JP3361885B2 - Induction motor control device - Google Patents

Induction motor control device

Info

Publication number
JP3361885B2
JP3361885B2 JP14587094A JP14587094A JP3361885B2 JP 3361885 B2 JP3361885 B2 JP 3361885B2 JP 14587094 A JP14587094 A JP 14587094A JP 14587094 A JP14587094 A JP 14587094A JP 3361885 B2 JP3361885 B2 JP 3361885B2
Authority
JP
Japan
Prior art keywords
frequency
induction motor
value
slip frequency
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14587094A
Other languages
Japanese (ja)
Other versions
JPH0819300A (en
Inventor
伸一 戸田
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP14587094A priority Critical patent/JP3361885B2/en
Publication of JPH0819300A publication Critical patent/JPH0819300A/en
Application granted granted Critical
Publication of JP3361885B2 publication Critical patent/JP3361885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明はすべり周波数制御とベク
トル制御により誘導電動機を制御する誘導電動機の制御
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction motor controller for controlling an induction motor by slip frequency control and vector control.
【0002】[0002]
【従来の技術】誘導電動機を制御する方法としてすべり
周波数制御とベクトル制御がある。すべり周波数制御は
誘導電動機に供給する電流を電流指令値に追従させるよ
うにすべり周波数を制御し、誘導電動機に供給する電源
電圧値と電源周波数との比を一定に保つように電源電圧
値を定めて、誘導電動機を駆動する方法である。一方ベ
クトル制御は誘導電動機に供給する電流を、トルク発生
分の電流成分(以下、トルク電流という)と磁束発生分
の電流成分(以下、励磁電流という)とに分解し、励磁
電流の方向を磁束の発生方向と一致するように制御する
方法である。トルク電流の方向と励磁電流の方向は直交
しており、上述したように励磁電流の方向を磁束の発生
方向と一致させることにより、励磁電流が磁束の発生に
完全に寄与することができ、その発生した磁束とトルク
電流との積であるトルクが誘導電動機から発生すること
になる。又誘導電動機はすべりをもたせることでトルク
を発生するため、すべり周波数を上手に設定しないと、
励磁電流の方向と磁束の発生方向とを一致させることが
できない。
2. Description of the Related Art As a method for controlling an induction motor, there are slip frequency control and vector control. Slip frequency control controls the slip frequency so that the current supplied to the induction motor follows the current command value, and sets the power supply voltage value so that the ratio between the power supply voltage value supplied to the induction motor and the power supply frequency is kept constant. In this way, the induction motor is driven. On the other hand, vector control decomposes the current supplied to the induction motor into a current component for torque generation (hereinafter referred to as torque current) and a current component for magnetic flux generation (hereinafter referred to as excitation current), and changes the direction of the excitation current to magnetic flux. It is a method of controlling so as to match the direction of occurrence of. The direction of the torque current and the direction of the exciting current are orthogonal to each other, and by making the direction of the exciting current coincide with the direction of the magnetic flux generation as described above, the exciting current can completely contribute to the generation of the magnetic flux. Torque, which is the product of the generated magnetic flux and the torque current, is generated from the induction motor. In addition, since the induction motor generates torque by giving it a slip, unless the slip frequency is set properly,
It is not possible to match the direction of the exciting current with the direction of the magnetic flux generation.
【0003】[0003]
【発明が解決しようとする課題】すべり周波数は誘導電
動機の二次抵抗値や励磁インダクタンスに依存する。従
って誘導電動機を上述したようにベクトル制御する場
合、二次抵抗値や励磁インダクタンスを正確に把握する
必要がある。励磁インダクタンスは磁束が飽和しない限
りほぼ一定値を保つが、二次抵抗値は誘導電動機の温度
により変化するため、誘導電動機の駆動中に誘導電動機
の温度が変化するような場合には、二次抵抗値を推定す
る必要がある。この二次抵抗値を推定するために誘導電
動機に温度センサをとりつけて検出温度値から二次抵抗
値を推定したり、誘導電動機の電気的特性から定まる数
式モデルを用いて、ベクトル制御を行いながら二次抵抗
値の推定を行っている。しかしながら誘導電動機の数式
モデルを用いて二次抵抗値を推定する場合、計算が複雑
であるため長い演算時間が必要となる。又温度センサの
検出温度値から二次抵抗値を推定するには、予め温度と
二次抵抗値との関係を調査しなくてはならず、又温度と
二次抵抗値との関係を正確に特定することが難しいた
め、二次抵抗値の推定精度が良くないという問題があっ
た。
The slip frequency depends on the secondary resistance value and exciting inductance of the induction motor. Therefore, when the vector control of the induction motor is performed as described above, it is necessary to accurately grasp the secondary resistance value and the exciting inductance. The exciting inductance maintains a substantially constant value as long as the magnetic flux is not saturated, but the secondary resistance value changes with the temperature of the induction motor.Therefore, if the temperature of the induction motor changes while the induction motor is driving, It is necessary to estimate the resistance value. In order to estimate this secondary resistance value, a temperature sensor is attached to the induction motor to estimate the secondary resistance value from the detected temperature value, or a mathematical model determined from the electrical characteristics of the induction motor is used to perform vector control. The secondary resistance value is estimated. However, when the secondary resistance value is estimated using the mathematical model of the induction motor, a long calculation time is required because the calculation is complicated. Further, in order to estimate the secondary resistance value from the temperature value detected by the temperature sensor, the relationship between the temperature and the secondary resistance value must be investigated in advance, and the relationship between the temperature and the secondary resistance value must be accurately determined. Since it is difficult to specify, there is a problem that the estimation accuracy of the secondary resistance value is not good.
【0004】そこで本発明は上述した問題点を解決する
ためになされたもので、誘導電動機の二次抵抗値をすべ
り周波数制御により推定し、この推定した二次抵抗値を
用いて高精度なベクトル制御を行う誘導電動機の制御装
置を提供することを目的とする。
Therefore, the present invention has been made to solve the above-mentioned problems. The secondary resistance value of an induction motor is estimated by slip frequency control, and a highly accurate vector is estimated using the estimated secondary resistance value. An object of the present invention is to provide a control device for an induction motor that performs control.
