JPS59214703A - Position measuring device utilizing laser light - Google Patents

Position measuring device utilizing laser light

Info

Publication number
JPS59214703A
JPS59214703A JP58089542A JP8954283A JPS59214703A JP S59214703 A JPS59214703 A JP S59214703A JP 58089542 A JP58089542 A JP 58089542A JP 8954283 A JP8954283 A JP 8954283A JP S59214703 A JPS59214703 A JP S59214703A
Authority
JP
Japan
Prior art keywords
receiving plate
laser
light receiving
target
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58089542A
Other languages
Japanese (ja)
Other versions
JPH024843B2 (en
Inventor
Tatsushi Miyahara
宮原 建士
Hisashi Sakiyama
崎山 久史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MC KK
MATSUKU KK
Original Assignee
MC KK
MATSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MC KK, MATSUKU KK filed Critical MC KK
Priority to JP58089542A priority Critical patent/JPS59214703A/en
Priority to US06/612,560 priority patent/US4671654A/en
Priority to GB08412941A priority patent/GB2143396B/en
Publication of JPS59214703A publication Critical patent/JPS59214703A/en
Publication of JPH024843B2 publication Critical patent/JPH024843B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform highly accurate position measurement and angle deviation measurement of a target itself in realtime, by obtaining the position deviation and the angle deviation based on the coordinates of projected laser light positions detected by the first and second image pickup cameras, thereby eliminating the factors yielding mechanical errors in the main body of a target. CONSTITUTION:When a shield machine is deviated from the light axis of laser, a laser spot P1 of a first light receiving plate 2 is deviated from the center. Based on the values of X-Y coordinates at this time, the magnitude and the direction of the position deviation can be found. The laser spot P1 is sent to a synchronization controller 11 in an operation processing part 10 as a video output V1 from a first image pickup camera 4. The signal is operated and analyzed by a central processing part 12, and the X-Y coordinates are displayed on a display part 14a. Laser light (b) is projected on a second light receiving plate 3 through the semi-transmitting first light receiving plate 2. Like the laser spot P1 on the first light receiving plate 2, the position of a laser spot P2 on the second light receiving plate 3 is detected by a second image pickup camera 5, sent to the operation processing part 10 as a video signal V2, and displayed on a display device 14b as the X-Y coordinates through the synchronization controller 11 and the central processing part 12.

Description

【発明の詳細な説明】 :1)  発明の技術分野 不発明は、レーザー光を利用し、距離を隔てたj易・、
PJT間の位置変差を検出するための位置測定装置に関
し、特に1、トンネル掘削工事に際してトンネル入口等
の基点にレーザー発振器を設置し1、掘進機(・で取付
けたターゲットにレーザーを投射して位置変差を検出す
るだめの位置測定装置に関するものである。
[Detailed description of the invention]: 1) The technical field of the invention is to use laser light to create
Regarding the position measuring device for detecting positional deviations between PJTs, in particular, 1. During tunnel excavation work, a laser oscillator is installed at a base point such as the tunnel entrance, 1. The present invention relates to a position measuring device for detecting positional variations.

(2)従来技術とその問題点 距離金曜てた2点の相対位置を求める測量は、道路、パ
イプライン等の線形野外工事及びトンネル掘削工事にお
いて欠くべからざる作業である。
(2) Prior art and its problems Surveying to determine the relative position of two points is an indispensable task in linear outdoor construction work such as roads and pipelines, and in tunnel excavation work.

前者の野外工事に比べ後者トンネル入口ではトラバース
側量や三角測量等の方法が採れず、寸だ、空間的にも制
約があp1然も高い測定精度が要求さjrるため、掘進
方向乃至装置の測定が困難を極めた。
Compared to the former field work, methods such as traverse side measurements and triangulation cannot be used at the tunnel entrance of the latter, and there are constraints in size and space, and high measurement accuracy is required. measurement was extremely difficult.

