JP2007047142A - Position attitude measuring device using image processing and laser beam - Google Patents

Position attitude measuring device using image processing and laser beam Download PDF

Info

Publication number
JP2007047142A
JP2007047142A JP2005255701A JP2005255701A JP2007047142A JP 2007047142 A JP2007047142 A JP 2007047142A JP 2005255701 A JP2005255701 A JP 2005255701A JP 2005255701 A JP2005255701 A JP 2005255701A JP 2007047142 A JP2007047142 A JP 2007047142A
Authority
JP
Japan
Prior art keywords
laser beam
image
image processing
camera
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005255701A
Other languages
Japanese (ja)
Inventor
Shigeki Sugihara
繁樹 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BERU TECHNO KK
Original Assignee
BERU TECHNO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERU TECHNO KK filed Critical BERU TECHNO KK
Priority to JP2005255701A priority Critical patent/JP2007047142A/en
Publication of JP2007047142A publication Critical patent/JP2007047142A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of a method of using an image processing technology for measuring a position attitude of a movable body wherein the zoom of a camera must be changed when movable body moves near and far, the camera optical axis changes, separation from the actual coordinate system arises, and accurate measurement cannot be performed when the zoom is changed, an instrument frequently cannot be placed in the midway, and there are visual read instrumentations using a laser beam, a scale plate, and a monitor TV to frequently cause an error when the position attitude of an excavating machine in narrow tunnel construction or the like is measured, a gyrocompass used in a curved tunnel is expensive but has low accuracy, can measure only azimuthal angle, and cannot measure the position, and a present instrumentation system using image processing is expensive. <P>SOLUTION: Utilizing an inexpensive and accurate monitor integrated type CCD camera, a free suspension marker or the like, and a laser beam used as a base line, high-speed and highly accurate instrumentation is performed with an image processing device and mathematical processing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、手術工作機械操作アーム、曲線型随道(トンネル)掘削機械、物流、搬送システムの運搬機械等の位置姿勢の計測を自動的に行うことが出来る自動位置姿勢計測システムに関する。The present invention relates to an automatic position / orientation measurement system capable of automatically measuring the position / orientation of a surgical machine tool operation arm, a curved type tunnel (tunnel) excavation machine, physical distribution, a transport machine of a transfer system, and the like.

特願平11−35793 従来手術工作操作器具や曲線随道乃至狭小随道工事における掘削機械の位置姿勢や施工実績を計測することは劣悪な環境やその狭小さのため困難であった。手術工作器具においてはマニュピュレータの多関節にエンコーダを設置し角度距離から計算したり、隧道工事においてはトランシット、測距テープ、電卓、パソコン、照明器などを一同に携行し目盛目視計測していたが、劣悪な環境のため計測誤差を多発し、特に曲線随道の場合頻繁に計測する必要があり計測作業員の身体的疲労も大きな問題であった。
参考文献の 特願平11−35793の発明は本出願者の発明によるものであり、複数台のCCDカメラ(以降C−MOS型カメラ、撮像管型TVカメラ等を含み以降CCDカメラ等と称す)搭載3次元計測装置を利用し、曲線随道掘削機の自動測量の方法を示している。CCDカメラ等の利用方法について該発明の場合はCCDカメラ等と計測対象間距離が一定の場合にはカメラのズームやフォーカスは一定であればよい。
本発明は安価な市販品のCCDカメラ等を利用することを視野に入れている。
一般的には画像処理計測する場合は固定焦点レンズを用いて、計測前に焦点距離やレンズ歪等各種光学パラメータ(光軸、焦点距離、レンズ中心、レンズ歪等)を計測設定し、計測中はズームやフォーカスは変更しないことが原則とされている。
Japanese Patent Application No. 11-35793 Conventionally, it has been difficult to measure the position and orientation of the excavating machine and the construction performance in a surgical operation tool or a curved path or narrow path construction because of the poor environment and its narrowness. For surgical tools, encoders were installed at the joints of the manipulators and calculated from the angular distance, and for tunnel construction, a transit, distance measuring tape, calculator, personal computer, illuminator, etc. were carried all together for visual measurement. However, measurement errors frequently occur due to the inferior environment, and it is necessary to measure frequently especially in the case of curved roads.
The invention of Japanese Patent Application No. 11-35793 of the reference is based on the invention of the present applicant, and includes a plurality of CCD cameras (hereinafter referred to as CCD cameras and the like including C-MOS type cameras, image pickup tube type TV cameras, etc.). The method of automatic surveying of a curved follower excavator using an on-board 3D measuring device is shown. Regarding the method of using a CCD camera or the like, in the case of the present invention, when the distance between the CCD camera and the object to be measured is constant, the zoom and focus of the camera need only be constant.
The present invention is intended to use an inexpensive commercially available CCD camera or the like.
In general, when performing image processing measurement, a fixed focus lens is used and various optical parameters (optical axis, focal length, lens center, lens distortion, etc.) are measured and set before measurement. The principle is that zoom and focus are not changed.