【0005】[0005]
【課題を解決するための手段】上述した目的を達成する
ために、請求項1に記載の発明は、誘導電動機に供給さ
れる一次電流と誘導電動機から所望の駆動力を得るため
に予め設定された一次電流指令値との偏差を零とするす
べり周波数を演算するすべり周波数演算手段と、誘導電
動機の回転周波数を検出する回転周波数検出手段と、す
べり周波数と回転周波数とから演算された電源周波数、
一次電圧、一次電流、及び誘導電動機の各電気定数から
すべり周波数推定値を推定するすべり周波数推定手段
と、すべり周波数推定値とすべり周波数との偏差を零と
する二次抵抗値を推定する二次抵抗推定手段と、この二
次抵抗推定手段で推定された二次抵抗値を用いてベクト
ル制御を行うベクトル制御部とを有してなる。
In order to achieve the above-mentioned object, the invention according to claim 1 is preset to obtain a desired driving force from the primary current supplied to the induction motor and the induction motor. A slip frequency calculating means for calculating a slip frequency that makes the deviation from the primary current command value zero, a rotation frequency detecting means for detecting the rotation frequency of the induction motor, and a power supply frequency calculated from the slip frequency and the rotation frequency,
Slip frequency estimating means for estimating the slip frequency estimated value from the primary voltage, primary current, and each electric constant of the induction motor, and secondary for estimating the secondary resistance value that makes the deviation between the slip frequency estimated value and the slip frequency zero. It has a resistance estimation means and a vector control section for performing vector control using the secondary resistance value estimated by the secondary resistance estimation means.
【0006】又請求項2に記載の発明は、誘導電動機に
供給される一次電流と誘導電動機から所望の駆動力を得
るために予め設定された一次電流指令値との偏差を零と
するすべり周波数を演算するすべり周波数演算手段と、
誘導電動機の回転周波数を検出する回転周波数検出手段
と、すべり周波数と回転周波数とから演算された電源周
波数、この電源周波数から定まる一次電圧、一次電流、
及び誘導電動機の各電気定数から誘導電動機の二次イン
ピ−ダンスの抵抗分を演算し、二次インピ−ダンスの抵
抗分と誘導電動機の電気定数のうち二次抵抗値とからす
べり周波数推定値を推定するすべり周波数推定手段と、
すべり周波数がすべり周波数推定値よりも大きい際に
は、二次抵抗値を増加させ、すべり周波数がすべり周波
数推定値よりも小さい際には、二次抵抗値を減少させて
二次抵抗値を推定する二次抵抗推定手段と、この二次抵
抗推定手段で推定された二次抵抗値を用いてベクトル制
御を行うベクトル制御手段とを有してなる。
According to a second aspect of the present invention, the slip frequency is such that the deviation between the primary current supplied to the induction motor and the preset primary current command value for obtaining a desired driving force from the induction motor is zero. A slip frequency calculating means for calculating
Rotation frequency detecting means for detecting the rotation frequency of the induction motor, the power supply frequency calculated from the slip frequency and the rotation frequency, the primary voltage determined from this power supply frequency, the primary current,
And the resistance value of the secondary impedance of the induction motor is calculated from each electric constant of the induction motor, and the estimated slip frequency is calculated from the resistance value of the secondary impedance and the secondary resistance value of the electric constants of the induction motor. Slip frequency estimating means for estimating,
When the slip frequency is higher than the slip frequency estimated value, the secondary resistance value is increased, and when the slip frequency is smaller than the slip frequency estimated value, the secondary resistance value is decreased to estimate the secondary resistance value. And a vector control means for performing vector control using the secondary resistance value estimated by the secondary resistance estimation means.
【0007】又請求項3に記載の発明は、直流電力を交
流電力に変換するインバータと、このインバータで変換
された交流電力が供給される誘導電動機と、この誘導電
動機の回転周波数を検出する回転周波数検出手段と、イ
ンバータで変換された交流電力の電流値と誘導電動機か
ら所望の駆動力を得るために設定される電流指令値との
偏差を零とするすべり周波数を演算するすべり周波数演
算手段と、すべり周波数と回転周波数とから演算される
インバータ周波数、インバータで変換された交流電力の
電圧値、交流電力の電流値、及び誘導電動機の各電気定
数からすべり周波数推定値を推定するすべり周波数推定
手段と、すべり周波数推定値とすべり周波数との偏差を
零とする二次抵抗値を推定する二次抵抗推定手段と、回
転周波数が所定値以下となった際に、二次抵抗推定手段
で推定された二次抵抗値を用いてベクトル制御を行うベ
クトル制御手段とを有してなる。
According to a third aspect of the present invention, an inverter for converting DC power into AC power, an induction motor to which the AC power converted by the inverter is supplied, and a rotation detecting the rotation frequency of the induction motor. Frequency detecting means, and a slip frequency calculating means for calculating a slip frequency that makes the deviation between the current value of the AC power converted by the inverter and the current command value set to obtain a desired driving force from the induction motor zero. , A slip frequency estimating means for estimating a slip frequency estimated value from the inverter frequency calculated from the slip frequency and the rotation frequency, the voltage value of the AC power converted by the inverter, the current value of the AC power, and each electric constant of the induction motor And a secondary resistance estimating means for estimating a secondary resistance value that makes the deviation between the slip frequency estimated value and the slip frequency zero, and the rotation frequency is a predetermined value. When becomes lower, it has a vector control unit for performing vector control by using the estimated secondary resistance value in the secondary resistance estimating means.
