JPS6279380A - Constant measurement of induction motor - Google Patents

Constant measurement of induction motor

Info

Publication number
JPS6279380A
JPS6279380A JP60218856A JP21885685A JPS6279380A JP S6279380 A JPS6279380 A JP S6279380A JP 60218856 A JP60218856 A JP 60218856A JP 21885685 A JP21885685 A JP 21885685A JP S6279380 A JPS6279380 A JP S6279380A
Authority
JP
Japan
Prior art keywords
current
constant
voltage
induction motor
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60218856A
Other languages
Japanese (ja)
Inventor
Masayuki Terajima
寺嶋 正之
Tadashi Ashikaga
足利 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP60218856A priority Critical patent/JPS6279380A/en
Publication of JPS6279380A publication Critical patent/JPS6279380A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform automatic measurement and setting of a constant positively and easily under the stoppage of a motor even with an unknown constant, by generating a DC current from a current control type inverter to determine the constant of an induction motor from a primary voltage thereof. CONSTITUTION:A tuning control circuit 20 has a control function to regulate an output waveform of a PWM waveform generation circuit 22 and generates a DC constant current by steps using two phases of an inverter main circuit 21 when given a measurement/setting command for a constant data. Then, a primary resistance r1 of a motor 1 is obtained by a computation using the ratio V1(infinity )/I between the final value V1(infinity ) of a primary voltage V1 of an induction motor 1 and a DC current I and a secondary inductance L2 is determined from a secondary time constant tau2 of the motor 1, a secondary resistance r2 and tau2=L2/r2 using a formula based on transient voltages V1(t1) and V1(t2) of a voltage V1 by the current I at the time t1 and t2, the final value V1(infinity ) and the current I. Then, a coefficient necessary for a coefficient generating unit 93 is automatically set.

Description

【発明の詳細な説明】 ん産業上の利用分野 本発明は、誘導電動機の定数測定方法に係り。[Detailed description of the invention] Industrial applications The present invention relates to a method for measuring constants of an induction motor.

特に電流jWII−H形インバータが接続された誘導電
動機の定数自動測定方法に関する。
In particular, the present invention relates to a method for automatically measuring the constants of an induction motor connected to a current jWII-H type inverter.

B6発明の概要 本発明は、駆動電源として1流制御形インバータが接続
され友誘導電動機において、 インバータの出力に直流電流全ステップ状に発生させ、
このときの誘導電動機の一次’jt圧徂j定値から誘導
機定数を求めることにより、 誘導電動機の定数自動測定を確実、容易にできるように
したものである。
B6 Summary of the Invention The present invention provides a method for generating DC current in full steps at the output of the inverter in a friend induction motor connected to a single-current control type inverter as a drive power source.
By determining the induction machine constant from the constant value of the primary pressure of the induction motor at this time, automatic constant measurement of the induction motor can be performed reliably and easily.

C0従来の技術 誘導電動機の可変速制御には、応答性と精度の良好なす
ベク周波数制御万式が知られ、また最近では電動機の一
次電流を励磁電流と二次電流とに分けて制御し、二次磁
束と二次電流ベクトル金常に直焚させることで厘ht機
と同等の応答性を得るベクトル制御方式(例えば特開昭
59−165982号公報)が実施されてきている。
C0 Conventional Technology For variable speed control of induction motors, a vector frequency control system with good responsiveness and accuracy is known. Secondary magnetic flux and secondary current vector A vector control method (for example, Japanese Patent Application Laid-open No. 165982/1982) has been implemented that achieves responsiveness equivalent to that of a hot iron machine by constantly burning the secondary magnetic flux and current vector directly.

こうしたすベク周波数制御やベクトル判例には、制御対
象としての誘導電動機の定数(例えば一次抵抗、二次抵
抗、一次インダクタンス、二次インダクメンス、励磁イ
ンダクタンス)から演算又は関数発生器によってすペク
周波数、一次電流等を求める手段上必要とする。このた
め、従来は電動機の設計値あるいは測定値から必要な定
数を求め、この定数を使って制御装置上設計、裂造して
いる。
Such vector frequency control and vector precedents are based on calculations or function generators based on the constants of the induction motor (for example, primary resistance, secondary resistance, primary inductance, secondary inductance, and excitation inductance). Necessary as a means of determining current, etc. For this reason, conventionally, necessary constants are determined from design values or measured values of the motor, and these constants are used to design and construct the control device.