画像処理を利用した計測では、カメラのズーム変化に対する光軸移動(座標系の変化)の問題が常にあり、(高精度のレンズ送り機構を利用してズームを行う放送機器や精密計測機器は別として)、ズーム機構に角度エンコーダを併設し、ズームに応じた光軸変化を計測値にフィードバックする方法が一般的であるが、キャリブレーションが個体ごとに必要、かさばる、安価な市販品には望めない等実用的ではない。
狭小な随道内では計測用の立体マーカをCCDカメラ等で視準する方法は視野が狭いため複数個のマーカ全ては見えない場合がある。
従来1台のカメラ系で対象物を2次元的に画像処理計測することは出来たが、3次元位置姿勢は計測は出来なく、3次元位置姿勢計測は2台のカメラ系で行っており(いわゆるステレオカメラ方式)、高価、設置場所が限定される、などの制約があった。
カメラの計測単位はピクセル単位であり、実寸法への変換は予め実寸法の解っている立体を計測しキャリブレーションを行い、変換係数テーブルを都度参照する等、煩わしい方法を用いていた。
また従来はズームやフォーカスを変更すると、その都度 光学パラメータを計測設定し直すため、パラメータ計測設備や環境のある場所に移動し再度計測設定するという煩雑な工程を繰り返す必要があった。。
In measurement using image processing, there is always a problem of optical axis movement (coordinate system change) in response to camera zoom changes (except for broadcasting equipment and precision measurement equipment that perform zoom using a high-precision lens feed mechanism). As a general rule, an angle encoder is added to the zoom mechanism, and the optical axis change according to the zoom is fed back to the measured value. However, calibration is necessary for each individual, and it can be expected for bulky and inexpensive commercial products. It's not practical.
In a narrow path, the method of collimating the three-dimensional marker for measurement with a CCD camera or the like may not be able to see all of the plurality of markers because the field of view is narrow.
Conventionally, a single camera system could measure and measure an object two-dimensionally, but a 3D position / orientation cannot be measured, and a 3D position / orientation measurement is performed using two camera systems ( There were restrictions such as a so-called stereo camera system, high cost, and limited installation location.
The unit of measurement of the camera is in units of pixels, and conversion to the actual size uses a cumbersome method such as measuring a solid whose actual size is known in advance, performing calibration, and referring to the conversion coefficient table each time.
Conventionally, when the zoom or focus is changed, the optical parameters are measured and set again, so that it is necessary to repeat the complicated process of moving to a place where the parameter measuring equipment or environment is located and setting the measurement again. .