近年測量の分野でレーザー光利用の測定器が幅広く採用
さり、っつあるが、トンネル掘削工事でも例外なくレー
ザーによる測定器を用いられ飛躍的に位置測定精度が高
められている。その一つの方法として、鎧かい円筒(シ
ールドマシン)全掘削方向に押し進めて掘削するシール
ド工法では、切羽((位置する掘進機にターゲットを取
シ付けておき、トンネル入口に固定したレーザー発振器
からレーザーを上記ターゲットに向けて投射し、ターゲ
ットで受けたレーザーの受光位置から位附装着を検出し
て位置測定を行なう装置が様々提案されている。
In recent years, measuring instruments that use laser light have been widely adopted in the field of surveying, and even in tunnel excavation work, laser measuring instruments are used without exception, and the accuracy of position measurement has been dramatically improved. One method is the shield method, in which an armor cylinder (shield machine) is pushed forward in all excavation directions to excavate. A target is attached to the excavation machine located at the face ((), and a laser oscillator fixed at the tunnel entrance is used to excavate. Various devices have been proposed that measure the position by projecting a laser toward the target and detecting the attachment of the laser from the receiving position of the laser beam received by the target.

ターゲットのレーザー受光部にフォトグイオードをマト
リックス状に配列した装置では、隣接素子間隔が大きい
ため約3m以下の位置装着読み取りが不可能で、精度の
点で満足できるものではなかった。
In a device in which photodiodes are arranged in a matrix in the laser receiving section of the target, the distance between adjacent elements is large, making it impossible to read the device at a position of about 3 m or less, and the accuracy is not satisfactory.

特開昭57 63415号による装置は、ターゲットの
レーザー受光面を直交方向に移動はせ、受光面上のレー
ザー投射位置をテレビカメラで観察し、レーザー投射位
置の偏位量から位置装着を求めるものであるが、レーザ
ー受光面の移動手段として送りねじ機構を用いているた
め、所要の測定精度よシ遥かに大きい機械的誤差が生起
する。
The device disclosed in Japanese Patent Application Laid-Open No. 57-63415 moves the laser receiving surface of the target in an orthogonal direction, observes the laser projection position on the receiving surface with a television camera, and determines the position attachment from the amount of deviation of the laser projection position. However, since a feed screw mechanism is used as a means for moving the laser receiving surface, a mechanical error that is far greater than the required measurement accuracy occurs.

筐た、ここでは2枚の受光面と凸レンズを用いた提案も
なされているが不可避的なレンズの収差の問題から測定
精度が劣化する。
However, a proposal using two light-receiving surfaces and a convex lens has been made, but measurement accuracy deteriorates due to the unavoidable problem of lens aberration.

四に、特開昭57−96213号では、ターゲットに透
孔を設け、この透孔を通過するレーザー光をターゲット
から離間した位置で反射させターゲット裏面に戻し、タ
ーゲット裏面に配列した光電素子で位置装着を検出する
もので、この装置により7ば位置変位を倍増させ精度向
上を図ったものであるが、こうした方法では反射歪みが
起生ずると共に、ターゲットの小さい透孔にレーザー光
ヲ位置きせることは難しく面倒である。然も、この装置
でも上記従来例と同じく機械要素によってクーケソF 
fc光軸方向に移動させるため無視できない誤差を生じ
、精度が劣る。
Fourth, in Japanese Patent Application Laid-open No. 57-96213, a through hole is provided in the target, and the laser beam passing through the hole is reflected at a position distant from the target and returned to the back surface of the target. This device detects attachment, and this device doubles the positional displacement to improve accuracy.However, this method causes reflection distortion, and it is difficult to position the laser beam in a small hole in the target. It is difficult and troublesome. However, like the conventional example above, this device also uses mechanical elements to
Since it is moved in the fc optical axis direction, a non-negligible error occurs, resulting in poor accuracy.

以上の従来技術の欠点を解消するために、本出願人は高
精度で操作が簡便な位置測定装置を既に開発している(
特願昭56−104209号)。
In order to eliminate the above-mentioned drawbacks of the prior art, the applicant has already developed a highly accurate and easy-to-operate position measuring device (
(Patent Application No. 104209/1982).