D1発明が解決しようとする間バ点 従来のすベク周波数制婢やベクトル制御卸では、そのf
fflJ 1lf1装置の実現に1動機の定数データを
得るのに設計値からの演算や測定に手間がかがり開発工
数全項す問題があった。特に、汎用の可変速装置では制
御対象電動機の定数が未知であり、電動機の機種に応じ
てその都度定数データ金得る手間及び試験工数の瑠犬全
招く問題があった。また、設計値から得る定数データで
は設計値と実機の定数との間の誤差が大きくなることが
あり、制御装置の再調整や設計変更を必要とすることが
あつ之。
D1 The point that the invention attempts to solve is that in conventional vector frequency suppression and vector control, the f
In order to realize the fflJ1lf1 device, there was a problem in that obtaining constant data for one motive required a lot of time and effort in calculations and measurements from design values, which required the entire development man-hour. In particular, in a general-purpose variable speed device, the constants of the motor to be controlled are unknown, which poses a problem that requires considerable effort and testing man-hours to obtain constant data each time depending on the model of the motor. Further, constant data obtained from design values may have a large error between the design values and the constants of the actual machine, which may require readjustment or design changes to the control device.

E6問題点を解決するtめの手段 本発明は上記問題点に鑑みてなされたもので。Tth way to solve the E6 problem The present invention has been made in view of the above problems.

駆動電源として電流制御形インバータカ;接続された誘
導電動機において、前記インバータの出力に直流電流T
をステップ状に発生させ、前記誘導電動機の一次電圧v
lの最終値V+(”)と@流電金工の比Vt (”) 
/ I  から前記誘導電動機の一次抵抗rIヲ求め、
前記直流宜金工による前記電圧VIの時刻t1+11の
過渡電圧V1(tt) 、 Vt (tt)と最終値V
t (−)及び直流電金工から次の式 %式% に従って前記銹導″嵯動機の二次時定数で、と二次抵抗
r、及びτt = Lt/ r、  から二次インダク
タンスL。
A current-controlled inverter as a drive power source; in the connected induction motor, a DC current T is applied to the output of the inverter.
is generated stepwise, and the primary voltage v of the induction motor is
Final value of l V+('') and @ratio of current metal work Vt ('')
Determine the primary resistance rI of the induction motor from /I,
Transient voltage V1 (tt), Vt (tt) and final value V of the voltage VI at time t1+11 by the DC metalwork
t (-) and the secondary time constant of the rust induction machine according to the following formula % from DC electric metalwork, and the secondary resistance r, and the secondary inductance L from τt = Lt/r,.

を求める測定方法を提供するものである。This provides a measurement method to determine the

20作 用 誘導′電動機の一次入力にインバータから直流電流全ス
テップ状に与えることでその最終値電圧V+(cDJに
等価的に一次抵抗r1分のみによる電圧値を得て一次抵
抗rtk測定し、直流電流の印加による電圧の過渡現象
から等価的に二次抵抗”t +二次インダクタンスLt
e二次時定数τ、′!i−求める。
20 Action Induction ' By applying a DC current in all steps from the inverter to the primary input of the motor, its final value voltage V + (c DJ is equivalently obtained, and the voltage value due only to the primary resistance r1 is obtained, the primary resistance rtk is measured, and the DC current is From the transient phenomenon of voltage due to the application of current, equivalently the secondary resistance "t + secondary inductance Lt
e Quadratic time constant τ,′! i- seek.

G、実施例 以下、図面の参照して本発明の実施例を詳細に説明する
G. Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は電流制御形P■万式イ/バータ′?r使つ几ベ
クトル制御装置に本発明全適用し友場合の回路図を示す
。誘導電動機1にトランジスタ式インバータ主回路2.
から一次電流全供給する。インバータ主回路2Iの各ト
ランジスタTr1〜Trll はPWM波形発生回路2
.とゲート回路2.によって2wM波形によるスイッチ
ング制御がなされ、出力’4 ME及び周波数が制御さ
れる。インバータ主回路2mの直流入力は整流器3と平
滑コンデンサ4によって直流電源にされ、PWM波形発
生回路2.が電流指令Iu 。
Figure 1 shows the current control type P A circuit diagram in which the present invention is fully applied to a vector control device using R is shown. Induction motor 1 and transistor inverter main circuit 2.
All primary current is supplied from. Each transistor Tr1 to Trll of the inverter main circuit 2I is a PWM waveform generation circuit 2.
.. and gate circuit 2. Switching control is performed using a 2wM waveform, and the output '4 ME and frequency are controlled. The DC input of the inverter main circuit 2m is converted into a DC power source by a rectifier 3 and a smoothing capacitor 4, and the PWM waveform generation circuit 2. is the current command Iu.

