JPS6242074A - Measuring method for parameter of induction motor - Google Patents

Measuring method for parameter of induction motor

Info

Publication number
JPS6242074A
JPS6242074A JP60181488A JP18148885A JPS6242074A JP S6242074 A JPS6242074 A JP S6242074A JP 60181488 A JP60181488 A JP 60181488A JP 18148885 A JP18148885 A JP 18148885A JP S6242074 A JPS6242074 A JP S6242074A
Authority
JP
Japan
Prior art keywords
voltage
current
induction motor
inverter
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60181488A
Other languages
Japanese (ja)
Other versions
JPH0627789B2 (en
Inventor
Masayuki Terajima
寺嶋 正之
Tadashi Ashikaga
足利 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP18148885A priority Critical patent/JPH0627789B2/en
Publication of JPS6242074A publication Critical patent/JPS6242074A/en
Publication of JPH0627789B2 publication Critical patent/JPH0627789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To easily and surely perform an automatic measurement by applying a DC voltage to the primary input of an induction motor from a power inverter, measuring the primary input current and voltage of the motor, finding the primary parameters and calculating the secondary parameters based on prescribed equations. CONSTITUTION:With transistors Tr1, Tr6, etc. in an inverter 21 of the driving power source switched on and off, while a PWM waveform generating circuit 22 set with a definite voltage by a control circuit 11, DC voltage pulses are impressed on the windings U, W, etc. of an induction motor 1. Thus, the voltage and current are measured through a voltage and current detectors 12, 13, and from their ratio, the resistance r1 as a primary parameter is determined by the circuit 11. On the other hand, from the rising transient currents i1(t), i2(t) and the end current Ie of the DC current I, rising time constant T of the current I is determined, and the secondary resistance r2, secondary inductance L2 as the secondary parameters are determined based on the equation 1. In this manner, an automatic measurement of the parameters can be made easily and surely in a standstill state of the motor.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、誘導電動機の定数測定方法に係り、特にイン
バータが接続さnた誘導電動機の定数自動測定方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for measuring the constants of an induction motor, and more particularly to a method for automatically measuring the constants of an induction motor connected to an inverter.

B0発明の概要 本発明は、駆動電源としてインバータが接続さnた誘導
電動機において、 インバータの出力に直流電圧を発生させ、このときの銹
導電製機の一次入力電流と雪圧測定値から誘導機定数を
求めることにより、 誘導電動機の定数自動測定を確実、容易にできるように
したものである。
B0 Summary of the Invention The present invention is an induction motor connected to an inverter as a drive power source, generates a DC voltage at the output of the inverter, and calculates the induction motor from the primary input current of the rust conductive machine and the snow pressure measurement value at this time. By determining the constants, it is possible to automatically measure the constants of induction motors reliably and easily.

C0従来の技術 誘導電動機の可変速制御には、応答性と精匣の良好なす
べり周波数制御方式が知られ、また最近で#−i1!動
機の一次電流?励磁W流と二次電流とに分けて制御し、
二次磁束と二次電流ベクトルを常に直交させることで直
流機と同等の応答性?得るベクトル制御方式(例えば特
開昭59−165982号公報)が実施されてきている
C0 Conventional Technology For variable speed control of induction motors, a slip frequency control method with good responsiveness and precision is known, and recently #-i1! Primary current of motive? Separately control the excitation W current and secondary current,
Is it possible to achieve the same responsiveness as a DC machine by always orthogonalizing the secondary magnetic flux and secondary current vector? A vector control method (for example, Japanese Unexamined Patent Publication No. 165982/1982) has been implemented.

こうしたすべり周波数制御やベクトル制御には、制御対
象としての誘導電動機の定数(fllえは一次抵抗、二
次抵抗、−次インダクタンス、二次インダクタンス1.
励磁インダクタンス)から演算又は関数発生器によって
すべり周波数、−次wR等を求める手段を必要とする。
In such slip frequency control and vector control, the constants of the induction motor as the controlled object (FULL) are primary resistance, secondary resistance, -order inductance, secondary inductance 1.
This requires means for determining the slip frequency, -order wR, etc. from the excitation inductance) using arithmetic operations or a function generator.

このため、従来は電動機の設計値あるいは測定値から必
要な定数を求め、この定数を使って制御装置f設計9M
造している。
For this reason, in the past, the necessary constants were determined from the design values or measured values of the motor, and these constants were used to design the control device.
is being built.