【0008】また請求項4に記載の発明は、直流電力を
交流電力に変換するインバータと、このインバータで変
換された交流電力が供給される誘導電動機と、この誘導
電動機の回転周波数を検出する回転周波数検出部と、イ
ンバータで変換された交流電力の電流値と誘導電動機か
ら所望の駆動力を得るために設定される電流指令値との
偏差を零とするすべり周波数を演算するすべり周波数演
算手段と、すべり周波数と回転周波数とから演算される
インバータ周波数、インバータで変換された交流電力の
電圧値、交流電力の電流値、及び誘導電動機の各電気定
数から誘導電動機の二次インピ−ダンスの抵抗分を演算
し、二次インピ−ダンスの抵抗分と誘導電動機の電気定
数のうち二次抵抗値とからすべり周波数推定値を推定す
るすべり周波数推定手段と、すべり周波数がすべり周波
数推定値よりも大きい際には、二次抵抗値を増加させ、
すべり周波数がすべり周波数推定値よりも小さい際に
は、二次抵抗値を減少させて二次抵抗値を推定する二次
抵抗推定手段と、回転周波数が所定値以下となった際
に、二次抵抗推定手段で推定された二次抵抗値を用いて
ベクトル制御を行うベクトル制御手段とを有してなる。
According to a fourth aspect of the present invention, an inverter for converting DC power into AC power, an induction motor to which the AC power converted by the inverter is supplied, and a rotation detecting the rotation frequency of the induction motor. A frequency detecting unit, and a slip frequency calculating means for calculating a slip frequency that makes the deviation between the current value of the AC power converted by the inverter and the current command value set to obtain a desired driving force from the induction motor zero. , The inverter frequency calculated from the slip frequency and the rotation frequency, the voltage value of the AC power converted by the inverter, the current value of the AC power, and the electric constants of the induction motor, and the resistance component of the secondary impedance of the induction motor. To estimate the slip frequency estimated value from the resistance of the secondary impedance and the secondary resistance of the electric constants of the induction motor. And means, when greater than the frequency estimate slip slip frequency increases the secondary resistance value,
When the slip frequency is smaller than the slip frequency estimated value, the secondary resistance is reduced to estimate the secondary resistance value, and the secondary resistance is estimated when the rotation frequency becomes equal to or lower than a predetermined value. Vector control means for performing vector control using the secondary resistance value estimated by the resistance estimation means.
【0009】[0009]
【作用】上述した構成により、請求項1または請求項3
に記載の発明では、二次抵抗推定手段は、二次抵抗値な
どの誘導電動機の各電気定数を用いてすべり周波数推定
値を推定し、このすべり周波数推定値とすべり周波数制
御手段で演算されるすべり周波数を一致させるように常
に二次抵抗値の値を求めていく。そしてベクトル制御手
段はこの二次抵抗値を用いてベクトル制御を行う。
According to the above-mentioned structure, the first or third aspect is provided.
In the invention described in (1), the secondary resistance estimating means estimates the slip frequency estimated value using each electric constant of the induction motor such as the secondary resistance value, and is calculated by the slip frequency estimated value and the slip frequency control means. The value of the secondary resistance is always calculated so that the slip frequencies match. Then, the vector control means performs vector control using this secondary resistance value.
【0010】請求項2または請求項4に記載の発明で
は、二次抵抗推定手段は、二次抵抗値などの誘導電動機
の各電気定数を用いてすべり周波数推定値を推定し、す
べり周波数制御手段で演算されるすべり周波数がすべり
周波数推定値よりも大きい際には、二次抵抗値を増加さ
せ、すべり周波数がすべり周波数推定値よりも小さい際
には、二次抵抗値を減少させる。そしてベクトル制御手
段はこの二次抵抗値を用いてベクトル制御を行う。
In the invention according to claim 2 or 4, the secondary resistance estimating means estimates the slip frequency estimated value using each electric constant of the induction motor such as the secondary resistance value, and the slip frequency control means. The secondary resistance value is increased when the slip frequency calculated in step 1 is larger than the slip frequency estimated value, and the secondary resistance value is decreased when the slip frequency is smaller than the slip frequency estimated value. Then, the vector control means performs vector control using this secondary resistance value.
【0011】[0011]
【実施例】本発明の一実施例を図面を参照し詳細に説明
する。図1は本発明の一実施例を示す誘導電動機の制御
装置の構成図である。誘導電動機1は電源2から供給さ
れる3相交流電力により駆動制御される。電源2から出
力される3相交流電流Iu,Iv,Iwはすべり周波数
制御部3により制御される。すべり周波数制御部3は減
算部31、比例微分制御部32、切換部33、加算部34、乗算
部35、3相変換部36からなる。減算部31は図示しない一
次電流指令部から出力される一次電流指令値I1Sと、電
流検出部4u,4v,4wより検出され誘導電動機1に
入力される3相交流電流値Iu,Iv,Iwから一次電
流演算部5で演算された一次電流値I1 との差を演算す
る。比例微分制御部32はすべり周波数演算手段の一例
で、減算部31で演算された一次電流指令値I1Sと一次電
流値I1 との差を零とする様なすべり周波数ωS を演算
する。切換部33は図示しない指令装置から出力された力
行指令又はブレーキ指令に基づいて、出力を切換えるも
ので、力行指令の際は出力を“1”、ブレーキ指令の際
は出力を“0”とする。加算部34は誘導電動機1に取付
けられた回転周波数検出部6で検出された回転周波数ω
R とすべり周波数ωS との和又は差である一次周波数指
令値ωを演算する。つまり切換部33により図示しない指
令装置から力行指令が出力されている際には、加算部34
にはすべり周波数ωS がそのまま入力されるため、一次
周波数指令値ωはすべり周波数ωS と回転周波数ωR の
和となる。又、図示しない指令装置からブレーキ指令が
出力されている際には、加算部34にはすべり周波数ωS
に“−1”を掛けた値が入力されるため、一次周波数指
令値ωは回転周波数ωR とすべり周波数ωS との差とな
る。乗算部35は一次周波数指令値ωに変換定数Kを掛け
合わせて得られる一次電圧V1と、一次周波数指令値ω
を積分して(1/sを介して)得られる位相θの正弦値
sinθとの積を演算する。そして3相変換部36は乗算部
35の出力の位相変換を行うことにより3相交流電圧V
u,Vv,Vwを出力する。このようにすべり周波数制
御部3で制御された3相交流電圧Vu,Vv,Vwを電
源2から発生させ、誘導電動機1に対して3相交流電流
Iu,Iv,Iwを供給する。一次電流演算部5では、
3相交流電流Iu,Iv,Iwを2相変換し、その絶対
値である一次電流I1 を演算する。この一次電流I1 は
上述したすべり周波数制御部3により一次電流指令値I
1Sに追従させることができる。二次抵抗推定部7は減算
部71、比例微分制御部72、すべり周波数推定部73から構
成される。減算部71はすべり周波数制御部3の比例微分
制御部32で演算されたすべり周波数ωS と後述するすべ
り周波数推定部73で演算されたすべり周波数推定値ωSS
との差を演算する。比例微分制御部72は二次抵抗推定手
段の一例で、減算部71で演算されたすべり周波数ωS と
すべり周波数推定値ωSSとの差を零とする様な二次抵抗
推定値R2Sを演算する。すべり周波数推定部73は、比例
微分制御部72で演算された二次抵抗推定値R2S、すべり
周波数制御部3で演算された一次周波数指令値ω、一次
電圧V1 、一次電流演算部5で演算された一次電流I1
及び誘導電動機1の後述する各電気定数よりすべり周波
数推定値ωSSを演算する。ベクトル制御部8は二次抵抗
推定部7で推定された二次抵抗推定値R2Sを用いてベク
トル制御を行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a control device for an induction motor showing an embodiment of the present invention. The induction motor 1 is drive-controlled by three-phase AC power supplied from the power supply 2. Three-phase alternating currents Iu, Iv, Iw output from the power supply 2 are controlled by the slip frequency control unit 3. The slip frequency control unit 3 includes a subtraction unit 31, a proportional derivative control unit 32, a switching unit 33, an addition unit 34, a multiplication unit 35, and a three-phase conversion unit 36. The subtraction unit 31 uses the primary current command value I1S output from a primary current command unit (not shown) and the three-phase AC current values Iu, Iv, Iw detected by the current detection units 4u, 4v, 4w and input to the induction motor 1. The difference from the primary current value I1 calculated by the primary current calculator 5 is calculated. The proportional derivative control unit 32 is an example of a slip frequency calculating means, and calculates a slip frequency ω S that makes the difference between the primary current command value I1S calculated by the subtraction unit 31 and the primary current value I1 zero. The switching unit 33 switches the output based on a power running command or a brake command output from a command device (not shown), and sets the output to "1" for the power running command and "0" for the brake command. . The adding unit 34 is the rotation frequency ω detected by the rotation frequency detecting unit 6 attached to the induction motor 1.