請求項1の計測方法は距離計搭載手動乃至自動3次元旋回台にレーザ発光器およびCCDカメラ、ズームレンズ等を搭載し移動体に設置された立体マーカの3次元位置姿勢を計測し、移動体の位置姿勢を計算する方法である。(図1)。
レーザ発光器は距離計測機能を持つものとする。
位置姿勢とは3次元座標X,Y,ZとX,Y,Z軸に対する回転角3値いわゆるピッチング、ヨーイング、ローリングのことである。
レーザビーム11は旋回台の旋回基準軸に平衡乃至一定角度に固定され、既知の光軸位置角度で旋回するか、レーザ14の如く旋回台、カメラ系とは別の点に固定され、その光軸の位置、角度は既知とする。
説明上旋回中心上にレーザが固定されているものとする。
このとき必ずしもカメラ座標系の光軸の位置角度は、既知であればより正確、迅速な計測が出来るが 必ずしも既知である必要はない。
この状態でマーカ12及び基準レーザ照射画像を取り込み画像処理し、画像面内のマーカ座標と距離計乃至レーザ距離計乃至別手段により計測された距離情報からカメラ光軸系での位置姿勢を計算しさらに該位置姿勢を絶対座標系に変換し移動体の位置姿勢を計算する。立体マーカ12群の画像面内(2次元)での位置からマーカの3次元位置姿勢を求める方法は1眼カメラ立体視方法、比例法等による。
ここで言う1眼カメラ立体視方法とは、形状寸法既知の3次元立体物と焦点距離fを持つレンズと、レンズから画像の結像位置までの実距離から計測物までの実距離を計算する方法である。図−3において 30は立体の高さA、31は求める距離L、32は焦点距離f、33はレンズからCCDまでの距離d、34はCCD画像でのAの高さaとする。
予めdは製造工程において、焦点距離と既知のAと既知の距離からキャリブレーションにより求められる。こうして予めdの決まった光学系で画像処理することにより未知の距離Lは計測値 a、D、Aからなる三角形から
L=A*d/a として求めることが出来る。
この方法によれば、距離だけでなく、全ての立体の3次元位置姿勢も計算することが出来る。即ち図3−35例のごとく、既知の実寸の三角錐AがCCDに結像aすることを条件とし、前期1眼カメラ立体視法により計算することが出来る。
The measuring method according to claim 1 is a method of measuring a three-dimensional position and orientation of a three-dimensional marker installed on a moving body by mounting a laser emitter, a CCD camera, a zoom lens, etc. on a manual or automatic three-dimensional swivel mounted with a distance meter. This is a method of calculating the position and orientation of (FIG. 1).
The laser emitter is assumed to have a distance measuring function.
The position and orientation refers to three-dimensional coordinates X, Y, Z and a rotation angle ternary with respect to the X, Y, Z axes, so-called pitching, yawing, and rolling.
The laser beam 11 is fixed to a turning reference axis of the swivel base at a fixed or constant angle and swivels at a known optical axis position angle, or is fixed at a point different from the swivel base and camera system like the laser 14, and the light. The position and angle of the shaft are assumed to be known.
In the explanation, it is assumed that the laser is fixed on the turning center.
At this time, if the position angle of the optical axis of the camera coordinate system is known, accurate and quick measurement can be performed, but it is not always necessary to know.
In this state, the marker 12 and the reference laser irradiation image are captured and image-processed, and the position and orientation in the camera optical axis system are calculated from the marker coordinates in the image plane and distance information measured by a distance meter, laser distance meter, or another means. Further, the position and orientation are converted into an absolute coordinate system, and the position and orientation of the moving object are calculated. A method for obtaining the three-dimensional position and orientation of the marker from the position (two-dimensional) in the image plane of the group of three-dimensional markers 12 is a single-lens camera stereoscopic method, a proportional method, or the like.
The single-lens camera stereoscopic viewing method here refers to a three-dimensional solid object having a known shape and a lens having a focal length f, and an actual distance from the lens to the image formation position to the measurement object is calculated. Is the method. In FIG. 3, 30 is the height A of the solid, 31 is the distance L to be obtained, 32 is the focal length f, 33 is the distance d from the lens to the CCD, and 34 is the height a of the CCD image.
In advance, d is obtained by calibration from the focal length, the known A, and the known distance in the manufacturing process. In this way, by performing image processing with an optical system in which d is determined in advance, the unknown distance L is determined from the triangle consisting of the measured values a, D, and A
L = A * d / a can be obtained.
According to this method, not only the distance but also the three-dimensional position and orientation of all solids can be calculated. That is, as in the example of FIG. 3-35, it can be calculated by the single-lens camera stereoscopic method in the previous period on the condition that a known actual triangular pyramid A is imaged a on the CCD.