D0発明が解決しようとする問題点 従来のすべり周波数制御やベクトル制御では、その制御
装置の笑現に電動機の定数データを得るのに設計値から
の演算や測定に手間がかかり開発工数を増す問題があっ
た。特に、汎用の町変速装首では制御対象IFIIl′
1機の定数が未知であり、電動機の機種に応じてその都
度足数データ?得る手間及び試験工数の増大?招く問題
があった。また、設計値から得る定数データでは設計値
と実機の定数との間の誤差が大きくなることがあり、制
御装置の再調整や設計変更を必要とすることがあったー
E9問題点を解決するための手段 本発明は上記問題点に鑑みてなさj−たもので、駆動電
源としてインバータが接続された誘導電動機において、
前記インバータの出力に直vft、′Ir圧Eを発生さ
せ、前記インバータの出力電流工と前記直流電圧Eとの
比E/Iから前記誘導電動機の一次抵抗r+?求め、前
記直流電圧Eによる前記を流工の立上り過渡N、Ril
(t+ ) 、 il (t2)と最終電’RIeとの
夫々の比L(t+)/ Ie、 t+(L2)/ Ie
かに従って誘導wI?1mの二次抵抗r2及び二次イン
ダクタンスL2?求める測定方法を提供するものである
D0 Problems that the invention aims to solve In conventional slip frequency control and vector control, the problem with the control device is that it takes time and effort to calculate and measure from design values in order to obtain constant data of the motor, which increases the number of development steps. there were. In particular, in a general-purpose town gearbox, the controlled object IFIIl'
The constant of one machine is unknown, and the number of feet data is required each time depending on the model of the electric motor? Increased effort and testing man-hours? There was a problem. In addition, constant data obtained from design values may have a large error between the design values and the constants of the actual machine, which may require readjustment of the control device or design changes - Solving problem E9 The present invention has been made in view of the above-mentioned problems.In an induction motor connected to an inverter as a drive power source,
A direct vft, 'Ir pressure E is generated at the output of the inverter, and the primary resistance r+ of the induction motor is determined from the ratio E/I of the output current of the inverter and the DC voltage E. and calculate the above by the DC voltage E as the rise transient N of the current flow, Ril
(t+), the respective ratios of il (t2) and the final voltage 'RIe L(t+)/Ie, t+(L2)/Ie
Or guided wI? Secondary resistance r2 and secondary inductance L2 of 1m? It provides the desired measurement method.

28作用 誘導電動機の一次入力にインバータから直流電圧を与え
ることで等測的に一次抵抗r1分のみによる電流工を得
て該−次抵抗r+?測定し、直流市圧の印加による電流
の立上り過渡現象から等何曲に二次抵抗r2及び二次イ
ンダクタンスL2の測定ヲ行う。
28 action By applying a DC voltage from the inverter to the primary input of the induction motor, a current force due to only the primary resistance r1 is equimetrically obtained, and the -order resistance r+? The secondary resistance r2 and the secondary inductance L2 are measured at various intervals starting from the current rise transient phenomenon due to the application of DC voltage.

G、実施例 以下、図面を参照して本発明の実施例を詳細に説明する
、 第1図はPWM方式インバータを使った電圧形ベクトル
制御装置に本発明を適用した場合の回路図を示す。誘導
電動機1にトランジスタ式インバータ主回路21から一
次電圧ケ供給する。インバータ主回路2.の各トランジ
スタTr1〜T’ra はPWM波形発生回路22とゲ
ート回路25によってPWM波形によるスイッチング制
御がなζn、出力電圧及び周波数が制御される。インバ
ータ主回路2.からmW+機1に供給する一次市田は、
該市!alI機1に磁束と二次電流とが互いに直交する
ように制御する。この制御には、磁束の方向をα軸とし
、二次電流の方向をα軸に直交するβ軸とし、その指令
値としてのα相−次雷流11r  及びβ相−次電流1
1r′′は夫々係数器31.32によって電動機1の一
次抵抗r1分を乗算することによってα相−次電圧e1
α、β相−次電圧e1βの二相電圧信号に変換される。
G. Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a circuit diagram when the present invention is applied to a voltage type vector control device using a PWM type inverter. A primary voltage is supplied to the induction motor 1 from a transistor type inverter main circuit 21. Inverter main circuit 2. Each of the transistors Tr1 to T'ra is controlled by a PWM waveform generating circuit 22 and a gate circuit 25 in terms of switching control, ζn, output voltage, and frequency based on the PWM waveform. Inverter main circuit 2. The primary Ichida supplying mW+machine 1 from
The city! The alI machine 1 is controlled so that the magnetic flux and the secondary current are orthogonal to each other. For this control, the direction of the magnetic flux is set as the α axis, the direction of the secondary current is set as the β axis perpendicular to the α axis, and the command values are α phase-order current 11r and β-phase order current 1.
1r'' is the α-phase-order voltage e1 by multiplying the primary resistance r1 of the motor 1 by the coefficient multipliers 31 and 32, respectively.
It is converted into a two-phase voltage signal of α, β phase-order voltage e1β.