The primary frequency command value ω, which is the sum or difference of R and the slip frequency ω S, is calculated. That is, when the switching unit 33 outputs a powering command from a command device (not shown), the addition unit 34
Since the slip frequency ω S is directly input to, the primary frequency command value ω is the sum of the slip frequency ω S and the rotation frequency ω R. Further, when the brake command is output from the command device (not shown), the slip frequency ω S
Since the value multiplied by "-1" is input, the primary frequency command value ω is the difference between the rotation frequency ωR and the slip frequency ωS. The multiplication unit 35 calculates the primary frequency command value ω and the primary voltage V1 obtained by multiplying the conversion constant K by the primary frequency command value ω.
Sine of phase θ obtained by integrating (via 1 / s)
Calculate the product with sin θ. And the three-phase conversion unit 36 is a multiplication unit
3 phase AC voltage V
Output u, Vv, Vw. In this way, the three-phase AC voltages Vu, Vv, Vw controlled by the slip frequency control unit 3 are generated from the power supply 2, and the three-phase AC currents Iu, Iv, Iw are supplied to the induction motor 1. In the primary current calculation unit 5,
The three-phase alternating currents Iu, Iv, and Iw are converted into two phases, and the primary current I1 which is the absolute value is calculated. This primary current I1 is supplied to the primary current command value I by the slip frequency controller 3 described above.
Can follow 1S. The secondary resistance estimation unit 7 includes a subtraction unit 71, a proportional derivative control unit 72, and a slip frequency estimation unit 73. The subtraction unit 71 is a slip frequency ω S calculated by the proportional derivative control unit 32 of the slip frequency control unit 3 and a slip frequency estimation value ω SS calculated by a slip frequency estimation unit 73 described later.
Calculate the difference between and. The proportional derivative control unit 72 is an example of a secondary resistance estimation means, and calculates a secondary resistance estimated value R2S such that the difference between the slip frequency ωS calculated by the subtraction unit 71 and the slip frequency estimated value ωSS is zero. The slip frequency estimation unit 73 is calculated by the secondary resistance estimation value R2S calculated by the proportional derivative control unit 72, the primary frequency command value ω calculated by the slip frequency control unit 3, the primary voltage V1, and the primary current calculation unit 5. Primary current I1
Also, the slip frequency estimated value ωSS is calculated from each electric constant of the induction motor 1 described later. The vector control unit 8 performs vector control using the secondary resistance estimated value R2S estimated by the secondary resistance estimation unit 7.
【0012】図2はすべり周波数推定部73の構成図、図
3は誘導電動機1の各電気定数から示される等価回路で
ある。なお図3では電流、電圧、インピ−ダンスをベク
トル表示で示しているが、説明中では特に指定しない限
りスカラ表示で記載する。図3に示されるように、誘導
電動機1は一次インダクタンスZ1 と、二次インダクタ
ンスZ2 と励磁インダクタンスLM との並列回路とを直
列に接続したものと等価である。一次インダクタンスZ
1 は一次抵抗R1 と一次インダクタンスL1 との直列回
路である。又二次インダクタンスZ2 は二次もれインダ
クタンスL2 と二次抵抗R2 をすべりSで割った純抵抗
値R2 /Sとの直列回路である。図2に示されるよう
に、すべり周波数推定部73は減算部731 、一次インダク
タンス演算部732 、乗算部733 、除算部734 、トルク電
流演算部735 、除算部736 、純抵抗演算部737 、除算部
738 、乗算部739 、逆数変換部740 から構成される。減
算部731 は、一次電圧V1 と一次インダクタンスZ1 に
よる電圧降下分との差である二次電圧V2 を演算する。
一次インダクタンスZ1 による電圧降下分は、一次イン
ダクタンス演算部732 により一次抵抗R1 と一次インダ
クタンスL1 のリアクタンス値ωL1 とから数1に基づ
いて演算された一次インダクタンスZ1 と一次電流I1
との積を乗算部733 により演算することで求まる。
FIG. 2 is a block diagram of the slip frequency estimating section 73, and FIG. 3 is an equivalent circuit shown from each electric constant of the induction motor 1. In FIG. 3, the current, voltage, and impedance are shown in vector display, but in the description, they are shown in scalar display unless otherwise specified. As shown in FIG. 3, the induction motor 1 is equivalent to one in which a primary inductance Z1, a parallel circuit of a secondary inductance Z2 and an exciting inductance LM are connected in series. Primary inductance Z
Reference numeral 1 is a series circuit of a primary resistance R1 and a primary inductance L1. The secondary inductance Z2 is a series circuit of the secondary leakage inductance L2 and the pure resistance value R2 / S obtained by dividing the secondary resistance R2 by the slip S. As shown in FIG. 2, the slip frequency estimating unit 73 includes a subtracting unit 731, a primary inductance calculating unit 732, a multiplying unit 733, a dividing unit 734, a torque current calculating unit 735, a dividing unit 736, a pure resistance calculating unit 737, and a dividing unit.