この装置は継続的に移動する掘進機にレーザー受光面と
固体撮像カメラよシ成るターゲットを載置し、受光面に
投射されるレーザー光のスポットをカメラで検出しなが
ら掘進機を移動させレーザースポットの位置装着を求め
るようにしたものである。この装置によ武ば、従来例の
ように工事を中断し捲・械的誤差を伴なう駆動系を独立
して運転し位置測定を行なうものと異なシ、撮像素子の
画素に準じた面精度測定が期待できる。
This device places a target consisting of a laser light-receiving surface and a solid-state imaging camera on a continuously moving excavator, and uses the camera to detect the spot of laser light projected onto the light-receiving surface while moving the excavator to spot the laser beam. It is designed to require the position of the device to be installed. This device is different from the conventional method, which interrupts construction work and independently operates the drive system with mechanical errors to measure the position. Accuracy measurement can be expected.

しかしながら、上記出願人の装置は、従来装置と同様に
、レーザーを発振する基準点に対する位置装着のみ検出
するようになっているが、光軸に対するターゲット自体
の角度変位(ビソチンク、ヨーイング)を検知すること
はできなかった。
However, like the conventional device, the applicant's device detects only the positioning relative to the reference point that oscillates the laser, but it also detects the angular displacement (visotinking, yawing) of the target itself with respect to the optical axis. I couldn't do that.

(3)発明の目的 本発明は、上記実情に鑑みて々されたものであって、タ
ーゲット本体に機械的誤差を生起する要因を排除した構
成を有し、極めて高精度の位置測定及びターゲット自体
の角度偏位をも実時間で行なえる位置測定装置を提供す
ることを目的とするものである。
(3) Purpose of the Invention The present invention has been developed in view of the above-mentioned circumstances, and has a configuration that eliminates factors that cause mechanical errors in the target body, and allows extremely high-precision position measurement and the target itself. It is an object of the present invention to provide a position measuring device that can also perform angular deviations in real time.

(4)発明の特徴 上記目的を達成するために、本発明の特徴は、ターゲッ
トの一方端に光透過性の第1受光板金設け、他万端に第
2受光板を設けると共に、第1及び第2受光板の夫々に
投光したレーザー光を撮像検出しレーザー受光位置を読
み取る第1及び第2撮橡カメラを設け、各カメラで検出
したレーザー投光位置座標から位置装着及び角度偏位を
求めるようにしたことにある。以下、本発明の実施例を
図1面に基づいて説明する。
(4) Features of the Invention In order to achieve the above object, the features of the present invention include providing a first light-transmissive light-receiving plate on one end of the target, a second light-receiving plate on the other end, and First and second imaging cameras are installed to image and detect the laser beam projected onto each of the two light receiving plates and read the laser receiving position, and the positioning and angular deviation are determined from the coordinates of the laser projection position detected by each camera. That's what I did. Embodiments of the present invention will be described below with reference to FIG.

(5)発明の・−実施例 図面第1図は本発明の位置測定装置をトンネル掘削工事
に適用した実Mh fllの概略説明図、第2図(はタ
ーゲットの部分欠截斜視図、第3図は使用状態図である
(5) Practical drawings of the invention Fig. 1 is a schematic explanatory diagram of an actual Mh flll in which the position measuring device of the present invention is applied to tunnel excavation work, Fig. 2 is a partially cutaway perspective view of a target, Fig. 3 The figure is a usage state diagram.

1ヌ1中1は掘進機等の移動体に載置固定されるターゲ
ットである。このターゲット1は、レーザー九入射1)
111に設けた光半透過性の第1受光板2と、第1受光
板2に対向して平行に配置された第2受光板3と、第1
及び第2受光板2.、.3の夫々を撮像するCCDイメ
ージセン丈等の第1及び第2撮像カメラ4,5とをハウ
シンクロに収納して成る。
1 out of 1 is a target that is mounted and fixed on a moving body such as an excavator. This target 1 is laser 9 incident 1)
A semi-transparent first light receiving plate 2 provided at 111, a second light receiving plate 3 disposed in parallel opposite to the first light receiving plate 2,
and a second light receiving plate 2. ,. A first and second imaging camera 4, 5 such as a CCD image sensor, which take an image of each of the images, are housed in a housing synchronizer.