ここで言う比例法とはある実寸法を持つマーカ画像のピクセル寸法と実寸法の比例係数から対象物の位置姿勢を計算する方法である。
図1、図2においてマーカ12a,12b,12cは移動体に固定されているがマーカ12d,12eは鉛直に自由懸垂されていて、錘やダンパーで移動体の振動を吸収し、安定的に鉛直を保つ機構で保持されている。12f,12gは同様の機構で常時水平を保持しているマーカーとする。
12d−12e間は移動体の姿勢に関係なく一定の長さと鉛直を保ち、12d−12eと12f−12gの交角は常時直角を保つのでこれを尺度として各マーカの2次元実座標値を計算することが出来、12a,12b,12c間距離と座標値により近似的に姿勢も計算することが出来る。
また12a,12bが光軸に概ね直角の場合は12a,12b間実距離を尺度とすることも出来る。
マーカー12cからも同様に12e,12f,12gの自由懸垂マーカーを懸垂し12cの実寸位置を計算する尺度とすれば、より正確な計測が出来る。
マーカーを多数設置できない場合は、3個以上の複数マーカ(12h,12i,21j)を立体的に剛接し、全体を自由懸垂することでマーカー数を少なくする。
複数個のマーカーとカメラ間距離が大きく違う場合はこのように複数個の自由懸垂マーカーを用いるとより正確な計測が出来る。
移動体が遠近に移動し画像が見えにくくなったとき画像処理しやすい状態にズーム操作するとカメラの光軸は変化し当初の座標軸と乖離し、絶対座標系との関係が不明になる。
マーカ12群の画像面内での位置が変化するため、このままでは絶対座標系に変換が出来ないが、本発明の方法を用いるとレーザの照射画像位置はズームに影響されない絶対座標系にあり(図4)、マーカ画像位置をレーザ画像位置との関係に補正することでマーカの絶対位置が求められる。
ここでマーカ群12の個々のマーカを同色としても良いが、色分けすることでさらに画像処理能力を高めることが出来る。例えばレーザビーム13は、通常は赤色なので 例えばマーカ12aは緑b,cは青、自由懸垂マーカ12d,e、f,gは黄色等に色別すると、マーカーの前後左右の位置関係が明瞭になり画像処理ソフトウェア作成上有効である。
またマーカーが遠近したときはレンズのズームを行うが、当初の光学系のパラメータが変化し、そのままでは計測誤差が増大するので、ズーム前に測距、画像処理を行いマーカーの座標を計測、既知としておき、、ズーム後はその既知の値を元にパラメータを再計算、設定しなおす。
The proportional method referred to here is a method of calculating the position and orientation of an object from the pixel coefficient of a marker image having a certain actual dimension and a proportional coefficient between the actual dimensions.
In FIGS. 1 and 2, the markers 12a, 12b, and 12c are fixed to the moving body, but the markers 12d and 12e are freely suspended vertically, and the vibrations of the moving body are absorbed by weights and dampers to stably stabilize the vertical. It is held by a mechanism that keeps Reference numerals 12f and 12g are markers that are always kept horizontal by the same mechanism.
Between 12d-12e, a constant length and verticality are maintained regardless of the posture of the moving body, and the crossing angle of 12d-12e and 12f-12g always maintains a right angle, so that the two-dimensional real coordinate value of each marker is calculated using this as a scale. The posture can also be calculated approximately by the distance between 12a, 12b, and 12c and the coordinate value.
When 12a and 12b are substantially perpendicular to the optical axis, the actual distance between 12a and 12b can be used as a scale.
Similarly, if the free hanging markers 12e, 12f, and 12g are suspended from the marker 12c and used as a scale for calculating the actual position of the 12c, more accurate measurement can be performed.
When a large number of markers cannot be installed, three or more plural markers (12h, 12i, 21j) are rigidly contacted three-dimensionally, and the entire number is freely suspended to reduce the number of markers.
When the distance between a plurality of markers and the camera is greatly different, more accurate measurement can be performed by using a plurality of free hanging markers in this way.
When the zooming operation is performed so that the image can be easily processed when the moving object moves far and away and the image becomes difficult to see, the optical axis of the camera changes and deviates from the original coordinate axis, and the relationship with the absolute coordinate system becomes unclear.
Since the position of the marker 12 group in the image plane changes, it cannot be converted into the absolute coordinate system as it is. However, when the method of the present invention is used, the laser irradiation image position is in the absolute coordinate system which is not affected by the zoom ( FIG. 4), the absolute position of the marker is obtained by correcting the marker image position to the relationship with the laser image position.
Here, the individual markers of the marker group 12 may be the same color, but the image processing capability can be further enhanced by color-coding. For example, since the laser beam 13 is normally red, for example, if the marker 12a is green b, c is blue, and the free hanging markers 12d, e, f, g are yellow, etc., the positional relationship between the front, rear, left and right of the marker becomes clear. This is effective for creating image processing software.
Also, when the marker is close, the lens is zoomed, but the parameters of the original optical system change, and the measurement error increases as it is, so measure the distance and image processing before zooming and measure the coordinates of the marker. After zooming, the parameters are recalculated and set based on the known values.