738, multiplication unit 739, and reciprocal conversion unit 740. The subtraction unit 731 calculates the secondary voltage V2 which is the difference between the primary voltage V1 and the voltage drop due to the primary inductance Z1.
The voltage drop due to the primary inductance Z1 is calculated by the primary inductance computing unit 732 from the primary resistance R1 and the reactance value ωL1 of the primary inductance L1 based on the formula 1 and the primary current I1.
It is obtained by calculating the product of and with the multiplication unit 733.
【0013】[0013]
【数1】 除算部734 は励磁インダクタンスLM に流れる励磁電流
IF を演算する。つまり励磁インダクタンスLM にかか
る二次電圧V2を励磁インダクタンスLM のリアクタン
ス値ωLM で除することにより励磁電流IF が演算され
る。励磁電流IF のベクトル方向とトルク電流IT のベ
クトル方向は直角の関係にあるため、トルク電流演算部
735 により一次電流I1 と励磁電流IF とからトルク電
流IT が数2に基づいて演算される。
[Equation 1] The division unit 734 calculates the exciting current IF flowing in the exciting inductance LM. That is, the exciting current IF is calculated by dividing the secondary voltage V2 applied to the exciting inductance LM by the reactance value ωLM of the exciting inductance LM. Since the vector direction of the exciting current IF and the vector direction of the torque current IT have a right angle relationship, the torque current calculating unit
735 calculates the torque current IT from the primary current I1 and the exciting current IF based on the equation (2).
【0014】[0014]
【数2】 除算部736 は二次インピーダンスZ2 を演算する。つま
り二次電圧V2 をトルク電流IT で除することにより二
次インピーダンスZ2 が演算される。純抵抗演算部737
は二次インピーダンスZ2 から二次もれインダクタンス
L2 を差し引いた純抵抗Rを演算する。純抵抗Rの演算
式は数3による。
[Equation 2] The division unit 736 calculates the secondary impedance Z2. That is, the secondary impedance Z2 is calculated by dividing the secondary voltage V2 by the torque current IT. Pure resistance calculator 737
Calculates the pure resistance R obtained by subtracting the secondary leakage inductance L2 from the secondary impedance Z2. The arithmetic expression of the pure resistance R is based on the equation 3.
【0015】[0015]
【数3】 純抵抗Rは図3に示されるように二次抵抗R2 をすべり
Sで割った値である。又すべりSはすべり周波数ωS を
一次周波数ωで割った値である。従って除算部738 で純
抵抗Rを乗算部739 で演算される一次周波数ωと二次抵
抗推定値R2Sとの積で除し、逆数変換部740 で逆数に変
換することですべり周波数推定値ωSSが演算できる。
[Equation 3] The pure resistance R is a value obtained by dividing the secondary resistance R2 by the slip S as shown in FIG. The slip S is a value obtained by dividing the slip frequency ω S by the primary frequency ω. Therefore, the slip frequency estimated value ωSS can be obtained by dividing the pure resistance R in the division unit 738 by the product of the primary frequency ω calculated in the multiplication unit 739 and the secondary resistance estimated value R2S, and converting it to the reciprocal number in the reciprocal conversion unit 740. Can be calculated.
【0016】誘導電動機1をすべり周波数制御で制御す
る際は一次電圧V1 と一次周波数ωとの比を一定に制御
して、励磁電流IF を一定に制御する。誘導電動機1の
高速運転時は一次周波数ωが高いため、励磁インダクタ
ンスLM にかかる二次電圧V2 を一次電圧V1 とみなす
ことができるが、誘導電動機1の低速運転時は一次周波
数ωが低いため、一次インダクタンスZ1 による電圧降
下分が大きくなり、二次電圧V2 を一次電圧V1 とみな
すことができない。高速運転時は、一次電圧V1 と一次
周波数ωとの比を一定に制御することは、ほぼ二次電圧
V1 と一次周波数ωとの比を一定に制御することになる
ため、励磁電流IF (=V2 /ωLM)は一定となる。し
かし低速運転時は、一次電圧V1 と一次周波数ωとの比
を一定に制御しても励磁電流IF は一定とならない。従
ってすべり周波数制御は高速運転時には向くが低速運転
時には不向きである。そこで低速運転時にはベクトル制
御による駆動制御を行うことが有効である。特に電気車
の駆動に用いられる誘導電動機の制御に起動時又は減速
時などの低速域ではベクトル制御を用い、高速域ではす
べり周波数制御を用いることが有効である。
When the induction motor 1 is controlled by slip frequency control, the ratio between the primary voltage V1 and the primary frequency ω is controlled to be constant, and the exciting current IF is controlled to be constant. Since the primary frequency ω is high during high-speed operation of the induction motor 1, the secondary voltage V2 applied to the exciting inductance LM can be regarded as the primary voltage V1, but during primary operation of the induction motor 1 at low speed, the primary frequency ω is low. The voltage drop due to the primary inductance Z1 becomes large, and the secondary voltage V2 cannot be regarded as the primary voltage V1. During high-speed operation, controlling the ratio of the primary voltage V1 to the primary frequency ω to be constant means controlling the ratio of the secondary voltage V1 to the primary frequency ω to be constant, so that the exciting current IF (= V2 / ωLM) becomes constant. However, during low speed operation, the exciting current IF is not constant even if the ratio of the primary voltage V1 and the primary frequency ω is controlled to be constant. Therefore, the slip frequency control is suitable for high speed operation but not suitable for low speed operation. Therefore, it is effective to perform drive control by vector control during low speed operation. In particular, it is effective to control the induction motor used to drive the electric vehicle by using vector control in a low speed range such as at start-up or deceleration and using slip frequency control in a high speed range.