この実施例では第1及び第2撮像カメラ4,5の撮像方
向を交差させるように第1撮像カメラ4を第2受光板3
の下に位置づけ、第2撮像カメラ5を第1受光板2の下
に位置づけている。いずれの撮像カメラも夫々の視野に
入らない位置に、然も夫々が対向する受光板に向う仰角
を出来る限り小さくとって視差を少なくするよう配慮す
る。即ち空間的な制約が許される限シ、両撮像カメラを
その上VCある受光板に接近させると共に、双方の撮<
iカメラ乃至受光板の間隔lを出来るだけ大きくとるこ
とが望ましい。
In this embodiment, the first imaging camera 4 is connected to the second light receiving plate 3 so that the imaging directions of the first and second imaging cameras 4 and 5 intersect.
The second imaging camera 5 is positioned below the first light receiving plate 2 . Consideration is given to reducing parallax by placing both imaging cameras at positions out of their field of view, and at the same time making the angle of elevation toward the light-receiving plates that they face as small as possible. That is, as long as spatial constraints permit, both imaging cameras should be brought close to the light receiving plate where the VC is located, and both imaging cameras should be
It is desirable to make the distance l between the i camera and the light receiving plate as large as possible.

ここで用いる撮像カメラ4,5として小型で安定動作が
望め、解像度の優れたCCDイメージセンサを採用して
いるが、レーザー発振器7からのレーザー光すを両受光
板2,3で受け、そり、によるスポット状の17一ザー
投射点pl 、p2の座標atをビデオ信号Vl、V2
として出ツノ°て゛きる機能を有し、CCDイメージセ
ンサと同等以上の性能を持つものであればどの様な手段
であってもよい。
The imaging cameras 4 and 5 used here are compact, stable in operation, and employ CCD image sensors with excellent resolution. The coordinates at of the spot-like 17 laser projection points pl and p2 are expressed as video signals Vl and V2 by
Any means may be used as long as it has a function that can be used as an image sensor and has performance equivalent to or higher than that of a CCD image sensor.

10は両撮像カメラ4,5からのレーザー投射位置情報
を示すビデオ信号Vl 、V2を解析してテークを表示
づ−る演算処理部である。この演算処理部10は、カメ
ラ4,5の同期側JA/D変換機能、バッファメモリ機
能を励えた同期コントローラ11と、カメラ4,5から
の出力Vl、V2にjll−づき受光板2,3の面上の
レーザースポット位置座標及びそれらを基にターゲツト
1自体の角度変位を演算出力する中火処理部(CPU)
12と、CPU12からの出力テークをデシタル表示す
る表示装置13とから成る。この表示装置13は、受光
板2,3の面上の17−+−ザースホソトの夫々のX−
y座標値を示す浮標表示器14a、14bと、ターゲッ
トの垂直角変位(ピッチング)用表示器15と、水平角
変位(ヨーイング)用表示器17より成9、いずれの表
示器も発光ダイオード等を月1いてテンタル表示するこ
とができる。
Reference numeral 10 denotes an arithmetic processing unit that analyzes video signals Vl and V2 indicating laser projection position information from both imaging cameras 4 and 5 and displays the take. This arithmetic processing unit 10 includes a synchronous controller 11 that supports the synchronous side JA/D conversion function and buffer memory function of the cameras 4 and 5, and light receiving plates 2 and 3 based on the outputs Vl and V2 from the cameras 4 and 5. A medium heat processing unit (CPU) that calculates and outputs the laser spot position coordinates on the surface of the target 1 and the angular displacement of the target 1 itself based on them.
12, and a display device 13 for digitally displaying the output take from the CPU 12. This display device 13 displays each of the X-
It consists of buoy indicators 14a and 14b that indicate the y-coordinate value, an indicator 15 for the vertical angular displacement (pitching) of the target, and an indicator 17 for the horizontal angular displacement (yawing), and each indicator is equipped with a light emitting diode or the like. It can be displayed tentatively once a month.

18はカメラ4,5の映像をそのミま映し出すモニター
テレ、ビで、このモニターテレビ18でレーザースポッ
トの監視を行ったシ、カメラ4,5の位置調整を遠隔操
作で行うことができる。
Reference numeral 18 denotes a monitor TV that displays the images of the cameras 4 and 5. The laser spot can be monitored using the monitor TV 18, and the positions of the cameras 4 and 5 can be adjusted by remote control.