!マ*と出力′を流検出用変流器5. 、5.の検出信
号との比較によるフィードバックによって電流制御形イ
ンバータの制御を傅る。PWM波形発生回路22はU相
とマ相について比例積分(PI )演算をする電流制御
壇幅器AlRu 、 AIRマによって夫々の電圧指令
Vu  、 Vv  f得、この両指令から反転加算器
AddによってW相の電圧指令Vw*f得、これら指令
信号と三角波(搬送波]発生回路TRIの三角波とを夫
々コンパレータCPu 、 CPv 、 CPwで比較
することによって3相分PWM波形出力を得る。
! 5. Current transformer for current detection. ,5. The current control type inverter is controlled by feedback based on comparison with the detection signal of the current control type inverter. The PWM waveform generation circuit 22 obtains respective voltage commands Vu and Vvf from current control width amplifiers AlRu and AIR MA which perform proportional integral (PI) calculations for the U phase and M phase, and from these commands, W is obtained by an inverting adder Add. A phase voltage command Vw*f is obtained, and these command signals are compared with the triangular wave of the triangular wave (carrier wave) generating circuit TRI by comparators CPU, CPv, and CPw, respectively, to obtain three-phase PWM waveform outputs.

誘導電動機1の速度指令ωn は速度検出器6の検出信
号との比較によるフィードバックによって比例積分(P
I )演算の速度制御増幅器7に二次電流(トルクを流
)指令It  として取出され、この指令工T*はA/
D変換器8でディジタル信号に変換される。A/D変換
器8の出力はゲイジメル設定される磁束電流指令Io”
と共にベクトル演算部9に取込まれる。ベクトル演算部
9は一次′4流演算回路91による絶対値演算によって
一次゛i[流指令値!、*ヲ求め、割算器9.で求める
指令工T*とIO*の比IT*/ Io*に係数器9s
で係数17τ、を乗算することによってすベク角周波数
ωai求め、逆三角関数演算回路94によって位相角ψ
を求め、引算器9.によって位相角ψについて1サンプ
ル前の位相角との差(位相変化量)Δψを求める。ここ
で、係数1/τ、は誘導電動機1の二次時定数τ1の逆
数で二次インダクタンスL、と二次抵抗r1の比L@/
 r鵞である。
The speed command ωn of the induction motor 1 is calculated by proportional integral (P
I) is taken out as a secondary current (torque flow) command It to the speed control amplifier 7 of the calculation, and this command T* is A/
The D converter 8 converts it into a digital signal. The output of the A/D converter 8 is the magnetic flux current command Io, which is set as a gauge.
It is also taken into the vector calculation unit 9. The vector calculation section 9 calculates the primary ``i[flow command value! Find , *, divider 9. The ratio of the command T* and IO* found by IT*/Io* is the coefficient unit 9s.
The vector angular frequency ωai is determined by multiplying by the coefficient 17τ, and the phase angle ψ is determined by the inverse trigonometric function calculation circuit 94.
Find the subtractor 9. The difference (amount of phase change) Δψ between the phase angle ψ and the phase angle one sample before is determined by: Here, the coefficient 1/τ is the reciprocal of the secondary time constant τ1 of the induction motor 1, and the ratio L@/ of the secondary inductance L and the secondary resistance r1.
It's a goose.

すベク角周波数ωSは加算器10によって速度検出15
号ωnと加算されて一次角周波数ω0←ωs+ωn)が
求められる。この角周波数ω0は絶対値回路11によっ
て正逆回転の絶対値1ωo1  が求められ、ま几極性
判別回路12によって正逆回転の判別がなされる。絶対
値1ωo1は電圧−周波数変換器13によって対応する
周波数のパルスに変換され、この信号lNTRと極性判
別18号F/Rは前述の位相変化量Δψと共に一次電流
波形田力部14に取込まれてU相とV相の一次電流信号
、すなわち 5in(ωOt十Δψ) 湖(ωOt十丁π十Δψ) がそのサンプル値として求められる。これらイ言号はD
/A 変換部15によってアナログ信号に変換され、こ
の変換に際して変換利得が一次電流信号工。
The vector angular frequency ωS is determined by speed detection 15 by an adder 10.
The first-order angular frequency ω0←ωs+ωn) is obtained by adding the first-order angular frequency ω0←ωs+ωn). For this angular frequency ω0, an absolute value 1ωo1 of forward and reverse rotation is determined by an absolute value circuit 11, and a polarity determining circuit 12 determines whether the rotation is forward or reverse. The absolute value 1ωo1 is converted into a pulse of the corresponding frequency by the voltage-frequency converter 13, and this signal lNTR and polarity determination No. 18 F/R are taken into the primary current waveform unit 14 together with the above-mentioned phase change amount Δψ. The primary current signals of the U phase and V phase, that is, 5 inches (ωOt 10 Δψ) (ωOt 10 π 10 Δψ) are obtained as sample values. These A words are D
/A is converted into an analog signal by the converter 15, and during this conversion, the conversion gain is the primary current signal converter.

