挿入しボルトにより当該ロアアームをメンバ
に締結するものである。
A center positioning part 22 for detecting the detected part 23
An example of this is shown in FIGS. 2-4. In the diagram “
21" is a bracket spot welded to a member (not shown) of the car body, etc., and bolt holes 24.24
For example, the end of the lower arm is inserted between the two vertical walls 25, 25, and the lower arm is fastened to the member with a bolt.

したがって、メンバ本体に対するブラケットの溶接位置
がずれていると、ロアアームが組み付かなかったり、仮
に組み付いたとしても両者の組み付は精度が不十分なこ
とから、信頼性に支承を来す虞れがある。そこで、ブラ
ケット21の縦壁25,25の中心位置がメンバ本体に
対して相対的にどれだけずれているかを検査し、予め設
定されたスペック内で溶接が行われていないものについ
ては、廃棄あるいは修正を加えるようにしている。
Therefore, if the welding position of the bracket relative to the member body is misaligned, the lower arm may not be assembled, or even if it is assembled, the precision of assembling the two may be insufficient, which may affect reliability. There is. Therefore, we inspect how far the center positions of the vertical walls 25, 25 of the bracket 21 are relative to the member body, and if welding is not performed within the preset specifications, we will discard or I'm trying to make corrections.

中心位置決め部材22の本体部26には、前記ブラケッ
ト21の2つのボルト孔24.24に挿通して、第3図
に示す上下方向を固定するピン27の挿入孔28.28
が形成されている。このピン27及び挿入孔28の径は
、極力ブラケット21のボルト孔24の径と等しいこと
が望ましいが、ピン27の外径がボルト孔24と111
?人孔28の径に対して僅かに小さくても良い。
The main body portion 26 of the center positioning member 22 has insertion holes 28.28 for pins 27 that are inserted into the two bolt holes 24.24 of the bracket 21 and fixed in the vertical direction as shown in FIG.
is formed. It is desirable that the diameters of the pin 27 and the insertion hole 28 be as equal as possible to the diameter of the bolt hole 24 of the bracket 21;
? It may be slightly smaller than the diameter of the manhole 28.

1心位置決め部材22の本体部26の両側面29.29
間の距離を2等分する中心位置には、その球中心が前記
中心位置に一致するように球形状に形成された被検出部
23が溶接などにより固着されている。
Both sides 29.29 of the main body portion 26 of the single-core positioning member 22
A detection target portion 23 formed in a spherical shape is fixed by welding or the like to a center position that equally divides the distance between the two, so that the center of the sphere coincides with the center position.

なお、本実施例は、被検出部23以外の部分を黒く塗装
し、これによって被検出部23とその周囲とのコントラ
ストをさらに強調するようにしている。
In this embodiment, the parts other than the detected part 23 are painted black, thereby further emphasizing the contrast between the detected part 23 and its surroundings.

また、本実施例においては、被検出部23を球状に形成
したが、前述したカメラ5の画素にて検出される形状で
あれば良く、特にこの形状に限定されない。中心位置決
め部+、I’22の本体部26の両側面29.29及び
前面30には、第4図に示すように互いに連通ずる通路
31.32が穿設されており、前面30から穿設された
通路31にはネジが切られている。図中「33」は、こ
の側面29.29に穿設された通路32に遊嵌挿入する
押圧子であって、その先端33aは楔状に形成されてい
る。また、2つの抑圧子33,33を各側面29.29
からその楔状の先端33aが互いに当接する方向に抑大
した状態においては、押圧子33の他端33bは本体部
26の側面29と面一となっている。そして、先端33
aが楔状に形成された抑圧子33を両側面29.29か
ら挿入し、一方前面30からは、前記ネジと螺合するボ
ルトであって、その先端34aが前記押圧子先端部33
aの楔形状と対応する形状に形成された調整ボルト34
をねじ込んでいくと、両押圧子33.33は互いに同じ
寸法だけ本体部26の両側面29.29から突出するこ
とになる。
Further, in this embodiment, the detected portion 23 is formed into a spherical shape, but it is not particularly limited to this shape, as long as it has a shape that can be detected by the pixels of the camera 5 described above. As shown in FIG. 4, passages 31, 32 communicating with each other are bored in both sides 29, 29 and the front surface 30 of the main body 26 of the center positioning part +, I'22. The passageway 31 is threaded. In the figure, numeral "33" denotes a presser which is loosely inserted into the passage 32 bored in the side surface 29, 29, and its tip 33a is formed into a wedge shape. Also, two suppressors 33, 33 are placed on each side 29.29.
When the wedge-shaped tips 33a are compressed in the direction in which they abut each other, the other end 33b of the presser 33 is flush with the side surface 29 of the main body 26. And the tip 33
A wedge-shaped presser 33 is inserted from both sides 29.29, and from the front side 30, a bolt is screwed into the screw, and its tip 34a is inserted into the presser tip 33.
Adjustment bolt 34 formed in a shape corresponding to the wedge shape of a.
When screwed in, both pressers 33.33 protrude from both sides 29.29 of the main body 26 by the same dimension.