【0017】図4は一般に用いられる電気車の主回路の
概略構成図である。架線10から供給される直流電力を集
電部11で集電し、可変電圧可変周波数インバータ(以
下、VVVFインバータという)12で3相交流電力に変
換する。この3相交流電力は誘導電動機13に供給され、
図示しない電気車の車輪に回転力を与え電気車を駆動す
る。VVVFインバータ12を制御する装置としてインバ
ータ制御装置14が備えられ、誘導電動機13に所望の3相
交流電力を供給するように、VVVFインバータを構成
する図示しない半導体素子の制御を行う。インバータ制
御装置14には、すべり周波数制御装置14aとベクトル制
御装置14bが備えられ、誘導電動機13に備えられた回転
周波数検出部15の出力である誘導電動機13の回転周波数
ωR 、VVVFインバータ12の3相交流出力端子に備え
られた電流検出部16u,16v,16wの出力である3相交
流電流Iu,Iv,Iwに基づいてVVVFインバータ
の制御を行う。
FIG. 4 is a schematic configuration diagram of a main circuit of a commonly used electric vehicle. The DC power supplied from the overhead wire 10 is collected by a current collector 11, and is converted into three-phase AC power by a variable voltage variable frequency inverter (hereinafter referred to as VVVF inverter) 12. This three-phase AC power is supplied to the induction motor 13,
A rotating force is applied to the wheels of an electric vehicle (not shown) to drive the electric vehicle. An inverter control device 14 is provided as a device for controlling the VVVF inverter 12, and controls a semiconductor element (not shown) constituting the VVVF inverter so as to supply desired three-phase AC power to the induction motor 13. The inverter control device 14 is provided with a slip frequency control device 14a and a vector control device 14b. The rotation frequency ω R of the induction motor 13 which is the output of the rotation frequency detection unit 15 provided in the induction motor 13 and the VVVF inverter 12 are provided. The VVVF inverter is controlled based on the three-phase AC currents Iu, Iv, Iw which are the outputs of the current detectors 16u, 16v, 16w provided in the phase AC output terminals.
【0018】すべり周波数制御装置14aは図1に示した
すべり周波数制御部3、一次電流演算部5、二次抵抗推
定部7を有する。電気車の低速域ではベクトル制御装置
14bがVVVFインバータ12を制御することになる。電
気車の高速域ではすべり周波数制御装置14aがVVVF
インバータ12を制御する。そこで二次抵抗推定部7によ
り二次抵抗推定値R2Sを推定する。つまり二次抵抗推定
値R2Sが実際の値と異なると、すべり周波数推定部73で
演算されたすべり周波数推定値ωSSとすべり周波数制御
部3の比例微分制御部32で演算されたすべり周波数ωS
と異なることになる。従って二次抵抗推定部7の比例微
分制御部72では、すべり周波数推定値ωSSとすべり周波
数ωS が一致するように二次抵抗推定値R2Sを演算す
る。具体的にはすべり周波数ωS がすべり周波数推定値
ωSSよりも大きい際には、二次抵抗推定値R2Sを増加さ
せ、すべり周波数ωS がすべり周波数推定値ωSSよりも
小さい際には、二次抵抗推定値R2Sを減少させる。この
ように二次抵抗推定値R2Sを演算し、この二次抵抗推定
値R2Sを用いてすべり周波数推定部73ですべり周波数推
定値ωSSを演算することにより、すべり周波数推定値ω
SSとすべり周波数ωSが一致すると、二次抵抗推定値R2
Sと実際の二次抵抗R2 は一致することになる。この演
算をすべり周波数制御装置14aがVVVFインバータ12
を制御している間、常に行うことになり、温度上昇など
により変化する二次抵抗R2 を推定することができる。
電気車が減速して回転周波数検出部で検出された回転周
波数が所定値以下となった際にすべり周波数制御からベ
クトル制御へと切換え、ベクトル制御装置14bがVVV
Fインバータ12を制御する際に、切り換える直前の二次
抵抗推定値R2Sを用いてベクトル制御を行う。このよう
にベクトル制御を行う際にすべり周波数制御で正確に推
定された二次抵抗推定値R2Sを用いることにより、高精
度なベクトル制御を行うことができる。
The slip frequency control device 14a has the slip frequency controller 3, the primary current calculator 5, and the secondary resistance estimator 7 shown in FIG. Vector controller in the low speed range of electric vehicles
14b will control the VVVF inverter 12. In the high speed range of electric cars, the slip frequency control device 14a is VVVF.
Control the inverter 12. Therefore, the secondary resistance estimation unit 7 estimates the secondary resistance estimated value R2S. That is, when the secondary resistance estimated value R2S is different from the actual value, the slip frequency estimated value ωSS calculated by the slip frequency estimation unit 73 and the slip frequency ωS calculated by the proportional derivative control unit 32 of the slip frequency control unit 3 are calculated.
Will be different from. Therefore, the proportional derivative control unit 72 of the secondary resistance estimating unit 7 calculates the secondary resistance estimated value R2S so that the slip frequency estimated value ωSS and the slip frequency ωS coincide with each other. Specifically, when the slip frequency ω S is larger than the slip frequency estimated value ω SS, the secondary resistance estimated value R2S is increased, and when the slip frequency ω S is smaller than the slip frequency estimated value ω SS, the secondary resistance estimated value Decrease the value R2S. By calculating the secondary resistance estimated value R2S in this way, and calculating the slip frequency estimated value ωSS in the slip frequency estimation unit 73 using this secondary resistance estimated value R2S, the slip frequency estimated value ω
If SS and slip frequency ωS match, the estimated secondary resistance R2
The S and the actual secondary resistance R2 will coincide. This calculation is performed by the slip frequency control device 14a by the VVVF inverter 12.
It is always performed during the control of, and it is possible to estimate the secondary resistance R2 which changes due to temperature rise and the like.
When the electric vehicle decelerates and the rotation frequency detected by the rotation frequency detection unit becomes equal to or lower than a predetermined value, the slip frequency control is switched to the vector control, and the vector control device 14b controls the VVV.
When controlling the F inverter 12, vector control is performed using the secondary resistance estimated value R2S immediately before switching. By using the secondary resistance estimated value R2S accurately estimated by the slip frequency control when performing the vector control as described above, it is possible to perform the vector control with high accuracy.
【0019】なお本実施例では電気車に適用した例を説
明したが、これに限られずすべり周波数制御とベクトル
制御を併用して誘導電動機を制御する装置に適用するこ
とができる。
In the present embodiment, the example applied to the electric vehicle has been described, but the present invention is not limited to this, and the present invention can be applied to an apparatus for controlling an induction motor using both slip frequency control and vector control.
【0020】[0020]
【発明の効果】以上説明したように本発明では、誘導電
動機をすべり周波数制御とベクトル制御を併用して制御
し、すべり周波数制御を行っている際に誘導電動機の二
次抵抗値を推定してこの二次抵抗値を用いてベクトル制
御を行うことができるので、高精度なベクトル制御を実
現することができる。
As described above, according to the present invention, the induction motor is controlled by using both the slip frequency control and the vector control, and the secondary resistance value of the induction motor is estimated during the slip frequency control. Since vector control can be performed using this secondary resistance value, highly accurate vector control can be realized.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例を示す誘導電動機の制御装置
の構成図である。
FIG. 1 is a configuration diagram of a control device for an induction motor showing an embodiment of the present invention.