によって調整される。adjusted by.

このように、電動憬IF口1tIIIII呻形PWM万
式インバータでベクトル制御するにおいて、制御装置に
は係数器93の二次時定数τ! (= Lt/ rt 
)  の設定に電動機1の二次抵抗r、及び二次インダ
クタンスL!に相当−る定数データを必要とする。
In this manner, when performing vector control using the electric IF port 1tIII-type PWM universal inverter, the control device has a secondary time constant τ! of the coefficient unit 93. (= Lt/rt
), the secondary resistance r and secondary inductance L of the motor 1 are set. It requires constant data corresponding to .

これら九数データを自動的に測定及び設定するセルフチ
ューニング手段として、チューニング制御回路20ヲ備
える。チューニング?ttlJ御回路20はPwM波形
発生回路2tの出力波形を調整する制御機能に!し、定
数データの測定・設定指令が与えられることでインバー
タ主回路2Iの二相分金使って直流定電流をステップ状
に発生させ、このときの誘導電動機1の一次電圧1jl
ll+芝値を使った〆誹によって一次抵抗’I e二次
抵抗r、 l二次インダクタンスL!さらには二次時定
数τ!全求め、係数器9.に必要な係数を自動設定する
。以下、チューニング制御回路20による定数データの
自動測定方法を詳細に説明する。
A tuning control circuit 20 is provided as a self-tuning means for automatically measuring and setting these multiplication data. tuning? The ttlJ control circuit 20 has a control function that adjusts the output waveform of the PwM waveform generation circuit 2t! Then, when a constant data measurement/setting command is given, a DC constant current is generated in a stepwise manner using the two-phase components of the inverter main circuit 2I, and the primary voltage 1jl of the induction motor 1 at this time is
By evaluating using ll + grass value, primary resistance 'I e secondary resistance r, l secondary inductance L! Furthermore, the quadratic time constant τ! Total calculation, coefficient unit 9. Automatically set the necessary coefficients. A method for automatically measuring constant data using the tuning control circuit 20 will be described in detail below.

(1)一次抵抗r1の測定 インバータ主回路2.の二相外、例えばトランジスタT
rlとTr6のオン・オフ比を調整して電動機1の巻蛾
U、W間に一定電流iを与える。このとき、制御回路2
0はD/A 変換器15には一次電流信号として14か
らの出力に代えてU相指令ru*f一定にし、V相指令
Iv  t−零にする設定をする。このような制御によ
り、巻線U、Wには電流指令Iu  で決まるオン・オ
フ比のパルス電流(平均電金工〕がフィードバック制御
で一定にされ、このときの電動機1の一次電圧横田値か
ら一次抵抗r1の演算を行う。
(1) Measurement of primary resistance r1 inverter main circuit 2. out of two phases, e.g. transistor T
A constant current i is applied between windings U and W of the motor 1 by adjusting the on/off ratio of rl and Tr6. At this time, control circuit 2
0 is set to the D/A converter 15 as a primary current signal in place of the output from 14, with the U-phase command ru*f constant and the V-phase command Iv t-zero. Through such control, the pulse current (average electric metallurgy) of the on-off ratio determined by the current command Iu is kept constant in the windings U and W by feedback control, and the primary voltage of the motor 1 at this time is changed from the Yokota value to the Calculate the resistance r1.

誘導電動機1のT形等価回路は第2図に、示すようにな
り、これにステップ電1ist−加えtときの一次ル圧
V、との間には次の電圧方程式が成立する。
The T-type equivalent circuit of the induction motor 1 is shown in FIG. 2, and the following voltage equation holds between this and the step voltage 1ist-plus the primary pressure V at time t.

ここで、インバータ上回ト各21からの印7)I]Iy
l流」オは実際には立上り時間を要するが、電流?!i
1J御系の応答が計測する時間に対して十分に短かけハ
ば(実際に十分に短い)、立上り時間零とみなすことが
できる。
Here, marks 7) I] Iy from each 21 above the inverter
"L current" O actually requires rise time, but current? ! i
If the response of the 1J system is sufficiently short compared to the measured time (in fact, it is sufficiently short), the rise time can be regarded as zero.