(6)発明の作用 上記構成の位置測定装確の作用とシールド工法トンネル
掘削工事に適用した。場合に就いて説明する。第:3図
に示すように、トンネル入口近傍の基準点にレーザー発
振器7を固定設置し、掘削が進むトンネル円部((同け
てレーザー光すを照射する。
(6) Effects of the Invention The effects of the position measuring instrument having the above configuration and its application to shield method tunnel excavation work. Let me explain the case. As shown in Figure 3, a laser oscillator 7 is fixedly installed at a reference point near the tunnel entrance, and a laser beam is irradiated at the circular part of the tunnel where the excavation progresses.

トンネル切羽部に位置する円筒状鋼製のシールドマシン
Sに上記ターゲット1を取シ付けており、レーザー光は
ターゲット1の第1受光板2の面上に投射);れる。ト
ンネル掘削を進める上で適宜基点位置を定めておき、そ
の基点において、たとえばレーザー光すを第1受光板2
の中心に投射させておき、7−ルドマシンSを押し進め
ながら逐次第1受光板2の面上のレーザースポットPi
を第1撮鍬カメラ4で監視しレーザースポットP1の変
位を検出する。シールドマシンSが設計通9レーザーの
光軸と平行に前進するとレーザースポットP1の位置装
着は認められず、一方、シールドマシンSがレーザーの
光軸からずれると第1受光板2のレーザースポットP1
は中心から外れ、その時のX−Y座標値で位置装着の大
きさ、方向を知ることができる。レーザースポットP1
は第1撮像カメラ4からのビデオ出力V1を演算処世部
10の周期=1ントローラ11に送らり5、ここを経て
中大処咋部12で演算解析し表示器14aにX−Y座標
として表わす。
The target 1 is attached to a cylindrical steel shield machine S located at the tunnel face, and the laser beam is projected onto the surface of the first light receiving plate 2 of the target 1. When proceeding with tunnel excavation, a base point position is determined as appropriate, and at that base point, for example, a laser beam is transmitted to the first light receiving plate 2.
The laser spot Pi on the surface of the first light receiving plate 2 is projected one after another while pushing the laser beam machine S forward.
is monitored by the first hoe camera 4 to detect the displacement of the laser spot P1. If the shield machine S moves forward in parallel with the optical axis of the nine lasers as designed, the positioning of the laser spot P1 will not be recognized. On the other hand, if the shield machine S deviates from the optical axis of the laser, the laser spot P1 of the first light receiving plate 2
deviates from the center, and the size and direction of the position can be determined from the X-Y coordinate values at that time. Laser spot P1
The video output V1 from the first imaging camera 4 is sent to the controller 11 with a period of 1 in the processing section 10, and then is processed and analyzed in the processing section 12 of Chuo University and displayed as X-Y coordinates on the display 14a. .

レーサ゛−光bid光半透過性の第1受光板2を通つ′
で第2受光板3にも投射され、第1受光板2のレーザー
スポットPiと同様に、第2受光板3上のレーザースポ
ットP2も第2撮像カメラ5によって装置を検出されビ
デオ信号■2として演算処Jjノ部10に送られ、同期
コントローラ11、中火処理部12を経て表示器14b
にX−Y座標として表示される。
Laser light passes through the semi-transparent first light receiving plate 2'
Similarly to the laser spot Pi on the first light receiving plate 2, the laser spot P2 on the second light receiving plate 3 is also detected by the second imaging camera 5 and is output as a video signal 2. It is sent to the arithmetic processing section 10, passes through the synchronous controller 11 and the medium heat processing section 12, and then is sent to the display 14b.
are displayed as X-Y coordinates.

さて、ターゲット1がレーザー光軸に対して角度をなし
て傾斜して、つまシ角度偏・位を1守つ」場合、第1.
第2受光板2,3上のレーザースポット位置が中心に対
してベクトル量が変則的な変化を見せる。即ち、掘進機
シールドSが正常に前進しながらも前進方向がずれた場
合はターゲット1の長さ方向軸は帛′にレーザー発振器
7に向いている(第4図)。従って、受光板2,3上の
レーザー発振器)PI 、P2と受光板上の原点Ql、
02の夫々の長さXI 、X2から次の関係式が成立す
るため、掘進方向θの誤9であることを認識できる。
Now, if the target 1 is tilted at an angle with respect to the laser optical axis and maintains the pick angle deviation/position by 1, then the first.
The laser spot position on the second light-receiving plates 2 and 3 exhibits an irregular change in vector quantity with respect to the center. That is, when the tunneling machine shield S moves forward normally but the direction of advance is deviated, the longitudinal axis of the target 1 directly faces the laser oscillator 7 (FIG. 4). Therefore, the laser oscillator) PI, P2 on the light receiving plates 2 and 3 and the origin Ql on the light receiving plate,
Since the following relational expression is established from the respective lengths XI and X2 of 02, it can be recognized that the excavation direction θ is incorrect 9.