このとき、押圧、子33の他端33bがブラケット21
の縦壁25.25に当接することになり、かつ本体部2
6の側面29から縦壁25までの間隙寸法が等しくなり
、したがって、被検出部23の中心位置とブラケット2
1の両縦壁25.25の中心位置とを一致させることが
できる。
At this time, the other end 33b of the child 33 is pressed against the bracket 21.
25.25, and the main body part 2
The gap size from the side surface 29 of the bracket 6 to the vertical wall 25 is equal, so that the center position of the detected part 23 and the bracket 2 are equal.
The center positions of both vertical walls 25 and 25 of 1 can be made to coincide with each other.

第1図に示す演算手段6は、予め教示した標準点の座標
データと、カメラ制御手段8により検出された被測定物
1の座標データとを演算する制御部である。また、記録
手段9は、前記演算手段8により演算された測定結果を
出力するプリンタである。尚、この記録手段9は、デイ
スプレィであっても良く、またデイスプレィとプリンタ
とを組み合わせても良い。
The calculation means 6 shown in FIG. 1 is a control section that calculates the coordinate data of the standard point taught in advance and the coordinate data of the object to be measured 1 detected by the camera control means 8. Further, the recording means 9 is a printer that outputs the measurement results calculated by the calculation means 8. Note that this recording means 9 may be a display, or may be a combination of a display and a printer.

マスクテーブル10は、ロボット3に対して固定された
被a−11定物搭載用の台であり、第1図に示すような
メンバ20などにあっては、その両端を保持して固定す
る支持部材35.36が設けられている。
The mask table 10 is a stand fixed to the robot 3 for mounting a fixed object A-11, and in the case of a member 20 as shown in FIG. Members 35, 36 are provided.

次に、このように構成した本実施例の三次元座標測定装
置の測定手順を、第5〜11図を参照しつつ説明する。
Next, the measurement procedure of the three-dimensional coordinate measuring apparatus of this embodiment configured as described above will be explained with reference to FIGS. 5 to 11.

(1)標準点(マスク座標)の教示 まず、第7図に示すように、測定を開始する前にブラケ
ット21を溶接したメンバ20のマスタ品をマスクテー
ブルto−にに設置し、レイアウトマシンを用いて被検
出部23の中心位置座標(Xo *  ’/ o )を
ワーク座標系(Xw 、 Yw )上に求める。例えば
、マスク品のある基準点をワーク座標系の原点Owと決
め、Xw  Yw平平向内おける被検出部23の中心位
置座標を測定したり、あるいは設計図面一[−から計算
により求めたりする。このようにして求めたワーク座標
系(Xw 、 Yw )におけるマスク位置座標のデー
タ(Xo、yo)は、演算手段6のメモリに格納される
。ここで、三次元座標におけるマスク位置は、このワー
ク座標系(Xw。
(1) Teaching the standard point (mask coordinates) First, as shown in FIG. 7, before starting measurement, place the master member 20 with the bracket 21 welded on the mask table to-, and then turn the layout machine on. is used to find the center position coordinates (Xo*'/o) of the detected part 23 on the workpiece coordinate system (Xw, Yw). For example, a certain reference point of the mask product is determined as the origin Ow of the workpiece coordinate system, and the coordinates of the center position of the detected part 23 in the Xw Yw plane are measured, or calculated from the design drawing 1[-. The mask position coordinate data (Xo, yo) in the workpiece coordinate system (Xw, Yw) obtained in this way is stored in the memory of the calculation means 6. Here, the mask position in three-dimensional coordinates is defined by this workpiece coordinate system (Xw.