β相−′eK、1!流指令11β は速度設定値vs 
 と電動機の速度検出器4の検出値ωrとの突合せで速
度調節器5の出力として堆出さ九、電源角周波数ω0は
角周波数演算回路6によってすべり角周波数ωSの演算
値と速度検出値ωrとから得らnる。角周波数演算回路
6は設定値11−と11p ’l’ の除算を行う割算
器61と、この割算器61の除算結果11β/i 1α
に係数1/τ2?掛算する係数器62と?有して丁べり
角周波数ωS?算出する。ここで、τ2は電動機1の二
次時定数であり、二次抵抗r2と二次インダクタンスL
2の比である。
β phase-′eK, 1! The flow command 11β is the speed setting value vs.
and the detected value ωr of the speed detector 4 of the motor, and output as the output of the speed regulator 5.The power supply angular frequency ω0 is determined by the angular frequency calculation circuit 6 as the calculated value of the slip angular frequency ωS and the detected speed value ωr. Obtained from. The angular frequency calculation circuit 6 includes a divider 61 that divides a set value 11- and 11p 'l', and a division result 11β/i 1α of this divider 61.
The coefficient 1/τ2? The coefficient unit 62 for multiplication? What is the angular frequency ωS? calculate. Here, τ2 is the secondary time constant of the motor 1, and the secondary resistance r2 and secondary inductance L
It is a ratio of 2.

τ2 =r 、− 相1田演算回路7は三相電圧信号e1α、 61βから
インバータの三相電圧指令信号e A  1 e l)
  * 9 eを得るようにさj、この変換に必要な正
弦波信号sin o+ot 、余弦波信号cos go
tは電源角周波数a1gを使って三角関数発生回路8か
ら得る。また、P■波形発生回路22は三相電圧指令信
号e@  * eb*e−と三角波信号(搬送波)との
レベル比較によってパルス幅変調波形を得るようにされ
、このための三角波信号Triけ回路6からのw臨角周
波数ωO?使って該周波数に同期させる三角波発生回路
9から得る。10けインバータ主回路21に石棺電力全
供給する整流器である。
τ2 = r, - Phase 1 calculation circuit 7 generates the inverter's three-phase voltage command signal e A 1 e l) from the three-phase voltage signals e1α and 61β.
*9 To obtain e, the sine wave signal sin o+ot and cosine wave signal cos go required for this conversion.
t is obtained from the trigonometric function generating circuit 8 using the power supply angular frequency a1g. Further, the P■ waveform generation circuit 22 is configured to obtain a pulse width modulation waveform by comparing the levels of the three-phase voltage command signal e@*eb*e- and a triangular wave signal (carrier wave), and a triangular wave signal tri-wave circuit for this purpose. w critical angular frequency ωO from 6? The signal is obtained from the triangular wave generating circuit 9 which uses the signal to synchronize with the frequency. This is a rectifier that supplies all of the sarcophagus power to the 10-digit inverter main circuit 21.

このように、電動機の一次市王をPWM方式インバータ
でベクトル制御するにおいて、制御製電には係数器3+
、3zの係数設定に1動機lの一次抵抗r、に相当する
定敬データを必要とし、また係数器62では二次時定数
τ2 (= L2/ r2)の設定に電動機1の二次抵
抗r2及び二次インダクタンスL2に相当する定数デー
タを必要とする。
In this way, when controlling the primary motor of the motor using a PWM inverter, the coefficient multiplier 3 +
, 3z, the coefficient data corresponding to the primary resistance r of the motor 1 is required, and the coefficient unit 62 requires the secondary resistance r2 of the motor 1 to set the secondary time constant τ2 (= L2/r2). and constant data corresponding to the secondary inductance L2.

これら定数データを自動的に測定及び設定するセルフチ
ューニング手段として、チューニング制御回路11とイ
ンバータ主回路21の出力電圧、電流を夫々検出する電
圧検出器12 、 ’[流検出器13′f備える。チュ
ーニング制御回路11はPWM波形発生回路22の出力
波形をpI整する制御機能を有し、定数データの測定・
設定指令が与えられることでインバータ主回路21の三
相分を使って直流電圧を発生させ、このときの電圧検出
器12及び[流検出器13からの検出値を使つ几演算に
よって一次抵抗r!。
As self-tuning means for automatically measuring and setting these constant data, a voltage detector 12 and a current detector 13'f for detecting the output voltage and current of the tuning control circuit 11 and the inverter main circuit 21, respectively, are provided. The tuning control circuit 11 has a control function to adjust the pI of the output waveform of the PWM waveform generation circuit 22, and performs constant data measurement and
When a setting command is given, a DC voltage is generated using the three phases of the inverter main circuit 21, and the primary resistance r is calculated using the detected values from the voltage detector 12 and the current detector 13. ! .