【図2】すべり周波数演算部の構成図である。FIG. 2 is a configuration diagram of a slip frequency calculation unit.
【図3】誘導電動機の等価回路図である。FIG. 3 is an equivalent circuit diagram of the induction motor.
【図4】電気車の主回路概略構成図である。FIG. 4 is a schematic configuration diagram of a main circuit of an electric vehicle.
【符号の説明】[Explanation of symbols]
1,13 誘導電動機 2 電源 3 すべり周波数制御部 4u,4v,4w,16u,16v,16w 電流検出部 5 一次電流演算部 6,15 回転周波数検出部 7 二次抵抗推定部 73 すべり周波数推定部 14 インバータ制御装置 14a すべり周波数制御装置 14b ベクトル制御装置 1,13 induction motor 2 power supplies 3 Slip frequency controller 4u, 4v, 4w, 16u, 16v, 16w Current detector 5 Primary current calculator 6,15 Rotation frequency detector 7 Secondary resistance estimation unit 73 Slip frequency estimator 14 Inverter controller 14a Slip frequency control device 14b Vector controller
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02P 5/408 - 5/412 H02P 7/628 - 7/632 H02P 21/00 B60L 1/00 - 3/00 B60L 7/00 - 13/00 B60L 15/00 - 15/42 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) H02P 5/408-5/412 H02P 7/628-7/632 H02P 21/00 B60L 1/00-3/00 B60L 7 / 00-13/00 B60L 15/00-15/42

Claims (4)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】 誘導電動機に供給される一次電流と前記
    誘導電動機から所望の駆動力を得るために予め設定され
    た一次電流指令値との偏差を零とするすべり周波数を演
    算するすべり周波数演算手段と、 前記誘導電動機の回転周波数を検出する回転周波数検出
    手段と、 前記すべり周波数と前記回転周波数とから演算された電
    源周波数、一次電圧、前記一次電流、及び前記誘導電動
    機の各電気定数からすべり周波数推定値を演算するすべ
    り周波数推定手段と、 前記すべり周波数推定値と前記すべり周波数との偏差を
    零とする前記二次抵抗値を推定する二次抵抗推定手段
    と、 この二次抵抗推定手段で推定された二次抵抗値を用いて
    ベクトル制御を行うベクトル制御手段とを有する誘導電
    動機の制御装置。
    1. A slip frequency calculating means for calculating a slip frequency at which a deviation between a primary current supplied to an induction motor and a preset primary current command value for obtaining a desired driving force from the induction motor is zero. A rotation frequency detecting means for detecting a rotation frequency of the induction motor, a power supply frequency calculated from the slip frequency and the rotation frequency, a primary voltage, the primary current, and a slip frequency from each electric constant of the induction motor. A slip frequency estimating means for calculating an estimated value, a secondary resistance estimating means for estimating the secondary resistance value that makes the deviation between the slip frequency estimated value and the slip frequency zero, and an estimation by the secondary resistance estimating means Control device for an induction motor having vector control means for performing vector control using the generated secondary resistance value.
  2. 【請求項2】 誘導電動機に供給される一次電流と前記
    誘導電動機から所望の駆動力を得るために予め設定され
    た一次電流指令値との偏差を零とするすべり周波数を演
    算するすべり周波数演算手段と、 前記誘導電動機の回転周波数を検出する回転周波数検出
    手段と、 前記すべり周波数と前記回転周波数とから演算された電
    源周波数、この電源周波数から定まる一次電圧、前記一
    次電流、及び前記誘導電動機の各電気定数から前記誘導
    電動機の二次インピ−ダンスの抵抗分を演算し、前記二
    次インピ−ダンスの抵抗分と前記誘導電動機の電気定数
    のうち二次抵抗値とからすべり周波数推定値を演算する
    すべり周波数推定手段と、 前記すべり周波数が前記すべり周波数推定値よりも大き
    い際には、前記二次抵抗値を増加させ、前記すべり周波
    数が前記すべり周波数推定値よりも小さい際には、前記
    二次抵抗値を減少させて前記二次抵抗値を推定する二次
    抵抗推定手段と、 この二次抵抗推定手段で推定された二次抵抗値を用いて
    ベクトル制御を行うベクトル制御手段とを有する誘導電
    動機の制御装置。
    2. A slip frequency calculating means for calculating a slip frequency at which a deviation between a primary current supplied to an induction motor and a preset primary current command value for obtaining a desired driving force from the induction motor is zero. Rotation frequency detecting means for detecting the rotation frequency of the induction motor, a power supply frequency calculated from the slip frequency and the rotation frequency, a primary voltage determined from this power supply frequency, the primary current, and each of the induction motor A resistance value of the secondary impedance of the induction motor is calculated from an electric constant, and a slip frequency estimated value is calculated from the resistance value of the secondary impedance and the secondary resistance value of the electric constants of the induction motor. When the slip frequency is larger than the slip frequency estimation value, the secondary resistance value is increased so that the slip frequency is When it is smaller than the slip frequency estimated value, the secondary resistance value is estimated by decreasing the secondary resistance value to estimate the secondary resistance value, and the secondary resistance value estimated by the secondary resistance estimation means. And a vector control means for performing vector control using the induction motor.