請求項2の発明は曲面反射鏡(平面反射鏡も含む)とハーフミラーとスクリーンを複数枚相対して設置した光学系を移動体に固定し、光学系に入射角度が既知のレーザビームを照射し、ハーフミラーの映像とスクリーンの映像をCCDカメラ等で画像処理して移動体の位置、姿勢を計測する方法である。
図5は上記光学系(41,42,43。反射鏡はカメラ視界、レーザ52の光路をさえぎらないように配置されており、その位置関係は既知)と複数台のCCDカメラ等(受光器内カメラ40、40a、40b 受光器外カメラ40c)および自由懸垂の鉛直マーカ44a,b(2以上複数個乃至線状マーカ)及び自由懸垂水平マーカ44c,dからなる受光器50、および各CCDカメラ等の画像を合成した画像51を示している。
原理を簡単に説明するため CCDカメラ等40を1台、反射鏡は全て平面鏡とし、入射するレーザは最初にハーフミラー41に入射し、平面鏡42で全反射し、最終的にスクリーン43に結像するものとする。その他に50内には50の鉛直に対する傾きを計測するためおよび画像ピクセル単位から実単位への換算尺度とする自由懸垂鉛直マーカ44a,b水平マーカ44c,dが設置されている。換算の方法は
In the second aspect of the invention, an optical system in which a plurality of curved reflectors (including planar reflectors), half mirrors, and screens are arranged to face each other is fixed to a moving body, and a laser beam having a known incident angle is irradiated to the optical system. In this method, the image of the half mirror and the image of the screen are processed by a CCD camera or the like to measure the position and orientation of the moving body.
FIG. 5 shows the above optical system (41, 42, 43. The reflector is arranged so as not to interrupt the camera field of view and the optical path of the laser 52, and its positional relationship is known), a plurality of CCD cameras, etc. Cameras 40, 40a, 40b Cameras outside light receivers 40c), light-receiving devices 50 comprising free-hanging vertical markers 44a, b (two or more or linear markers) and free-hanging horizontal markers 44c, d, CCD cameras, etc. The image 51 which synthesize | combined these images is shown.
To briefly explain the principle, one CCD camera 40, etc., and the reflecting mirrors are all plane mirrors. The incident laser is first incident on the half mirror 41, totally reflected by the plane mirror 42, and finally formed on the screen 43. It shall be. In addition, free hanging vertical markers 44a and 44b and horizontal markers 44c and d are provided in 50 to measure the inclination of 50 with respect to the vertical and as a conversion scale from image pixel units to actual units. How to convert

行に説明の詳細と同じ原理である。(ピクセル単位から実単位への変換はあらかじめキャリブレーションされた変換係数を用いることも出来る)
受光器50の前面ハーフミラー41に入射し、最期にスクリーン43に結像するレーザの途中での反射、半透過の画像はたレーザは画像51において示すとおりである。
41、42、43の画像位置は基準線たるレーザビームからの変移即ち上下左右の座標であり、その値を光路距離で除した値が方向角である。
即ち41と43の水平乖離距離45を実距離に変換し、41、42間の実距離で除した値から受光器のレーザ光軸に対する水平角(ヨーイング)が計算できる。
41と43の鉛直乖離距離46を実距離に変換し、41、42間の実距離で除した値から受光器のレーザ光軸に対する鉛直角(ピッチング)が計算できる。
狭小随道のようにレーザ方向にしかスペースが取れない場合はハーフミラー41、カメラ40a、反射鏡42はハーフミラーとし、カメラ40aで41、42の画像処理を行い前期の計算方法で位置姿勢を計算する。またカメラ40、40a、40bは受光器に設置されていて受光器の位置姿勢の変位の影響を受け補正を必要とするが、40cは受光器と切り離し、受光器変位の影響を受けない位置にあり、補正は単純化される。
カメラ42bはさらに奥行きスペースに制約がある場合に使用する等反射鏡、ハーフミラー、スクリーン、カメラの配置を変えて対応することが出来る。また複数台のカメラを使用することにより、映像近くにカメラを設置することが出来画像分解能を上げ計測精度を向上することが出来る。
一部の反射鏡を平面鏡ではなく既知の曲率の曲面鏡としたり、レーザ光路上に凹凸レンズを配置したりするとさらに制約のあるスペースに対応することが出来る。
請求項1同様入射レーザを赤色とするとマーカ44a,b,c,dは赤以外に色別するとさらに画像処理能力を高めることが出来る。
The same principle as described in detail on the line. (For conversion from pixel unit to real unit, a pre-calibrated conversion coefficient can be used.)
An image 51 shows a reflected or semi-transmitted image halfway through the laser that is incident on the front half mirror 41 of the light receiver 50 and finally forms an image on the screen 43.
The image positions 41, 42, and 43 are transitions from the laser beam that is the reference line, that is, the vertical and horizontal coordinates, and the value obtained by dividing the value by the optical path distance is the direction angle.
That is, the horizontal divergence distance 45 between 41 and 43 is converted into an actual distance, and the horizontal angle (yawing) with respect to the laser optical axis of the light receiver can be calculated from the value divided by the actual distance between 41 and 42.
The vertical divergence distance 46 between 41 and 43 is converted into an actual distance, and the vertical angle (pitching) with respect to the laser optical axis of the light receiver can be calculated from the value obtained by dividing by the actual distance between 41 and 42.
If there is a space only in the laser direction, such as a narrow path, the half mirror 41, camera 40a, and reflecting mirror 42 are half mirrors, and the camera 40a performs image processing of 41 and 42, and the position and orientation are calculated by the previous calculation method. calculate. The cameras 40, 40a, and 40b are installed in the light receiver and need to be corrected due to the influence of the displacement of the position and orientation of the light receiver. However, 40c is separated from the light receiver and is not affected by the displacement of the light receiver. Yes, the correction is simplified.
The camera 42b can cope with a change in the arrangement of the iso-reflecting mirror, the half mirror, the screen, and the camera used when the depth space is limited. In addition, by using a plurality of cameras, the cameras can be installed near the video, and the image resolution can be increased and the measurement accuracy can be improved.
If some of the reflecting mirrors are curved mirrors having a known curvature instead of a plane mirror, or an uneven lens is disposed on the laser optical path, it is possible to deal with a more restricted space.
If the incident laser is red as in the first aspect, the image processing ability can be further enhanced if the markers 44a, b, c, d are color-coded other than red.