二次抵抗r2+二次インダクタンスL2さらに二次時定
数τ2を求め、係数器31,3□、62の各係数を自動
設定する。以下、チューニング制御回路11による定数
データの自動測定方法?詳細に説明する。
Secondary resistance r2 + secondary inductance L2 and secondary time constant τ2 are determined, and each coefficient of coefficient units 31, 3□, and 62 is automatically set. Below, how to automatically measure constant data using the tuning control circuit 11? Explain in detail.

(1)  −次抵抗r、の測定 インバータ主回路2.の三相分、例えばトランジスタT
’rt 、Trfl fオン・オフ制御し、tIITI
rh機10巻線U、W間に直流電圧を与える。このとき
、制御回路11はPWM波形発生回路22には電圧指令
e−1eb*+ 6゜に代えて一定電圧V?設定し、P
WM波形出力もトランジスタTriとTr6の出力のみ
を許容する制御?シ、さらに三角波発生回路9の出力周
波数を一定にする。
(1) Measurement of -order resistance r, inverter main circuit 2. For example, transistor T
'rt, Trfl f on/off control, tIITI
Apply DC voltage between windings U and W of rh machine 10. At this time, the control circuit 11 sends the PWM waveform generation circuit 22 a constant voltage V?instead of the voltage command e-1eb*+6°. Set, P
Is the WM waveform output controlled to only allow the output of transistors Tri and Tr6? Furthermore, the output frequency of the triangular wave generating circuit 9 is made constant.

このような制御により、巻線U、Wには電圧Vで決まる
オン・オフ比のパルス電圧が印加され、この電圧、W流
の検出値を検出器12 、13から制御回路11に平均
電圧、1[流として取込み、該制御回路11による抵抗
r、の演3I?行う。
Through such control, a pulse voltage with an on/off ratio determined by the voltage V is applied to the windings U and W, and the detected value of this voltage and W flow is sent from the detectors 12 and 13 to the control circuit 11 as an average voltage, 1 [Representation 3I of the resistance r by the control circuit 11 taken as a current? conduct.

誘導N砂機lOT形等価回路は第2図に示すようになり
、こnに直R電圧Eを加えたときの定常IIf流Iけ I  = − になる。ここで、インバータ主回路21がらの印加電圧
はパルス電圧[C;&す、その平均直流電圧Eとし、平
均直流電流■はトランジスタTrl 、Tr& (1’
)間のスイッチングデッドタイムによる電圧減少分ED
Bも含めて −E−EDB ■ =□  ・・・・−(1) となる。ここで、制御回路11はデッドタイムによる影
響を無くして測定精度を上げるために、制御率を変えて
平均直流電流百と電流丁の2回測定を行う。但し、ED
B f同じ値にするために三角波周波数は同じにする。
The equivalent circuit of the induction N sand machine lOT type is as shown in Fig. 2, and when the direct R voltage E is applied to n, the steady IIf flow I = -. Here, the voltage applied to the inverter main circuit 21 is the pulse voltage [C;
) Voltage decrease due to switching dead time ED
Including B, -E-EDB ■ =□ ...-(1). Here, in order to eliminate the influence of dead time and improve measurement accuracy, the control circuit 11 changes the control rate and measures the average direct current 100 and the current 2 twice. However, ED
To make B f the same value, the triangular wave frequency should be the same.

この2回の測定には の関係にあり、これより の演算からデッドタイムの影lII?無くした一次抵抗
r1の測定値を得る。
There is a relationship between these two measurements, and from this calculation, there is a dead time shadow lII? Obtain the measured value of the missing primary resistance r1.

(2)二次抵抗r2.二次インダクタンスL2及び二次
時定数τ2の測定 第2南の等価回路図において、直流雪圧印加時の電流2
M圧方程式は 10= i+ −12・・−−−(4)但し、LI=1
1+1m、L2=12+1m・11(6)となる。この
(5)式のラプラス変換ではとな石。初期値を零として
!+(s)を求めると、となる。上式で となる。また、R= (L+ 12)とr= (r++
 r2 )を一般的な電動機についてみると 110KWtt!III機では  Q / r = 0
.031000KW t!電動機は  p / r =
 0.046であり、小容量様になふほどrが犬、Rが
小の傾向にあり、rに較べてlが極めて小さい。
(2) Secondary resistance r2. Measurement of secondary inductance L2 and secondary time constant τ2 In the second south equivalent circuit diagram, current 2 when DC snow pressure is applied
The M pressure equation is 10= i+ -12...---(4) However, LI=1
1+1m, L2=12+1m・11(6). In the Laplace transform of this equation (5), it is Tonaishi. Set the initial value to zero! When +(s) is found, it becomes. The above formula gives the following. Also, R= (L+ 12) and r= (r++
r2) for a typical electric motor is 110KWtt! In machine III, Q/r = 0
.. 031000KWt! The electric motor is p/r=
0.046, and as the capacity becomes smaller, r tends to be smaller and R tends to be smaller, and l is extremely small compared to r.