  3. 【請求項3】 直流電力を交流電力に変換するインバー
    タと、 このインバータで変換された交流電力が供給される誘導
    電動機と、 この誘導電動機の回転周波数を検出する回転周波数検出
    手段と、 前記インバータで変換された交流電力の電流値と前記誘
    導電動機から所望の駆動力を得るために設定される電流
    指令値との偏差を零とするすべり周波数を演算するすべ
    り周波数演算手段と、 前記すべり周波数と前記回転周波数とから演算されるイ
    ンバータ周波数、前記インバータで変換された交流電力
    の電圧値、前記交流電力の電流値、及び前記誘導電動機
    の各電気定数からすべり周波数推定値を演算するすべり
    周波数推定手段と、 前記すべり周波数推定値と前記すべり周波数との偏差を
    零とする前記誘導電動機の電気定数のうち二次抵抗値を
    推定する二次抵抗推定手段と、 前記回転周波数が所定値以下となった際に、前記二次抵
    抗推定手段で推定された二次抵抗値を用いてベクトル制
    御を行うベクトル制御手段とを有する誘導電動機の制御
    装置。
    3. An inverter for converting DC power into AC power, an induction motor to which the AC power converted by the inverter is supplied, a rotation frequency detecting means for detecting a rotation frequency of the induction motor, and the inverter. A slip frequency calculating means for calculating a slip frequency that makes the deviation between the current value of the converted AC power and the current command value set to obtain a desired driving force from the induction motor zero, the slip frequency and the slip frequency. An inverter frequency calculated from the rotation frequency, a voltage value of the AC power converted by the inverter, a current value of the AC power, and a slip frequency estimation means for calculating a slip frequency estimated value from each electric constant of the induction motor, , Estimating the secondary resistance value of the electrical constants of the induction motor that makes the deviation between the slip frequency estimated value and the slip frequency zero. And an induction motor having vector control means for performing vector control using the secondary resistance value estimated by the secondary resistance estimation means when the rotation frequency becomes equal to or lower than a predetermined value. Control device.
  4. 【請求項4】 直流電力を交流電力に変換するインバー
    タと、 このインバータで変換された交流電力が供給される誘導
    電動機と、 この誘導電動機の回転周波数を検出する回転周波数検出
    手段と、 前記インバータで変換された交流電力の電流値と前記誘
    導電動機から所望の駆動力を得るために設定される電流
    指令値との偏差を零とするすべり周波数を演算するすべ
    り周波数演算手段と、 前記すべり周波数と前記回転周波数とから演算されるイ
    ンバータ周波数、前記インバータで変換された交流電力
    の電圧値、前記交流電力の電流値、及び前記誘導電動機
    の各電気定数から前記誘導電動機の二次インピ−ダンス
    の抵抗分を演算し、前記二次インピ−ダンスの抵抗分と
    前記誘導電動機の電気定数のうち二次抵抗値とからすべ
    り周波数推定値を演算するすべり周波数推定手段と、 前記すべり周波数が前記すべり周波数推定値よりも大き
    い際には、前記二次抵抗値を増加させ、前記すべり周波
    数が前記すべり周波数推定値よりも小さい際には、前記
    二次抵抗値を減少させて前記二次抵抗値を推定する二次
    抵抗推定手段と、 前記回転周波数が所定値以下となった際に、前記二次抵
    抗推定手段で推定された二次抵抗値を用いてベクトル制
    御を行うベクトル制御手段とを有する誘導電動機の制御
    装置。
    4. An inverter for converting DC power into AC power, an induction motor to which the AC power converted by the inverter is supplied, a rotation frequency detecting means for detecting a rotation frequency of the induction motor, and the inverter. A slip frequency calculating means for calculating a slip frequency that makes the deviation between the current value of the converted AC power and the current command value set to obtain a desired driving force from the induction motor zero, the slip frequency and the slip frequency. The inverter frequency calculated from the rotation frequency, the voltage value of the AC power converted by the inverter, the current value of the AC power, and the resistance value of the secondary impedance of the induction motor from the electric constants of the induction motor. And a slip frequency estimated value is calculated from the resistance value of the secondary impedance and the secondary resistance value of the electric constants of the induction motor. A slip frequency estimating means, when the slip frequency is higher than the slip frequency estimated value, the secondary resistance value is increased, and when the slip frequency is smaller than the slip frequency estimated value, the two A secondary resistance estimating means for estimating the secondary resistance value by decreasing the secondary resistance value, and a secondary resistance value estimated by the secondary resistance estimating means when the rotation frequency is equal to or lower than a predetermined value. An induction motor control device having vector control means for performing vector control using the control device.
JP14587094A 1994-06-28 1994-06-28 Induction motor control device Expired - Lifetime JP3361885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14587094A JP3361885B2 (en) 1994-06-28 1994-06-28 Induction motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14587094A JP3361885B2 (en) 1994-06-28 1994-06-28 Induction motor control device

Publications (2)

Publication Number Publication Date
JPH0819300A JPH0819300A (en) 1996-01-19
JP3361885B2 true JP3361885B2 (en) 2003-01-07

Family

ID=15394965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14587094A Expired - Lifetime JP3361885B2 (en) 1994-06-28 1994-06-28 Induction motor control device

Country Status (1)

Country Link
JP (1) JP3361885B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634683B2 (en) * 1999-08-18 2005-03-30 東洋電機製造株式会社 Electric motor control device
JP3520002B2 (en) * 1999-12-08 2004-04-19 三菱電機株式会社 Vector control device for induction motor
WO2008065978A1 (en) * 2006-11-28 2008-06-05 Kabushiki Kaisha Yaskawa Denki Induction motor control device and its control method

Also Published As

Publication number Publication date
JPH0819300A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
JP3645509B2 (en) Induction motor sensorless vector control system and sensorless vector control method
EP0330188B1 (en) Induction motor vector control
EP1796260B1 (en) Vector controller of induction motor
US7075266B2 (en) Apparatus for controlling an a. c. motor
EP0233948B1 (en) Method of controlling a three-phase induction motor
JP2001346396A (en) Speed control apparatus for synchronous reluctance motor
US20030030404A1 (en) Sensorless control system for synchronous motor
US5998958A (en) Method for estimating resistance values of stator and rotor of induction motor
KR20020030613A (en) Velocigty control apparatus of synchronous reluctance montor
JP3097610B2 (en) Induction machine variable speed drive
JP2001352800A (en) Constant identification method of synchronous motor and control unit with constant identification function therefor
JP3361885B2 (en) Induction motor control device
US6321606B1 (en) Apparatus for calculating torque generated by induction motor
CN107615641B (en) Power conversion device, secondary time constant measurement method, and speed control method for induction motor
JPH11150996A (en) Motor controller
CN1026401C (en) Apparatus for contrelling elevator speed
JP2002233180A (en) Power converter
JP2005039912A (en) Control unit of ac motor
WO2019008838A1 (en) Induction motor drive device and drive method
JP3692929B2 (en) Motor control device
JP3161237B2 (en) Induction motor control device
JPH08294299A (en) Induction motor control device and electrically-operated power steering device using this induction motor control device
JP2634959B2 (en) Speed sensorless speed control method
JP3687331B2 (en) Induction machine variable speed drive
JP2946157B2 (en) Induction motor speed control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

EXPY Cancellation because of completion of term