従来の市販品のデジタルカメラ、ムービーカメラによる画像処理位置姿勢計測、測量はその光軸のあいまいさから不可能とされていたが、レーザビームの直線性と組み合わせることにより光軸のあいまいさを解消することが出来、精度向上を図ることが出来る。
移動する立体の形状を計測する場合立体の各点の位置を出来るだけ多く正確に測る必要があり、該発明による画像処理技術の高速性を利用することにより瞬時に多くの点を計測することが出来る。
Image processing position / orientation measurement and surveying using conventional commercial digital cameras and movie cameras were impossible due to the ambiguity of the optical axis, but the ambiguity of the optical axis was eliminated by combining it with the linearity of the laser beam. It is possible to improve accuracy.
When measuring the shape of a moving solid, it is necessary to measure the position of each point of the solid as accurately as possible. By using the high speed of the image processing technique according to the present invention, it is possible to measure many points instantaneously. I can do it.

現在市販品のデジタルビデオカメラを購入し、レーザ照射機を併設し本発明の試作機を一台製作し、画像処理ソフトウエアを開発し、テストを行っている。Currently, a commercially available digital video camera is purchased, a laser irradiation machine is installed, a prototype of the present invention is manufactured, and image processing software is developed and tested.

下水道工事シールド工法作業所にて上記試作機による試験を行っている。Tests using the above prototypes are being conducted at the sewage construction shield work site.

医療手術機器のマニュピレータ、機械工作操作器具、建設工事、随道掘削工事機械、運搬、搬送機等移動体の位置方向計測。構造物、工作設置物等固定物体の位置姿勢計測。Measurement of the position and direction of moving bodies such as manipulators for medical surgical equipment, machine tool operating equipment, construction work, excavation machinery, transportation and transporting machines. Position and orientation measurement of fixed objects such as structures and work installations.

請求項1の全体構成図を示した図面である。It is drawing which showed the whole block diagram of Claim 1. 請求項1 CCDカメラ等光軸、基準レーザ、マーカの位置関係を平面的に示した図である。[Claim 1] A plane view showing a positional relationship among an optical axis of a CCD camera, a reference laser, and a marker. 立体視計測の原理図である。It is a principle diagram of stereoscopic vision measurement. ズーム前の画像からズーム後の画像が乖離した状態を示した図である。It is a figure showing the state where the image after zooming deviated from the image before zooming. 請求項2受光器及びCCDカメラ等画像を示した図である。FIG. 2 is a view showing images of a light receiver and a CCD camera.