これはy!標及びX−Y座標の変位についてもそれら変
位のベクトル量が式(1)と同じ規則的な関係を示す。
This is y! Regarding the displacement of the target and the X-Y coordinates, the vector quantities of these displacements also show the same regular relationship as in equation (1).

しかし、第5図(A、1〜(C)に概念的に示すように
、座標で表わせるベクトル量が変則的なW合、ターゲッ
トが角度偏位を起してい乙ことか分る。
However, as conceptually shown in FIGS. 5A and 1 to 5C, when the vector quantity represented by the coordinates is irregular, it can be seen that the target has caused an angular deviation.

第5図(AJ’では受光板2,3上のレーザー発振器)
pi、p2と原点Ql、02との距離y 1 、y2は
正負逆の匝を示している。この例は垂直変位(ピッチン
グ)状態の典型例であるが、等符号の値を示しても上記
式(1)を満さないY@方向の偏位量を持つ。この場合
、光軸すに対するターゲット1の!l1Il] Aの傾
きは次式で表わせる。
Figure 5 (laser oscillator on light receiving plates 2 and 3 in AJ')
The distances y 1 and y2 between pi, p2 and the origin Ql, 02 indicate the opposite positive and negative values. This example is a typical example of a vertical displacement (pitching) state, but has a displacement amount in the Y@ direction that does not satisfy the above equation (1) even if the values are of equal sign. In this case, target 1's ! l1Il] The slope of A can be expressed by the following formula.

―θ1−y″−y2  ・・・・・・・・・・・・・・
(2)第5図(B)では両受光板2,3上のレーザース
ポットPl、P2と原点oi 、02の距離XI、X2
からも分るようにターゲット1の軸Aは水EF方向偏位
(ヨーイング)を起してお夕、この場合の軸Aの傾きは
次式で表わせる。
-θ1-y″-y2 ・・・・・・・・・・・・・・・
(2) In Fig. 5(B), the distances XI, X2 between the laser spots Pl, P2 on both light receiving plates 2, 3 and the origin oi, 02
As can be seen, the axis A of the target 1 causes a deviation (yawing) in the water EF direction, and the inclination of the axis A in this case can be expressed by the following equation.

xl  −x2 論θ2−□ ・・・・・・・・・・・・ +3)ぐハ、
ら垂直方向、水平方向の変位の合成によるあらゆる角偏
位を上記−θ1.tanθ2 を確認することで認識で
きる。
xl −x2 Theory θ2−□ ・・・・・・・・・・・・ +3) Guha,
Any angular deviation resulting from the combination of vertical and horizontal displacements from −θ1. This can be recognized by checking tanθ2.

1だ、シールドマシンSがa−リングを起こしている1
易合は、従来よシ用いられ、ている#多I割のテークを
入力し、上記の演算結果を補正する事により、測定の正
しさが保証される。傾斜計は本発明の要旨ではない為説
明を省略する。
1, Shield Machine S is causing an a-ring 1
The correctness of the measurement is guaranteed by inputting the take of #multipleI and correcting the above calculation result, which has been conventionally used. Since the inclinometer is not the gist of the present invention, its explanation will be omitted.

上記水平、垂直及び回転角の夫々の偏位量による角度変
位値は第1.第2撮像カメラ4,5のビデオ出力Vl 
、V2を演算処理部10に送り、中失処理装ffTf1
2で演算解析して各表示器15.17に表示する。
The angular displacement values based on the horizontal, vertical and rotational angle deviations are the first. Video output Vl of the second imaging cameras 4 and 5
, V2 to the arithmetic processing unit 10, and the loss processing unit ffTf1
The calculation is analyzed in step 2 and displayed on each display 15 and 17.