このことから、上記(8)式の特性方程式Vi82項を
蕪視しても差しつかえなく、ま念L+ = L2として
(8)になる。この04式を逆変換した雷諦1.げ1+
(1)−¥(1−ci−”it ”)+−e奉…弓めr
、−1−r2 但し、T = L2/ (−罫「5−)  * ・* 
(u−a)となる。この眞式中、右辺第2項はム、Ib
f無視し九九めで初期値が生じたもので、実際には短い
時定数でこの値まで立上る。また、上記α力式は次のよ
うにも変形される。
From this, it is safe to overlook the 82nd term of the characteristic equation Vi in the above equation (8), and assuming that L+ = L2, we get (8). Raitai 1, which is an inverse transformation of this 04 formula. Ge1+
(1)-¥(1-ci-"it")+-e service...Yumer
, -1-r2 However, T = L2/ (-rule "5-) * ・*
(u-a). In this true formula, the second term on the right side is m, Ib
The initial value is generated at the 99th point, ignoring f, and actually rises to this value with a short time constant. Moreover, the above α force equation can also be transformed as follows.

tl(t) = −(1−−e−丁t)    −−−
−−(IJハ   rl−4−r2 上述オでのことから、直流方圧Eの印加時の鍋渡特性図
は第3図に示すようになり、電流i、の最終値Ie汀α
錦式より re=E となる。また、−次抵抗r1は前述の(11項による測
定で既知とする。
tl(t) = −(1--e-t) ---
--(IJ ha rl-4-r2 From the above E, the Nabewata characteristic diagram when DC pressure E is applied is as shown in Fig. 3, and the final value Ie of current i, α
From the Nishiki formula, re=E. Furthermore, it is assumed that the -order resistance r1 is known by the measurement according to the above-mentioned (Section 11).

ここで、制御回路11は直流平均電圧E ttfllI
機1に印加するよう(1)項の測定と同様にトランジス
タTr1とTr6f三角波で変調したパルス電圧でオン
状態にし、このときの過渡状態での時刻tT*tt(第
3図)における電流L(t、)、1+(t2) ?電流
検出器13から取込む。また最終値W流工e金取込む。
Here, the control circuit 11 controls the DC average voltage E ttflI
Similarly to the measurement in item (1), the transistors Tr1 and Tr6f are turned on with a pulse voltage modulated by a triangular wave to be applied to the device 1, and the current L( t, ), 1+(t2)? It is taken in from the current detector 13. In addition, the final value W-Ryuko e-money is taken in.

これら電流値1啼(tz) 、’2(t2)と最終値工
。との比V+ sy2は前述のαコ式から −」五−1−re−すh  *s*11*a4Y2  
 I。
These current values are 1 (tz), 2 (t2) and the final value. The ratio of
I.

但し、              ・・・・・αυr
、 −1−r2 の関係にある。このal、α4式から e−÷t、=L(1−y、)    −・拳・@Qa’
)6−7i2=  (1−y2)    ##拳#−(
14’)であり、両式から立上り時定数Tを求めると1
−y。
However, ・・・・・・αυr
, -1-r2. From this al, α4 formula, e-÷t, = L (1-y,) -・Fist・@Qa'
)6-7i2= (1-y2) ##fist#-(
14'), and the rise time constant T is calculated from both equations as 1
-y.

T= (t2−tl)/(loge    )  ” 
eLf1−y2 となる。
T= (t2-tl)/(loge)”
eLf1-y2.

従って、制御回路11は電流L (L) 、it (%
)及び最終値工。から比y、、y2f求め、上述の幅式
から時定数T?求め、このT?使って41式(もしぐは
α◆式)から定数rXf−求める。
Therefore, the control circuit 11 controls the current L (L), it (%
) and final value. Find the ratio y,,y2f from the above width formula and find the time constant T? Are you looking for this T? Find the constant rXf- from equation 41 (if it is α◆ equation).

そして、制御回路11は定数rと一次抵抗r1から前述
の幀式に従って二次抵抗r2ヲ求める。
Then, the control circuit 11 calculates the secondary resistance r2 from the constant r and the primary resistance r1 according to the above-mentioned equation.