Yw)と、平行な平面上にある他の座標系、すなわちカ
メラ座標系(Xc、Yc)における座標データ(x++
’/1)としても演算手段6内のメモリに格納される。
Yw) and coordinate data (x++
'/1) is also stored in the memory within the calculation means 6.

つまり、第8図に示す如く、前記第7図に示すマスクテ
ーブル10上にセットしたマスク品をそのままの状態に
維持し、ロボット3をTめ教示された所定の番地に移動
させ、被検出部23を撮像する。そして、このカメラ5
に撮像されるカメラ座標(Xc 、 Yc )上におけ
るマスク品の中心位置座標を、カメラ制御手段8により
検知し、このデータ(Xl、)’+)を演算手段6のメ
モリに送信し、格納する。尚、「Oc」は、カメラ座標
(Xc 、 Yc )上に決められた原点である。
That is, as shown in FIG. 8, the mask article set on the mask table 10 shown in FIG. 23 is imaged. And this camera 5
The camera control means 8 detects the center position coordinates of the mask item on the camera coordinates (Xc, Yc) imaged by the camera control means 8, and transmits this data (Xl, )'+) to the memory of the calculation means 6 and stores it. . Note that "Oc" is the origin determined on the camera coordinates (Xc, Yc).

(2)被測定物の座標測定(カメラ座標上)第5図に示
すように、図示しないメイン制御手段から測定開始指令
信号が人力されると、ロボット制御手段7は、予めティ
ーチングされた第1 all定点にアーム4を移動させ
、移動完了信号をカメラ制御手段8に出力する。このロ
ボット移動完了信号フを受信したカメラ制御手段8は、
第9〜10図に示すように、カメラ5の視野内にある中
心位置決め部材22の被検出部23の中心座標を検知し
、このデータ(X21  y2)を演算手段6に送信す
る。次いで、演算手段6において、この測定座標(X2
1  y2)と、予め演算手段6のメモリに格納してお
いたマスク座標(X++’/1)との差を下式により求
める(第5図のステップ5及び第6図のステップ10〜
12)。
(2) Coordinate measurement of the object to be measured (on camera coordinates) As shown in FIG. 5, when a measurement start command signal is manually input from the main control means (not shown), the robot control means 7 moves The arm 4 is moved to all fixed points, and a movement completion signal is output to the camera control means 8. The camera control means 8 which received this robot movement completion signal,
As shown in FIGS. 9 and 10, the center coordinates of the detected portion 23 of the center positioning member 22 within the field of view of the camera 5 are detected, and this data (X21 y2) is transmitted to the calculation means 6. Next, in the calculation means 6, this measurement coordinate (X2
1 y2) and the mask coordinate (X++'/1) stored in advance in the memory of the calculating means 6 using the following formula (Step 5 in Figure 5 and Step 10 in Figure 6).
12).

ΔX=X2−Xi △Y=’It  72 (3)カメラ座標からワーク座標への変換トJ己ΔX、
Δyは、カメラ座標(Xc 、  Yc )」二におけ
る被測定物1のずれ寸法であるため、下式によりワーク
座標(Xw 、 Yw )への変換を、演算手段6にて
行なう(第11図、及び第6図のステップ13)。
ΔX=X2−Xi ΔY='It 72 (3) Conversion from camera coordinates to workpiece coordinates ΔX,
Since Δy is the displacement dimension of the object to be measured 1 at the camera coordinates (Xc, Yc), the calculation means 6 converts it into the workpiece coordinates (Xw, Yw) using the following formula (Fig. 11, and step 13 in FIG. 6).

X3 =xo−ΔX ”/3 =Yu−Δy 尚、上述した1(Iljl平定を、一つの測定点につき
、2以上の異なる角度から、同様の手順にてカメラにて
被測定部を撮像することにより、三次元の座標を求める
ことができる。
X3 = xo - ΔX ''/3 = Yu - Δy In order to perform the above-mentioned 1 (Iljl stabilization), image the part to be measured with a camera from two or more different angles for one measurement point using the same procedure. The three-dimensional coordinates can be determined by