(7)発明の詳細 な説明したように、本発明によれば、光半透過性の第1
受光板に対向させて第2受光板を設け、第1.第2受光
板の夫々に投射レーザースポットを撮像し位置検出する
第1.第2撮像カメラを対設状に設け、各カメラで検出
したし、−ザースポソト位置から位置装置及び角度偏位
を測定できるようにしたために機械的誤差を生ずること
なく高精度の位置測定及びターゲット自体の角度偏位を
も実時間で行なうことが可能となる。
(7) As described in detail, according to the present invention, the semi-transparent first
A second light receiving plate is provided opposite to the light receiving plate; The first one images the projected laser spot on each of the second light receiving plates and detects the position. The second imaging camera is installed oppositely, and each camera detects the target itself, and the positioning device and angular deviation can be measured from the target position, allowing high-precision positioning without mechanical errors and the target itself. It is also possible to perform angular deviations in real time.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は本発明の位置測定装置の概略説明図、第2
図は同装置の一要素であるターゲットの部分欠截斜視図
、第3図はトンネル掘削工事に適用した使用状態図、第
4図は位置測定の解析原理説明図、第5図(N〜(B)
は角度偏位の解析原理説明図である。 1・・・ターゲット、2・・・第1受光板、3・・・第
2受光板、4・・・第1撮像カメラ、5・・・第2撮像
カメラ、7・・・レーザー発振器。 特許出願人  フック株式会社 代理人弁理士  吉 1)芳 春
Figure 1 is a schematic explanatory diagram of the position measuring device of the present invention;
The figure is a partially cutaway perspective view of the target, which is one element of the device, Figure 3 is a usage state diagram applied to tunnel excavation work, Figure 4 is an illustration of the analysis principle of position measurement, and Figure 5 (N~( B)
is a diagram explaining the principle of analysis of angular deviation. DESCRIPTION OF SYMBOLS 1... Target, 2... First light receiving plate, 3... Second light receiving plate, 4... First imaging camera, 5... Second imaging camera, 7... Laser oscillator. Patent applicant Yoshi Yoshi, patent attorney representing Hook Co., Ltd. 1) Haru Yoshi

Claims (1)

【特許請求の範囲】[Claims] レーザー発振器からのレーザー光を距離を隔てた位置に
設置したターゲットに投射し、ターゲット受光板面上の
投光位置を検出することで位置変差を求める位置測定装
置において、−万端に設けた光半透過性の第1受光板か
ら一定間隔!il1間した他方端に対向状に第2受光板
を設け、四に、上記第1受光板及び第2受光板の夫々に
投光したレーザー光を撮像検出しレーザー受光位置を読
み取る第71及び第2撮像カメラを設けてターゲットを
描成し、該第1及び第2撮像カメラで検出したレーザー
投光位置から位置変差及び角度変位を求めるようにした
ことを特徴とする位置測定装@。
In a position measuring device that projects a laser beam from a laser oscillator onto a target set at a distance, and detects the position of the projected light on the surface of the target light receiving plate, the position measurement device calculates the positional deviation. Fixed distance from the semi-transparent first light receiving plate! A 71st and a 71st light-receiving plate are provided at the other end facing each other, and a 71st and a 71-th light-receiving plate are provided to face each other; A position measuring device @ characterized in that two imaging cameras are provided to depict a target, and a positional deviation and an angular displacement are determined from the laser projection position detected by the first and second imaging cameras.
JP58089542A 1983-05-21 1983-05-21 Position measuring device utilizing laser light Granted JPS59214703A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58089542A JPS59214703A (en) 1983-05-21 1983-05-21 Position measuring device utilizing laser light
US06/612,560 US4671654A (en) 1983-05-21 1984-05-21 Automatic surveying apparatus using a laser beam
GB08412941A GB2143396B (en) 1983-05-21 1984-05-21 Beam riding location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58089542A JPS59214703A (en) 1983-05-21 1983-05-21 Position measuring device utilizing laser light

Publications (2)

Publication Number Publication Date
JPS59214703A true JPS59214703A (en) 1984-12-04
JPH024843B2 JPH024843B2 (en) 1990-01-30