さらに、抵抗r1yr2と時定数Tから前述の(11−
a)式に従って、制御回路11が二次インダクタンスL
2を求める。
Furthermore, from the resistance r1yr2 and the time constant T, the above (11-
a) According to the formula, the control circuit 11 controls the secondary inductance L
Find 2.

さらに、二次時定数τ2も求める。Furthermore, the second-order time constant τ2 is also determined.

”z =Lx/ r2         ’ ” ” 
’ ” al)ここで、過渡電流1t(W 、 It(
Qには印加電圧がPWM電圧波形であるため検出電流に
もリップルが生じる。このリップルを取除いて8度良く
検出するために、第4図に示すようにトランジスタTr
i。
"z=Lx/r2'""
''al) Here, the transient current 1t(W, It(
Since the applied voltage to Q has a PWM voltage waveform, ripples also occur in the detected current. In order to remove this ripple and detect 8 degrees well, the transistor Tr as shown in FIG.
i.

T’rsの基準信号、ゲート信号によるインバータ出力
電圧(パルス電圧)の中間、すなわち三角波の頂点で電
流をサンプルする。こうした同期サンプルによnば、三
角波周波数が十分に高ければ、電流の変化を直線で近似
さn、三角波の頂点が核電流の平均値として検出さnる
。このためには、制御回路11は三角波信号Tri ?
サンプリングタイミングとして取込む。
The current is sampled at the middle of the inverter output voltage (pulse voltage) by the T'rs reference signal and the gate signal, that is, at the peak of the triangular wave. According to such synchronous samples, if the triangular wave frequency is high enough, changes in the current can be approximated by a straight line, and the peak of the triangular wave can be detected as the average value of the nuclear current. For this purpose, the control circuit 11 uses a triangular wave signal Tri?
Import as sampling timing.

なお、−次抵抗r1の測定では定常状態であるからサン
プリング回数を多くとって平均しても良い。
Note that since the -order resistance r1 is measured in a steady state, it may be sampled many times and averaged.

以上までの測定によって、制御回路11Fi−次抵抗r
+ #二次抵抗r2.二次インダクタンスL!及ヒ二次
時足数r2を求め、このうち本実施倒では必要な定数r
、とfz?係数器3..32及び62に設定することに
よって以後のベクトル制御′?可能にする。
By the above measurements, the control circuit 11Fi-order resistance r
+ #Secondary resistance r2. Secondary inductance L! Find the number of quadratic time frames r2, among which constant r is required in this implementation.
, and fz? Coefficient unit 3. .. 32 and 62 to control the subsequent vector control'? enable.

なお、実施例において、制御回路11はベクトル制御装
置がマイクロコンピュータ等で構成される場合に定数測
定用プログラムとして該制御装置に組込むことができる
のは勿論である。
In the embodiment, when the vector control device is constituted by a microcomputer or the like, it goes without saying that the control circuit 11 can be incorporated into the control device as a constant measurement program.

また、実施例はPWMインバータによるベクトル制御袋
#に適用した場合を示すが、本発明はこnに限定さハる
ものでなく、すべり周波数制御装置に適用できるし、キ
ャリア周波数を零(キャリア出力停止)$Cして直流電
圧Eと電流工の検出から定数を求めることができる。
In addition, although the embodiment shows a case where it is applied to a vector control bag # using a PWM inverter, the present invention is not limited to this, but can be applied to a slip frequency control device, and the carrier frequency is set to zero (carrier output Stop) $C and the constant can be found from the DC voltage E and current meter detection.

H0発明の効果 以上のとおり1本発明によれば、誘導電動機の駆動電源
になるインバータから直流電圧f発生させ、インバータ
の出力電流、電圧の検出によって誘導電動機の定数を求
めるため、該定数又はこれに基づいた足数全使ってイン
バータを制御する制御装置に適用して定数未知の電か機
でもその停止状態で該定数の自動測定?確実、容易にし
、さらには定数の自動設定をするというセルフチューニ
ングを容易にする。また、定数測定には電動機配線も含
めた計測になり、実用上の測定、設定ひいては制御精度
を向上できる効果がおる。
H0 Effects of the Invention As described above, 1. According to the present invention, a DC voltage f is generated from an inverter that serves as a drive power source for an induction motor, and the constant of the induction motor is determined by detecting the output current and voltage of the inverter. Is it possible to apply this to a control device that controls an inverter using all of the foot counts based on this, and automatically measure the constant of an electric machine whose constant is unknown even when the machine is stopped? To make self-tuning reliable and easy, and to automatically set constants. In addition, the constant measurements include the motor wiring, which has the effect of improving practical measurements, settings, and control accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すベクトル制御装置回路
図、!2図は誘導型ld1機の等価回路図、第3図は電
動機に直流電圧を印加したときの電流の子渡特性図、第
4図に本発明における富i検出タイミングチャートであ
る。 1・・・誘導W動機、21・・・インバータ王回路、2
2・・・PWM波形発生回路、31 m 32 * 6
2・・・係数器、6・・・角周波数演算回路、7・・・
相電圧演算回路、9・・・三角波発生回路、11・・・
チューニング制御回路、12・・・電圧検出器、13・
・・電流検出器。 第2図 誘傳亀動威の箒イゐ回置り引 第3図 電流411の過り竹・庄園
FIG. 1 is a circuit diagram of a vector control device showing one embodiment of the present invention. FIG. 2 is an equivalent circuit diagram of an induction type LD1 machine, FIG. 3 is a current characteristic diagram when a DC voltage is applied to the motor, and FIG. 4 is a wealth i detection timing chart in the present invention. 1... Induction W motive, 21... Inverter king circuit, 2
2...PWM waveform generation circuit, 31 m 32 * 6
2... Coefficient unit, 6... Angular frequency calculation circuit, 7...
Phase voltage calculation circuit, 9... triangular wave generation circuit, 11...
Tuning control circuit, 12...voltage detector, 13.
...Current detector. Fig. 2: The broom is placed in the direction of the turtle. Fig. 3: The mistake of the electric current 411 Take/Shoen