(発明の効果) 以上述べたように本発明の三次元座標測定装置によれば
、被測定物の複数の測定点に近接して作動するように予
めティーチングされた産業用ロボットのアームに前記測
定点の位置を検出する位置検出手段を設け、当該測定点
の三次元座標位置と前記検出手段により予め検出された
前記測定点に対する標準点の三次元座標位置との位置誤
差を演算する演算手段をHするように構成したため、測
定点の三次元座標を正羅にしかも迅速に測定することが
でき、さらに汎用性の面においても優れた効果を奏する
ことになる。
(Effects of the Invention) As described above, according to the three-dimensional coordinate measuring device of the present invention, the arm of an industrial robot, which has been taught in advance to operate in close proximity to a plurality of measurement points of the object to be measured, A position detection means for detecting the position of the point is provided, and a calculation means is provided for calculating the position error between the three-dimensional coordinate position of the measurement point and the three-dimensional coordinate position of the reference point with respect to the measurement point detected in advance by the detection means. Since it is configured to be H, the three-dimensional coordinates of the measurement point can be measured accurately and quickly, and furthermore, it has an excellent effect in terms of versatility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る三次元座標測定装置を
示す概念図、第2図は、同実施例の三次元測定装置に使
用する中心位置決め部材を示す斜視図、第3図は、第2
図の■−■線に沿う断面図、第4図は第2図のTV−I
V線に沿う断面図、第5゜6図は、同実施例のロボッ!
・制御手段及びカメラ制御手段、演算手段の制御を示す
フローチャート、第7〜11図は、同実施例の座標変換
方法を示す説明図、第12図は従来の三次元座標測定装
置を示す斜視図である。 1・・・被測定物、2・・・測定点、3・・・産業用ロ
ボット、4、・・アーム、5・・・カメラ(位置検出手
段)、6・・・演算手段。
FIG. 1 is a conceptual diagram showing a three-dimensional coordinate measuring device according to an embodiment of the present invention, FIG. 2 is a perspective view showing a center positioning member used in the three-dimensional measuring device of the same embodiment, and FIG. , second
A cross-sectional view along the line ■-■ in the figure, Figure 4 is TV-I in Figure 2.
A sectional view taken along the V line, Figure 5.6, shows the robot! of the same embodiment.
・A flowchart showing the control of the control means, camera control means, and calculation means. FIGS. 7 to 11 are explanatory diagrams showing the coordinate conversion method of the same embodiment. FIG. 12 is a perspective view showing a conventional three-dimensional coordinate measuring device. It is. DESCRIPTION OF SYMBOLS 1...Measurement object, 2...Measurement point, 3...Industrial robot, 4...Arm, 5...Camera (position detecting means), 6...Calculating means.

Claims (1)

【特許請求の範囲】[Claims] 被測定物(1)の複数の測定点(2)に近接して作動す
るように予めティーチングされた産業用ロボット(3)
のアーム(4)に前記測定点(2)の位置を検出する位
置検出手段(5)を設け、当該測定点(2)の三次元座
標位置と前記検出手段(5)により予め検出された前記
測定点(2)に対する標準点の三次元座標位置との位置
誤差を演算する演算手段(6)を有してなる三次元座標
測定装置。
An industrial robot (3) that has been taught in advance to operate in close proximity to a plurality of measurement points (2) of an object to be measured (1).
A position detection means (5) for detecting the position of the measurement point (2) is provided on the arm (4) of A three-dimensional coordinate measuring device comprising a calculation means (6) for calculating a positional error between a measurement point (2) and a three-dimensional coordinate position of a standard point.
JP1064494A 1989-03-16 1989-03-16 Three-dimensional coordinate automatic measuring device Expired - Fee Related JPH0827183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1064494A JPH0827183B2 (en) 1989-03-16 1989-03-16 Three-dimensional coordinate automatic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1064494A JPH0827183B2 (en) 1989-03-16 1989-03-16 Three-dimensional coordinate automatic measuring device

Publications (2)

Publication Number Publication Date
JPH02243914A true JPH02243914A (en) 1990-09-28
JPH0827183B2 JPH0827183B2 (en) 1996-03-21

Family

ID=13259816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1064494A Expired - Fee Related JPH0827183B2 (en) 1989-03-16 1989-03-16 Three-dimensional coordinate automatic measuring device

Country Status (1)