Family

ID=13973698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58089542A Granted JPS59214703A (en) 1983-05-21 1983-05-21 Position measuring device utilizing laser light

Country Status (1)

Country Link
JP (1) JPS59214703A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348408A (en) * 1986-08-19 1988-03-01 Nippon Soken Inc Angle measuring instrument
JPH01314912A (en) * 1988-06-15 1989-12-20 Mc Kk Automatic measurement device
JP2011013095A (en) * 2009-07-02 2011-01-20 Waseda Univ Displacement measuring device and displacement measuring method
JP2014106117A (en) * 2012-11-28 2014-06-09 Tokyo Keiki Inc Transmission position measurement method for laser beam and position measurement method and measurement system using the same measurement method
CN108253884A (en) * 2017-12-07 2018-07-06 上海隧道工程有限公司 The measuring method and system of the contactless spatial attitude of shield machine segment
CN112880560A (en) * 2021-01-19 2021-06-01 广东博智林机器人有限公司 Laser position detection device and equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175211B (en) * 2010-12-24 2012-08-22 北京控制工程研究所 Barrier position determining method based on lattice structured light
CN108990977B (en) 2014-04-22 2022-03-08 夏普株式会社 Film, laminate, sterilization method, and method for reactivating surface of film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348408A (en) * 1986-08-19 1988-03-01 Nippon Soken Inc Angle measuring instrument
JPH01314912A (en) * 1988-06-15 1989-12-20 Mc Kk Automatic measurement device
JP2011013095A (en) * 2009-07-02 2011-01-20 Waseda Univ Displacement measuring device and displacement measuring method
JP2014106117A (en) * 2012-11-28 2014-06-09 Tokyo Keiki Inc Transmission position measurement method for laser beam and position measurement method and measurement system using the same measurement method
CN108253884A (en) * 2017-12-07 2018-07-06 上海隧道工程有限公司 The measuring method and system of the contactless spatial attitude of shield machine segment
CN108253884B (en) * 2017-12-07 2019-12-20 上海隧道工程有限公司 Method and system for measuring non-contact space attitude of shield machine segment
CN112880560A (en) * 2021-01-19 2021-06-01 广东博智林机器人有限公司 Laser position detection device and equipment

Also Published As

Publication number Publication date
JPH024843B2 (en) 1990-01-30

Similar Documents

Publication Publication Date Title
US4671654A (en) Automatic surveying apparatus using a laser beam
KR101703774B1 (en) Calibration method for a device having a scan function
CN101603812B (en) Ultrahigh speed real-time three-dimensional measuring device and method
US20180321383A1 (en) Triangulation scanner having flat geometry and projecting uncoded spots
CN104380137A (en) Method and handheld distance measurement device for indirect distance measurement by means of image-assisted angle determination function
JPS60185108A (en) Method and device for measuring body in noncontacting manner
CN210014783U (en) Laser target for measuring shield posture
JP3347035B2 (en) Optical declination measuring device and underground excavator position measuring device
CN112857212B (en) Large-scale structure multipoint displacement and rotation response synchronous monitoring system and data analysis method thereof
JP3647608B2 (en) Surveyor automatic tracking device
JP2019132769A (en) Survey system
US8904658B2 (en) Method for determining the orientation of two shafts connected via two universal joints and a third shaft in the plane of the three shafts
JP5028164B2 (en) Surveying instrument
JPS59214703A (en) Position measuring device utilizing laser light
EP2592379A2 (en) Method for determining the orientation of two shafts connected via two universal joints and a third shaft in the plane of the three shafts
JP2001289620A (en) Method for detecting construction state in tunnel
JP2007047142A (en) Position attitude measuring device using image processing and laser beam
CN113847872A (en) Discrete single-point displacement static monitoring device and method based on laser ranging
RU2247321C1 (en) Object location finder
JPH04313013A (en) Plane type range finder/goniometer
CN105091771A (en) Apparatus for measuring micro-deformation of connecting rod based on displacement amplification principle
JPS6281508A (en) Optical 3-dimensional position measuring apparatus
JPH07103727A (en) Method for measuring deformation of furnace body of industrial furnace
JP3009097B2 (en) Excavation direction control method and excavation direction display device
JPH0474649B2 (en)