上記(1)弐でラプラス変換すると、 但し、oc F+ (tJ = ’  Ll = Am
 十1gS′ となる。これからτx = Lx / rt s  L
x中Amからとなる。し九がって、一次電圧Vs(i)
はとなる。そして、A、<L、であるからVs(t) 
= I (r、 十r、e  τり   ・・・・・(
5)となる。この′直圧V、は)¥l!3図に示すよう
に微分波形になる。
When using Laplace transform in (1) 2 above, oc F+ (tJ = ' Ll = Am
It becomes 11gS'. From now on τx = Lx / rt s L
From Am in x. Therefore, the primary voltage Vs(i)
Hato becomes. And since A<L, Vs(t)
= I (r, 10r, e τri...(
5). This 'direct pressure V, is) ¥l! It becomes a differential waveform as shown in Figure 3.

この15)式において、i′&終値t=■の電圧V1(
@から、一次抵抗r、が j、wVtC■/I  ・・・・・(6)として求める
ことができる。従って、制御回路20は電流指令Iu 
−Iとしてインバータ主回路2.からステップ状電流を
供給したときの一次電圧Vs(t)の最終値7重(@の
検出値から一次抵抗r1′Jk求める。ここで、一次電
圧vt(t>の検出値を求めるのに、制御回路20はイ
ンバータ主回路2.の出力電圧を直接計測しても良いが
、この検出にはフィルタ全必要とする等の問題が生じる
。そこで、本実施例ではインバータの電圧指令値を測定
する。このため、制御回路20はU相電圧1b令Vu 
 t−検出値Vs(f)として取込む。
In this equation 15), the voltage V1(
From @, the primary resistance r can be determined as j, wVtC■/I (6). Therefore, the control circuit 20 controls the current command Iu
-I as inverter main circuit 2. The final value of the primary voltage Vs(t) when a step current is supplied from The control circuit 20 may directly measure the output voltage of the inverter main circuit 2. However, there are problems such as the need for all filters for this detection.Therefore, in this embodiment, the voltage command value of the inverter is measured. Therefore, the control circuit 20 controls the U-phase voltage 1b order Vu
It is taken in as the t-detected value Vs(f).

この場合、トランジスタ’rr、 j Tr6のデッド
タイムによる′1圧降下分を補償した検出値上書るよう
電流指令Iu  を変えた2回の計測値からVl(−を
求める。すなわち、電圧指令Vu*と電動機電圧vIは
PwMの制御率μが1以上であるなら次の関係y1=y
、  −EdB     5ense (7)■、*=
kvu*凰・・・・・(7−a)が成立する。ここで、
 EdBはトランジスタのデッドタイムによる電圧降下
分、kは定数、V−は制御電圧であり、%虎のキャリア
周波数によって定まり、定常状態での電流Iulf変え
てそのときの電圧Vui2回測定し、(7−a)  式
から求め次制御電圧とt流Iu”夫々t−(VlK” 
、 Iul”)% (Vl−IIu!*)とすると、次
の関係にある。
In this case, Vl(- is obtained from the measured value twice when the current command Iu is changed so as to overwrite the detected value that compensates for the '1 voltage drop due to the dead time of the transistor 'rr, j Tr6. In other words, the voltage command Vu * and motor voltage vI have the following relationship y1=y if the control rate μ of PwM is 1 or more
, -EdB 5ense (7) ■, *=
kvu*凰...(7-a) holds true. here,
EdB is the voltage drop due to the dead time of the transistor, k is a constant, and V- is the control voltage, which is determined by the carrier frequency of the % tiger.The current Iulf in the steady state is changed and the voltage Vui at that time is measured twice, (7 -a) Calculate the next control voltage and t current Iu” from the formula, respectively t-(VlK)
, Iul'')% (Vl-IIu!*), the following relationship holds.

従って、この両式からEdBは となり、制御回路20がa1式からEditを求め、こ
のEdB i使って前記(7)及び(7−1式によりV
u  からVz*t”求め、さらに前述の(6)式から
一次抵抗r1を求める。
Therefore, EdB is obtained from both equations, and the control circuit 20 obtains Edit from equation a1, and uses this EdB i to calculate V from equations (7) and (7-1).
Vz*t" is determined from u, and the primary resistance r1 is determined from the above-mentioned equation (6).

(2)二次抵抗r!、二次インダクタンスL、及び二次
時定数τ1の測定 制御回路20は一次抵抗rst−求める際に電動機1に
供給するステップ状vLttte、rlに対して時刻1
1.1゜での夫々の過渡一次電圧Vs(is1%Vx(
it)’(r求める。
(2) Secondary resistance r! , the secondary inductance L, and the secondary time constant τ1.
The respective transient primary voltage Vs (is1%Vx(
it)'(r is determined.

この電圧は第3図に示すように適当な時間設定で電圧指
令Vu  と前述のデッドタイムEdBt−1[つて求
める。
This voltage is determined by applying the voltage command Vu and the dead time EdBt-1 [described above] using appropriate time settings as shown in FIG.

これら電圧Vz(it) 、 Vt(it)は最終値V
t (@ = rt Iと前述の(5)式から次の関係
にある。
These voltages Vz(it) and Vt(it) are the final value V
t (@ = rt From I and the above-mentioned equation (5), the following relationship exists.

−ジ V+(it)    VtH=Ir鵞e   ”*  
       ・ ・ ・ ・ ・ (10−1雪 Vt(tz)  VtH=Irte ’t   ”” 
IJ’Aこの両式から となる。従って、−御回路20は1式に従って過渡電圧
Vs(it) 、Vt(it)及び最終電圧Vt(に)
=Ir1の測定値から二次時定数τt1!!:求め、さ
らにこの時定数τ!を使って69式又はaり式から二次
抵抗r、t−求め、さらにマ几τ宏=Lt/ rtより
二次インダクタンスLtt”求める。
-diV+(it) VtH=Ir鵞e ”*
・ ・ ・ ・ ・ (10-1 snow Vt(tz) VtH=Irte 't ””
IJ'A is obtained from these two formulas. Therefore, the control circuit 20 calculates the transient voltages Vs(it), Vt(it) and the final voltage Vt() according to equation 1.
= Secondary time constant τt1 from the measured value of Ir1! ! : Find this time constant τ! Using formula 69 or formula a, find the secondary resistance r, t, and further find the secondary inductance Ltt from Ma = Lt/rt.

以上までの測定によって、制御回路20は一次抵抗r8
.二次抵抗r3.二次インダクタンスL、及び一次時定
数τ冨會求め、このうち本実施例では必要な定数τ、全
係数器9sに設定することによって以後のベクトル制御
を可能にする。
As a result of the above measurements, the control circuit 20 has determined that the primary resistance r8
.. Secondary resistance r3. The secondary inductance L and the primary time constant τ are determined, and in this embodiment, the necessary constant τ is set to the full coefficient multiplier 9s to enable subsequent vector control.

なお、実施例において、制御回路20はベクトル制御装
置がマイクロコンピュータ等で構成される場合に定数測
定用プログラムとして該制御装置に組込むことができる
のは勿論である。
In the embodiment, when the vector control device is constituted by a microcomputer or the like, it goes without saying that the control circuit 20 can be incorporated into the control device as a constant measurement program.

また、実施例は電流制御形PWM方式インバータによる
ベクトル制御装置に適用し次場合を示すが、本発明はこ
れに限定されるものでなく、電流制御形のすベクトル制
御装置に適用できるし、キャリア周波数全零にして直流
′電流指令をステップ状に変え几ときの一次1圧検出値
から定数を求めることができる。
Further, although the embodiment is applied to a vector control device using a current-controlled PWM type inverter and the following case is shown, the present invention is not limited to this, and can be applied to a current-controlled vector control device, and the present invention is not limited to this. By setting the frequency to zero and changing the direct current command in steps, the constant can be determined from the detected value of the primary voltage.

ル発明の効果 以上のとおり、本発明によれば、誘導電動機の駆動電源
になる電流制御形インバータから直流電流を発住させ、
誘導電動機の一次省1圧から誘導11℃動機の定数を求
めるため、該定数又はこれに基づい次定数を交ってイン
バータ全制御する制御装置に適用して定数未知の電動機
でもその停止状態で該定数の自動測定を確夾、容易にし
、さらには該定数の自動設定上するというセルフチュー
ニングを容易にする。また、定数測定には電動機配線も
含め九計測になり、実用上の測定、設定ひいては制御精
度を向上できる効果がある。
Effects of the Invention As described above, according to the present invention, direct current is generated from a current control type inverter that serves as a drive power source for an induction motor,
In order to find the constant of an induction motor at 11°C from the primary voltage of the induction motor, it is applied to a control device that controls the entire inverter using this constant or the secondary constant based on this constant, so that even if the constant is unknown, the constant is determined in the stopped state. To ensure and facilitate automatic measurement of a constant, and further facilitate self-tuning in which the constant is automatically set. In addition, the constant measurement requires nine measurements including the motor wiring, which has the effect of improving practical measurement, setting, and control accuracy.

41面の簡単な説明 第1図は本発明の一実施例を示す回路図、第2図は誘導
電動機の等価回路図、第3図はステップ状直流電流會誘
導電動機に印加し九ときの一次丁&圧波形図である。
Brief explanation of page 41 Fig. 1 is a circuit diagram showing one embodiment of the present invention, Fig. 2 is an equivalent circuit diagram of an induction motor, and Fig. 3 is a primary circuit diagram of a stepped DC current induction motor at 9. It is a pressure waveform diagram.

■・・・誘導電動機、21・・・インバータ主回路、2
.・・・PWM波形発生回路、6・・・速度検出器、7
・・・速度制偶瑣幅器、8・・・A/D変換器、9・・
・ベクトル演算部、9、・・・係数器、11・・・絶対
値回路、12・・・極性判別回路、13・・・rイ圧−
周波数変換器、14・・・一次電流波形出力部、15・
・・D/A変換器、20・・・チューニング制御回P!
■...Induction motor, 21...Inverter main circuit, 2
.. ... PWM waveform generation circuit, 6 ... Speed detector, 7
... Speed limiter, 8... A/D converter, 9...
・Vector calculation unit, 9... Coefficient unit, 11... Absolute value circuit, 12... Polarity discrimination circuit, 13... r i pressure -
Frequency converter, 14...Primary current waveform output section, 15.
...D/A converter, 20...Tuning control times P!
.

第2図 誘り11ス重hキ臆の、葬イボ迂弓9各因      
 −第3図
Diagram 2: 9 reasons for the 11 temptations and misunderstandings
-Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)駆動電源として電流制御形インバータが接続され
た誘導電動機において、前記インバータの出力に直流電
流Iをステップ状に発生させ、前記誘導電動機の一次電
圧V_1の最終値V_1(∽)と直流電流Iの比V_1
(∽)/Iから前記誘導電動機の一次抵抗r_1を求め
、前記直流電流Iによる前記電圧V_1の時刻t_1、
t_2の過渡電圧V_1(t_1)、V_1(t_2)
と最終値V_1(∽)及び直流電流Iから次の式τ_2
=(t_2−t_1)/loge{[(V_1(t_1
)−V_1(∽)]/[V_1(t_2)−V_1(∽
)]}V_1(t_1)−V_1(∽)=Ir_2e^
−^(t_1)^/^(τ_2)に従って前記誘導電動
機の二次時定数τ_2と二次抵抗r_2及びτ_2=L
_2/r_2から二次インダクタンスL_2を求めるこ
とを特徴とする誘導電動機の定数測定方法。
(1) In an induction motor to which a current-controlled inverter is connected as a drive power source, a DC current I is generated in steps at the output of the inverter, and the final value V_1 (∽) of the primary voltage V_1 of the induction motor and the DC current Ratio of I V_1
The primary resistance r_1 of the induction motor is determined from (∽)/I, and the time t_1 of the voltage V_1 due to the DC current I,
Transient voltage V_1(t_1) at t_2, V_1(t_2)
From the final value V_1 (∽) and DC current I, the following formula τ_2
=(t_2-t_1)/loge{[(V_1(t_1
)-V_1(∽)]/[V_1(t_2)-V_1(∽
)]}V_1(t_1)-V_1(∽)=Ir_2e^
- According to ^(t_1)^/^(τ_2), the secondary time constant τ_2 of the induction motor and the secondary resistance r_2 and τ_2=L
A method for measuring constants of an induction motor, characterized by determining secondary inductance L_2 from _2/r_2.
(2)前記一次電圧V_1、V_1(t_1)、V_1
(t_2)は前記インバータの電圧指令Vu^*の測定
によって求めることを特徴とする特許請求の範囲第1項
記載の誘導電動機の定数測定方法。
(2) The primary voltage V_1, V_1(t_1), V_1
2. The method for measuring constants of an induction motor according to claim 1, wherein (t_2) is obtained by measuring the voltage command Vu^* of the inverter.
(3)前記インバータの出力は直流電流Iが異なる2つ
の電流I_1、I_2に対する制御電圧V_1_1^*
、V_1_2^*から次の式 EdB=(I_1V_1_1^*−I_2V_1_2^
*)/(I_1−I_2)に従って該インバータのスイ
ッチ素子のデッドタイムによる電圧降下分E_d_Bを
求め、一次電圧V_1を次の式 V_1=V_1^*−E_d_B V_1^*=kVu^*(Ed/2) 但し、kは制御率で定まる定数、Edはインバータの直
流電圧 に従って求めることを特徴とする特許請求の範囲第2項
記載の誘導電動機の定数測定方法。
(3) The output of the inverter is a control voltage V_1_1^* for two currents I_1 and I_2 with different DC currents I.
, V_1_2^*, the following formula EdB=(I_1V_1_1^*−I_2V_1_2^
*)/(I_1-I_2), calculate the voltage drop E_d_B due to the dead time of the switching elements of the inverter, and calculate the primary voltage V_1 using the following formula: V_1=V_1^*-E_d_B V_1^*=kVu^*(Ed/2 ) The method for measuring constants of an induction motor according to claim 2, wherein k is a constant determined by the control rate, and Ed is determined according to the DC voltage of the inverter.
JP60218856A 1985-10-01 1985-10-01 Constant measurement of induction motor Pending JPS6279380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60218856A JPS6279380A (en) 1985-10-01 1985-10-01 Constant measurement of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60218856A JPS6279380A (en) 1985-10-01 1985-10-01 Constant measurement of induction motor

Publications (1)

Publication Number Publication Date
JPS6279380A true JPS6279380A (en) 1987-04-11

Family

ID=16726391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60218856A Pending JPS6279380A (en) 1985-10-01 1985-10-01 Constant measurement of induction motor

Country Status (1)

Country Link
JP (1) JPS6279380A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269495A (en) * 1989-04-10 1990-11-02 Mitsubishi Electric Corp Current controller for inverter
JPH0340786A (en) * 1989-07-04 1991-02-21 Nippon Otis Elevator Co Controlling method for vector of induction motor
US5202620A (en) * 1991-04-12 1993-04-13 Mitsubishi Denki Kabushiki Kaisha Apparatus for measuring the time constant of the direct-axis damper of a synchronous machine
US5311121A (en) * 1991-04-12 1994-05-10 Mitsubishi Denki Kabushiki Kaisha Apparatus for measuring the electrical time constant of the quadrature-axis damper of a synchronous machine
JP2006158178A (en) * 2004-11-04 2006-06-15 Fuji Electric Fa Components & Systems Co Ltd Control method of induction motor
CN108173470A (en) * 2018-01-30 2018-06-15 无锡市优利康电气有限公司 A kind of resistance parameter modification method of permanent magnet synchronous servo motor
WO2022003886A1 (en) * 2020-07-02 2022-01-06 三菱電機株式会社 Motor control device
WO2023132114A1 (en) * 2022-01-05 2023-07-13 株式会社日立産機システム Drive device for induction motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269495A (en) * 1989-04-10 1990-11-02 Mitsubishi Electric Corp Current controller for inverter
JPH0340786A (en) * 1989-07-04 1991-02-21 Nippon Otis Elevator Co Controlling method for vector of induction motor
US5202620A (en) * 1991-04-12 1993-04-13 Mitsubishi Denki Kabushiki Kaisha Apparatus for measuring the time constant of the direct-axis damper of a synchronous machine
US5311121A (en) * 1991-04-12 1994-05-10 Mitsubishi Denki Kabushiki Kaisha Apparatus for measuring the electrical time constant of the quadrature-axis damper of a synchronous machine
JP2006158178A (en) * 2004-11-04 2006-06-15 Fuji Electric Fa Components & Systems Co Ltd Control method of induction motor
CN108173470A (en) * 2018-01-30 2018-06-15 无锡市优利康电气有限公司 A kind of resistance parameter modification method of permanent magnet synchronous servo motor
WO2022003886A1 (en) * 2020-07-02 2022-01-06 三菱電機株式会社 Motor control device
WO2023132114A1 (en) * 2022-01-05 2023-07-13 株式会社日立産機システム Drive device for induction motor

Similar Documents

Publication Publication Date Title
JP2780263B2 (en) Vector control method and device for induction motor
JPH09304489A (en) Method for measuring motor constant of induction motor
BR112018076846B1 (en) ELECTRIC ASSISTED STEERING DEVICE
JPH0548079B2 (en)
JPH03178589A (en) Controller of inverter
JPS6279380A (en) Constant measurement of induction motor
JPS5953796B2 (en) Induction motor control device
JPH07274599A (en) Method and apparatus for controlling vector in induction motor
JP2929344B2 (en) Method and apparatus for measuring motor constants
JPS6242076A (en) Measuring method for parameter of induction motor
JP3099159B2 (en) Method and apparatus for measuring motor constants
JP2943377B2 (en) Vector controller for induction motor
JP2579119B2 (en) Vector controller for induction motor
JP2015171302A (en) Control device for electric motor
JP3337039B2 (en) Tuning method of vector control inverter for induction motor
JP3159330B2 (en) Induction motor vector control device
JPS6242074A (en) Measuring method for parameter of induction motor
JPH08168300A (en) Device for controlling vector of induction motor
JPH06101954B2 (en) Induction motor vector controller
JP3145876B2 (en) Vector control method and device for induction motor
JP2712632B2 (en) Variable speed control device for induction motor
JP3555965B2 (en) Inverter control method
JP3118940B2 (en) Induction motor vector control device
JP3123235B2 (en) Induction motor vector control device
JPH06276781A (en) Motor driving apparatus