符号の説明Explanation of symbols

10...CCDカメラ等
11...基準レーザ照射器(測距機能内蔵)
12...立体マーカ群
12a、12b......立体マーカ前面マーカ
12c....立体マーカ後面マーカ
12d、12e,12f,12g.....自由懸垂マーカ(12f,12gは12d,12eに直角)
12h,12i、12j....自由懸垂立体マーカー
13...基準レーザ照射板兼測距反射板
14.....基準レーザ照射器(測距機能内蔵)
20...ズーム前後の基準レーザの画像
21...ズーム前後のマーカの画像
30.....対象物実寸法
31.....レンズから対象物までの実距離
32.....レンズ焦点実距離
33.....レンズとCCD間距離
34.....対象物画像寸法
35.....立体視法による立体物の画像処理計測原理図
40、40a、40b........CCDカメラ等
40c.....受光器外固定カメラ
41.....ハーフミラー
42.....反射鏡
43.....スクリーン
44.....自由懸垂マーカ
41a.....ハーフミラー内レーザ画像
42a....42がハーフミラーの場合のレーザ画像
43a.....スクリーン内レーザ画像
44a、44b.....自由懸垂鉛直マーカ及び画像
44c、44d.....自由懸垂水平マーカ及び画像
45.....41a、43a画像水平離隔距離(ピクセル単位)
46.....41a、43a画像鉛直離隔距離(ピクセル単位)
47.....受光器傾斜距離(単位ピクセル)
48.....41a、42a水平離隔距離(単位ピクセル)
49.....41a、42a鉛直離隔距離(単位ピクセル)
50.....受光器
51.....画像状態
52.....レーザ
53.....レンズ
10. . . 10. CCD camera etc. . . Reference laser irradiator (with built-in ranging function)
12 . . Three-dimensional marker groups 12a, 12b. . . . . . Three-dimensional marker front marker 12c. . . . Three-dimensional marker rear markers 12d, 12e, 12f, 12g. . . . . Free suspension marker (12f and 12g are perpendicular to 12d and 12e)
12h, 12i, 12j. . . . Free suspended solid marker 13. . . Reference laser irradiation plate / ranging reflection plate 14. . . . . Reference laser irradiator (with built-in ranging function)
20. . . 20. Reference laser image before and after zooming . . 30. Marker image before and after zoom . . . . Actual object dimensions 31. . . . . Actual distance from lens to object 32. . . . . Lens focal length 33. . . . . Distance between lens and CCD 34. . . . . Object image size 35. . . . . Principle of image processing measurement of a three-dimensional object by a stereoscopic method 40, 40a, 40b. . . . . . . . CCD camera 40c. . . . . Fixed camera outside the receiver 41. . . . . Half mirror 42. . . . . Reflector 43. . . . . Screen 44. . . . . Free suspension marker 41a. . . . . Laser image 42a. . . . Laser image 43a when 42 is a half mirror. . . . . In-screen laser images 44a, 44b. . . . . Free suspended vertical markers and images 44c, 44d. . . . . Free suspended horizontal marker and image 45. . . . . 41a, 43a Image horizontal separation (in pixels)
46. . . . . 41a, 43a Image vertical separation (in pixels)
47. . . . . Receiver tilt distance (unit pixel)
48. . . . . 41a, 42a Horizontal separation (unit pixel)
49. . . . . 41a, 42a Vertical separation (unit pixel)
50. . . . . Light receiver 51. . . . . Image state 52. . . . . Laser 53. . . . . lens

Claims (2)

コンピュータ制御乃至手動で制御される上下、左右方向旋回機構及び水平調整機構に保持された可変ズーム、可変フォーカス機能のCCDカメラ等及び画像処理装置と基線となるレーザビーム、前記CCDカメラ等に連結された距離計を利用し、3個以上の複数色着色乃至複数色発光器付の3次元マーカーと自由懸垂機構に支持された常時鉛直及び水平を保持するマーカを設置した移動物の位置姿勢を計測する方法。Computer controlled or manually controlled up / down, left / right turning mechanism, variable zoom held by horizontal adjustment mechanism, variable focus function CCD camera, etc. and image processing device and laser beam as a baseline, connected to the CCD camera, etc. Measure the position and orientation of a moving object with three or more multi-colored or three-dimensional markers with multi-color light emitters and a vertical and horizontal marker supported by a free suspension mechanism. how to. コンピュータ乃至手動制御される上下、左右方向旋回機構及び水平調整機構に保持され、任意の角度で照射するレーザビーム、距離計による3次元位置計測装置から照射されたレーザビームを複数の曲面鏡、レンズ、ハーフミラー、スクリーンを平行乃至一定交角に配置し、既知の角度で入射したレーザビームのハーフミラー及びスクリーン上の画像及び自由懸垂機構に支持され常時鉛直及び水平を保持する複数色マーカの画像を単独乃至複数個のCCDカメラ等で画像処理装置し、レーザビームの入射位置、方向を計測する受光装置を設置した移動物の位置姿勢を計測する方法。A plurality of curved mirrors and lenses that are held by a computer or manually controlled vertical and horizontal turning mechanisms and a horizontal adjustment mechanism, and irradiate a laser beam emitted from an arbitrary angle and a laser beam emitted from a three-dimensional position measuring device using a distance meter. The half mirror and screen are arranged in parallel or at a constant crossing angle, and the laser beam half mirror and the image on the screen that are incident at a known angle and the image of the multicolor marker that is supported by the free suspension mechanism and always maintains vertical and horizontal are displayed. A method of measuring the position and orientation of a moving object using a single or a plurality of CCD cameras or the like and installing a light receiving device for measuring the incident position and direction of a laser beam.
JP2005255701A 2005-08-09 2005-08-09 Position attitude measuring device using image processing and laser beam Pending JP2007047142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255701A JP2007047142A (en) 2005-08-09 2005-08-09 Position attitude measuring device using image processing and laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255701A JP2007047142A (en) 2005-08-09 2005-08-09 Position attitude measuring device using image processing and laser beam