Country Link
JP (1) JPH0827183B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473010A2 (en) * 1990-08-25 1992-03-04 Firma Carl Zeiss Procedure for contactless measurement of object-surfaces
US5251156A (en) * 1990-08-25 1993-10-05 Carl-Zeiss-Stiftung, Heidenheim/Brenz Method and apparatus for non-contact measurement of object surfaces
JPH06335818A (en) * 1993-05-27 1994-12-06 Daiwa Seiko Kk Welding wire cutting device
US5499306A (en) * 1993-03-08 1996-03-12 Nippondenso Co., Ltd. Position-and-attitude recognition method and apparatus by use of image pickup means
FR2734357A1 (en) * 1995-05-16 1996-11-22 Dea Brown & Sharpe Spa OBSERVATION INSTALLATION AND METHOD FOR PERFORMING NON-CONTACT THREE-DIMENSIONAL MEASUREMENTS
US10168134B2 (en) 2002-02-14 2019-01-01 Faro Technologies, Inc. Portable coordinate measurement machine having a handle that includes electronics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672309A (en) * 1979-11-19 1981-06-16 Mitsutoyo Mfg Co Ltd Measuring method of three-dimension measuring device and reference point block for its measurement
JPS61243303A (en) * 1985-04-22 1986-10-29 Hitachi Denshi Ltd Visual inspection system for mounted substrate
JPS6281508A (en) * 1985-10-05 1987-04-15 Kawasaki Heavy Ind Ltd Optical 3-dimensional position measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672309A (en) * 1979-11-19 1981-06-16 Mitsutoyo Mfg Co Ltd Measuring method of three-dimension measuring device and reference point block for its measurement
JPS61243303A (en) * 1985-04-22 1986-10-29 Hitachi Denshi Ltd Visual inspection system for mounted substrate
JPS6281508A (en) * 1985-10-05 1987-04-15 Kawasaki Heavy Ind Ltd Optical 3-dimensional position measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473010A2 (en) * 1990-08-25 1992-03-04 Firma Carl Zeiss Procedure for contactless measurement of object-surfaces
US5251156A (en) * 1990-08-25 1993-10-05 Carl-Zeiss-Stiftung, Heidenheim/Brenz Method and apparatus for non-contact measurement of object surfaces
US5499306A (en) * 1993-03-08 1996-03-12 Nippondenso Co., Ltd. Position-and-attitude recognition method and apparatus by use of image pickup means
JPH06335818A (en) * 1993-05-27 1994-12-06 Daiwa Seiko Kk Welding wire cutting device
FR2734357A1 (en) * 1995-05-16 1996-11-22 Dea Brown & Sharpe Spa OBSERVATION INSTALLATION AND METHOD FOR PERFORMING NON-CONTACT THREE-DIMENSIONAL MEASUREMENTS
US10168134B2 (en) 2002-02-14 2019-01-01 Faro Technologies, Inc. Portable coordinate measurement machine having a handle that includes electronics

Also Published As

Publication number Publication date
JPH0827183B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
US6044308A (en) Method and device for robot tool frame calibration
EP1607194B1 (en) Robot system comprising a plurality of robots provided with means for calibrating their relative position
JP4021413B2 (en) Measuring device
US7200260B1 (en) Teaching model generating device
US9050728B2 (en) Apparatus and method for measuring tool center point position of robot
US6763284B2 (en) Robot teaching apparatus
US7171041B2 (en) Position-orientation recognition device
JP4191080B2 (en) Measuring device
EP0493612B1 (en) Method of calibrating visual sensor
JPH041505A (en) Three-dimensional position measuring method and acquiring method for work
JP3579396B2 (en) Method and apparatus for calibrating a first coordinate system of an indexing means in a second coordinate system of a sensing means
JPH02243914A (en) Three-dimensional coordinate measuring instrument
JP4284765B2 (en) Robot hand position measuring device
KR101972432B1 (en) A laser-vision sensor and calibration method thereof
JPH05126521A (en) Position-measuring device for remote-controlled manipulator
JP2718249B2 (en) Robot displacement detection device
JP3195850B2 (en) Method and apparatus for measuring three-dimensional position on curved surface
Wieghardt et al. Self-calibration of a mobile manipulator using structured light
JPH03268818A (en) Angle measuring instrument for bender
JP2016187851A (en) Calibration device
JPH10206131A (en) Three dimensional geometry measuring device
KR20040009550A (en) Efficient digitizing in reverse engineering by sensor fusion
JP3396072B2 (en) Three-dimensional position measuring method and device
KR100551312B1 (en) Off-line teaching system using cyber body
EP0457914A1 (en) Data conversion system of a measuring robot