Claims (3)

【特許請求の範囲】[Claims] (1)インバータを駆動電源とする誘導電動機において
、前記インバータの出力に直流電圧Eを発生させ、前記
インバータの出力電流Iと前記直流電圧Eとの比E/I
から前記誘導電動機の一次抵抗r_1を求め、前記直流
電圧Eによる前記電流Iの立上り過渡電流i_1(t_
1)、i_1(t_2)と最終電流I_eとの夫々の比
i_1(t_1)/I_e、i_1(t_2)/I_e
から該電流Iの立上り時定数Tを求め、次の式 r_2/(r_1+r_2)={1−[〔i_1(t_
1)〕/I_e]}/〔e−(1/T)t_1〕L_2
=T・[(r_1r_2)/(r_1+r_2)]に従
って前記誘導電動機の二次抵抗r_2及び二次インダク
タンスL_2を求めることを特徴とする誘導電動機の定
数測定方法。
(1) In an induction motor using an inverter as a driving power source, a DC voltage E is generated at the output of the inverter, and the ratio E/I of the output current I of the inverter and the DC voltage E is
The primary resistance r_1 of the induction motor is determined from , and the rising transient current i_1(t_
1), the respective ratios of i_1(t_2) and final current I_e i_1(t_1)/I_e, i_1(t_2)/I_e
Find the rise time constant T of the current I from the following formula r_2/(r_1+r_2)={1-[[i_1(t_
1)]/I_e]}/[e-(1/T)t_1]L_2
=T·[(r_1r_2)/(r_1+r_2)] A method for measuring constants of an induction motor, characterized in that a secondary resistance r_2 and a secondary inductance L_2 of the induction motor are determined according to the formula: =T·[(r_1r_2)/(r_1+r_2)].
(2)前記インバータの出力は所定周波数のパルス電圧
とし、このパルス電圧の直流平均電圧@E@を前記電圧
Eとして検出し、パルス電圧に対する直流平均電流@I
@から前記電流I、過渡電流i_1(t_1)、i_1
(t_2)及び最終電流I_eを夫々検出することを特
徴とする特許請求の範囲第1項記載の誘導電動機の定数
測定方法。
(2) The output of the inverter is a pulse voltage of a predetermined frequency, the DC average voltage @E@ of this pulse voltage is detected as the voltage E, and the DC average current @I with respect to the pulse voltage
@ to the current I, transient current i_1(t_1), i_1
2. A method for measuring constants of an induction motor according to claim 1, characterized in that (t_2) and final current I_e are respectively detected.
(3)前記直流平均電圧@E@を異なる2つの電圧@E
@_1、@E@_2に切換え、該電圧@E@_1、@E
@_2に対する前記直流平均電流@I@_1、@I@_
2を検出し、次式r=(@E@_1−@E@_2)/(
@I@_1−@I@_2)に従って一次抵抗r_1を求
めることを特徴とする特許請求の範囲第2項に記載の誘
導電動機の定数測定方法。
(3) The DC average voltage @E@ is set to two different voltages @E
Switch to @_1, @E@_2, the corresponding voltage @E@_1, @E
Said DC average current @I@_1, @I@_ for @_2
2 is detected, and the following formula r=(@E@_1−@E@_2)/(
2. The method for measuring constants of an induction motor according to claim 2, characterized in that the primary resistance r_1 is determined according to @I@_1-@I@_2).
JP18148885A 1985-08-19 1985-08-19 Induction motor constant measurement method Expired - Fee Related JPH0627789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18148885A JPH0627789B2 (en) 1985-08-19 1985-08-19 Induction motor constant measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18148885A JPH0627789B2 (en) 1985-08-19 1985-08-19 Induction motor constant measurement method