Publications (1)

Publication Number Publication Date
JP2007047142A true JP2007047142A (en) 2007-02-22

Family

ID=37850071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255701A Pending JP2007047142A (en) 2005-08-09 2005-08-09 Position attitude measuring device using image processing and laser beam

Country Status (1)

Country Link
JP (1) JP2007047142A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359467A (en) * 2014-11-14 2015-02-18 山西潞安环保能源开发股份有限公司常村煤矿 Downhole driving workface laser orientation instrument
CN107677258A (en) * 2017-09-27 2018-02-09 陕西路盾公路工程有限公司 A kind of portable multifunctional tunnel measuring instrument
CN110017817A (en) * 2019-01-24 2019-07-16 中国煤炭科工集团太原研究院有限公司 A kind of coal mine roadway navigation locating method and device based on top plate feature
CN117537719A (en) * 2024-01-08 2024-02-09 深圳市城市公共安全技术研究院有限公司 Displacement measurement method based on angular effect decoupling and related equipment thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359467A (en) * 2014-11-14 2015-02-18 山西潞安环保能源开发股份有限公司常村煤矿 Downhole driving workface laser orientation instrument
CN107677258A (en) * 2017-09-27 2018-02-09 陕西路盾公路工程有限公司 A kind of portable multifunctional tunnel measuring instrument
CN110017817A (en) * 2019-01-24 2019-07-16 中国煤炭科工集团太原研究院有限公司 A kind of coal mine roadway navigation locating method and device based on top plate feature
CN110017817B (en) * 2019-01-24 2021-09-14 中国煤炭科工集团太原研究院有限公司 Coal mine roadway navigation positioning method and device based on roof characteristics
CN117537719A (en) * 2024-01-08 2024-02-09 深圳市城市公共安全技术研究院有限公司 Displacement measurement method based on angular effect decoupling and related equipment thereof
CN117537719B (en) * 2024-01-08 2024-03-12 深圳市城市公共安全技术研究院有限公司 Displacement measurement method based on angular effect decoupling and related equipment thereof

Similar Documents

Publication Publication Date Title
US10665012B2 (en) Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images
JP5123932B2 (en) Camera-equipped 6-degree-of-freedom target measurement device and target tracking device with a rotating mirror
EP2962284B1 (en) Optical navigation &amp; positioning system
JP3728900B2 (en) Calibration method and apparatus, and calibration data generation method
US9188430B2 (en) Compensation of a structured light scanner that is tracked in six degrees-of-freedom
US8923603B2 (en) Non-contact measurement apparatus and method
CN106871787B (en) Large space line scanning imagery method for three-dimensional measurement
US9454818B2 (en) Method for measuring three orientational degrees of freedom of a cube-corner retroreflector
US6310644B1 (en) Camera theodolite system
US20150116691A1 (en) Indoor surveying apparatus and method
JP6823482B2 (en) 3D position measurement system, 3D position measurement method, and measurement module
JP2009534658A (en) Camera-based 6-degree-of-freedom target measurement device and target tracking device
CN102538679B (en) Image correlation displacement sensor
WO2014133646A2 (en) Apparatus and method for three dimensional surface measurement
WO2018207720A1 (en) Method and device for three dimensional measurement using feature quantity
CN101832772A (en) Calibrating method of laser dot-matrix device of obstacle avoidance system of lunar rover
JP2019060754A (en) Cloud altitude and wind velocity measurement method using optical image
CN107727118B (en) Method for calibrating GNC subsystem equipment attitude measurement system in large aircraft
JP2007047142A (en) Position attitude measuring device using image processing and laser beam
JP2006170688A (en) Stereo image formation method and three-dimensional data preparation device
Clark et al. Measuring range using a triangulation sensor with variable geometry
CN113847872B (en) Discrete single-point displacement static monitoring device and method based on laser ranging
KR102014191B1 (en) Spatial image drawing system of aerial photograph
JP2004198413A (en) Method and device for measuring relative distance
JP2012026816A (en) Dimension measuring method and device