Publications (2)

Publication Number Publication Date
JPS6242074A true JPS6242074A (en) 1987-02-24
JPH0627789B2 JPH0627789B2 (en) 1994-04-13

Family

ID=16101632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18148885A Expired - Fee Related JPH0627789B2 (en) 1985-08-19 1985-08-19 Induction motor constant measurement method

Country Status (1)

Country Link
JP (1) JPH0627789B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006843A1 (en) * 2000-07-13 2002-01-24 Kabushiki Kaisha Yaskawa Denki Method for measuring motor constant of induction motor
WO2002087050A1 (en) * 2001-04-19 2002-10-31 BSH Bosch und Siemens Hausgeräte GmbH Method and device for measuring the temperature of windings of a drive motor
GB2418993A (en) * 2004-10-09 2006-04-12 Siemens Ag A method for determining parameters of an induction motor
KR100734467B1 (en) 2005-02-25 2007-07-03 윤용호 Sensorless control system of a switched reluctance motor using impressing of voltage pulse and method thereof
JP2013138604A (en) * 2013-03-11 2013-07-11 Yaskawa Electric Corp Vector controller for induction motor
RU2623834C1 (en) * 2016-02-09 2017-06-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Method of determination of electromagnetic parameters of asynchronous electric motors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006843A1 (en) * 2000-07-13 2002-01-24 Kabushiki Kaisha Yaskawa Denki Method for measuring motor constant of induction motor
US7039542B2 (en) 2000-07-13 2006-05-02 Kabushiki Kaisha Yasukawa Denki Method of measuring motor constant for induction motor
WO2002087050A1 (en) * 2001-04-19 2002-10-31 BSH Bosch und Siemens Hausgeräte GmbH Method and device for measuring the temperature of windings of a drive motor
US6949945B2 (en) 2001-04-19 2005-09-27 BSH Bosch und Siemens Hausgeräte Method and apparatus for measurement of the winding temperature of a drive motor
KR100797336B1 (en) * 2001-04-19 2008-01-22 베에스하 보쉬 운트 지멘스 하우스게랫테 게엠베하 Method and device for measuring the temperature of windings of a drive motor
GB2418993A (en) * 2004-10-09 2006-04-12 Siemens Ag A method for determining parameters of an induction motor
GB2418993B (en) * 2004-10-09 2008-06-18 Siemens Ag A method for determining parameters of an induction motor
KR100734467B1 (en) 2005-02-25 2007-07-03 윤용호 Sensorless control system of a switched reluctance motor using impressing of voltage pulse and method thereof
JP2013138604A (en) * 2013-03-11 2013-07-11 Yaskawa Electric Corp Vector controller for induction motor
RU2623834C1 (en) * 2016-02-09 2017-06-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Method of determination of electromagnetic parameters of asynchronous electric motors

Also Published As

Publication number Publication date
JPH0627789B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
JPH09304489A (en) Method for measuring motor constant of induction motor
JP2001346396A (en) Speed control apparatus for synchronous reluctance motor
CN101154910A (en) Controller and constant measuring apparatus for AC motor
CN107154763A (en) Permagnetic synchronous motor dead beat direct Torque Control and control method
CN104967386A (en) Permanent magnet synchronous motor parameter identification method, device and control system
JPS6242074A (en) Measuring method for parameter of induction motor
US11863107B2 (en) Device and method for controlling rotary electric machine
JP2929344B2 (en) Method and apparatus for measuring motor constants
US6242882B1 (en) Motor control apparatus
JPS6242076A (en) Measuring method for parameter of induction motor
JP3099159B2 (en) Method and apparatus for measuring motor constants
JP2580101B2 (en) Method of setting control operation constants for induction motor control system
CN104393813B (en) Method for measuring direct-axis inductance of permanent magnet synchronous motor
Xie et al. Improved INFORM method by minimizing the inverter nonlinear voltage error effects
US4322672A (en) Electric motor control apparatus
JP3052315B2 (en) Induction motor constant measurement method
JPS6279380A (en) Constant measurement of induction motor
JPH0627790B2 (en) Induction motor constant measurement method
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JPS6159071B2 (en)
JPH07244099A (en) Inductance measuring circuit for motor
JP3309520B2 (en) Induction motor control method
JP3361885B2 (en) Induction motor control device
Plunkett et al. Digital techniques in the evaluation of high-efficiency induction motors for inverter drives
KR920006362B1 (en) A constant measuring method for inverter apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees