JPS627639A - Method for molding optical glass element - Google Patents

Method for molding optical glass element

Info

Publication number
JPS627639A
JPS627639A JP14558885A JP14558885A JPS627639A JP S627639 A JPS627639 A JP S627639A JP 14558885 A JP14558885 A JP 14558885A JP 14558885 A JP14558885 A JP 14558885A JP S627639 A JPS627639 A JP S627639A
Authority
JP
Japan
Prior art keywords
glass
mold
silicon carbide
coating film
optical glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14558885A
Other languages
Japanese (ja)
Inventor
Masayuki Sakai
界 政行
Hideto Monju
秀人 文字
Kiyoshi Kuribayashi
清 栗林
Masaki Aoki
正樹 青木
Hideyuki Okinaka
秀行 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14558885A priority Critical patent/JPS627639A/en
Publication of JPS627639A publication Critical patent/JPS627639A/en
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon

Abstract

PURPOSE:To facilitate the high-accuracy working of a mold form and to reduce remarkably the reaction between the mold and glass even when high m.p. glass is molded by forming a film of a specified metallic oxide on the molding surface of a die using a sintered hard alloy as the base material and further forming an SiC film thereon. CONSTITUTION:A sintered hard alloy is used as the base material and the material is worked into a die in the same form as an optical glass element to be molded. Then, a coating film contg. >=1 kind among Al2O3, SiO2, ZrO2 and TiO2 is formed in uniform thickness on the compression-molding surface of the die and an SiC coating film is further formed thereon in uniform thickness. Glass is heated at a temp. above the m.p. of the glass and then compression-molded in an inert gas atmosphere by using a couple of the obtained dies. The C/Si ratio of the SiC coating film is preferably regulated to 0.7-1.2. The sintered hard alloy to be used as the base material is preferably composed of tungsten carbide (WC).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光学ガラス素子の製造方法に関し、特にプレ
ス成形後、磨き工程等を必要としない光。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing an optical glass element, and in particular to a method of manufacturing an optical glass element, particularly an optical glass element that does not require a polishing process after press molding.

学ガラス素子の成形方法に関するものである。The present invention relates to a method for molding an optical glass element.

従来の技術 近年、光学ガラスレンズは、光学機器のレンズ構成の簡
略化とレンズ部分の軽量化の両方を同時に達成し得る非
球面化の傾向にある。この非球面レンズの製造には、従
来の光学レンズ製造方法である光学研磨法では加工性及
び量産性に劣り、直接プレス成形法が有望視されている
2. Description of the Related Art In recent years, there has been a trend toward aspheric optical glass lenses, which can simultaneously simplify the lens structure of optical instruments and reduce the weight of the lens portion. For manufacturing this aspherical lens, the optical polishing method, which is a conventional optical lens manufacturing method, is inferior in workability and mass production, and direct press molding is considered to be promising.

この直接プレス成形法というのは、あらかじめ所望の面
品質及び面精度に仕上げた非球面のモールド型の上で、
光学ガラスの塊状物を加熱、あるいはあらかじめ加熱し
であるガラスの塊状物をプレス成形して、プレス成形後
、それ以上の研磨とか磨き工程などの工程を必要とせず
光学レンズを製造する方法である。
This direct press molding method uses an aspherical mold that has been finished to the desired surface quality and precision in advance.
This is a method of manufacturing optical lenses by heating or pre-heating a lump of optical glass and press-molding the glass lump, without requiring any further polishing or polishing process after press-molding. .

しかしながら、上述の光学ガラスレンズの製造方法は、
プレス成形後、得られたレンズの像形成品質が損なわれ
ない程度に優れていなければならない。特に非球面レン
ズの場合、高い精度で成形できることが要求される。
However, the method for manufacturing the optical glass lens described above,
After press molding, the image forming quality of the obtained lens must be excellent to the extent that it is not impaired. Especially in the case of an aspherical lens, it is required that it can be molded with high precision.

したがって、型材料としては、高温度においてガラスに
対して化学作用が最小であること、型のガラスプレス面
にすり傷等の損傷を受けにくいこと、熱衝撃による耐破
壊性能が高いことなどが必要である。
Therefore, the mold material must have minimal chemical effects on the glass at high temperatures, be resistant to damage such as scratches on the glass press surface of the mold, and have high resistance to destruction due to thermal shock. It is.

この目的のために、炭化ケイ素、窒化ケイ素などの材料
の型あるいは高密度カーボンの上に炭化ケイ素、窒化ケ
イ素などのコーティング膜全形成した型が適していると
されており、いろいろ検討が加えられている。(例えば
、特開昭62−45613号公報)。
For this purpose, molds made of materials such as silicon carbide or silicon nitride, or molds in which a coating film of silicon carbide or silicon nitride is completely formed on high-density carbon are considered suitable, and various studies have been conducted. ing. (For example, JP-A-62-45613).

発明が解決しようとする問題点 しかしながらSiC,Si、N4 等の材料は硬度が極
めて高いため、これらの材料を加工して球面あるいは非
球面のレンズ成形用の型に高精度に加工することが非常
に困難であり、しかも従来これらの型材に用いられてい
るのはいずれも焼結タイプのものであるため焼結助剤と
してム1206.B2O3等のガラスと比較的反応しや
すい物質が使用されており高精度でレンズを成形できな
い欠点があった。
Problems to be Solved by the Invention However, since materials such as SiC, Si, and N4 have extremely high hardness, it is extremely difficult to process these materials into molds for molding spherical or aspherical lenses with high precision. Moreover, since all of the mold materials conventionally used for these molds are sintered types, M1206. is used as a sintering aid. This method uses a substance such as B2O3 that reacts relatively easily with glass, which has the disadvantage that lenses cannot be molded with high precision.

一方、カーボンの成形物の上に炭化ケイ素などをコーテ
ィングして作成した型も、プレスガラスの種類およびプ
レス条件によってはガラスと反応したり、膜の剥離が発
生した。
On the other hand, molds made by coating silicon carbide on a carbon molded product may also react with the glass or cause peeling of the film, depending on the type of press glass and pressing conditions.

これらの欠点に対して、母材にGo f含むWCを主成
分とする超硬合金の上にスパッタ法で炭化ケイ素をコー
ティングして作成した型を用いることによってガラスと
の反応が極めて少なく、また膜の接着強度も非常に強い
ものが得られた。しかし、プレス温度が800°C前後
と非常に高いため、プレス回数を重ねていくと母材中の
GOがSiCスパッタ膜中に拡散していきついにはSi
C膜表面上に達してガラスと反応するという問題が発生
し、型の耐久性に劣るといった点に問題があった。
In order to overcome these drawbacks, by using a mold made by coating silicon carbide by sputtering on a cemented carbide whose main component is WC containing Go as a base material, there is extremely little reaction with glass. The adhesive strength of the film was also very strong. However, since the pressing temperature is extremely high at around 800°C, as the number of presses increases, GO in the base material diffuses into the SiC sputtered film, and eventually the Si
There was a problem that the C reached the surface of the film and reacted with the glass, resulting in poor durability of the mold.

問題点を解決するための手段 本発明問題点を解決するために成形用の型は超硬合金を
母材にし、これを成形すべきレンズ形状の押し型に加工
し、さらにその上に均一な厚みでAl2O,、SiO2
,ZrO□オよびTiO□(1)一種あるいはその混合
物のコーティング膜を形成し、さらにその上に均一な厚
みで、炭素とケイ素の組成比(C/Si値)が0.7〜
1.2の範囲であるようなアモルファスSiC、α−5
iCおよびアモルファスSiCトα−SiCの混合物の
うちいずれか一種のコーティング膜を形成することを特
徴とするものである。
Means for Solving the Problems The present invention In order to solve the problems, a mold for molding uses cemented carbide as a base material, processes this into a mold in the shape of a lens to be molded, and then presses a uniform mold onto the mold. Al2O, SiO2 in thickness
, ZrO□O and TiO□(1) or a mixture thereof, and furthermore, a coating film of a type or a mixture thereof is formed with a uniform thickness and a composition ratio of carbon to silicon (C/Si value) of 0.7 to
Amorphous SiC, α-5, such that in the range of 1.2
This method is characterized by forming a coating film of any one of a mixture of iC, amorphous SiC, and α-SiC.

ここで、母材として用いる超硬合金は、放電加工が可能
であるばかりでなく、一般的な研削加工を行なう場合に
おいても、従来ガラスレンズ直接プレス成形のをとして
用いられた硬度の高い炭化ケイ素や窒化ケイ素よりも容
易に高精度な型形状の加工ができる特徴がある。また、
母材として用いる超硬合金はコーティング膜として用い
る炭化ケイ素と熱膨張率がよく一致しているために、ガ
ラスのプレス成形の際の型加熱、プレス成形、冷却の熱
サイクルのくシ返しにも耐える強い膜接着力が得られる
特徴がある。
Here, the cemented carbide used as the base material is not only capable of electrical discharge machining, but also can be used in general grinding processes using silicon carbide, which has high hardness and is conventionally used as a material for direct press molding of glass lenses. It has the characteristic that it can be processed into mold shapes with higher precision than silicon nitride or silicon nitride. Also,
The cemented carbide used as the base material has a coefficient of thermal expansion that closely matches that of the silicon carbide used as the coating film, so it is suitable for repeating the thermal cycle of mold heating, press forming, and cooling during press forming of glass. It has the characteristic of providing strong and durable film adhesion.

作用 本発明は上記した構成により、従来同じ目的の型として
用いられていた、SiCやSi3N4焼結体を用いた型
の欠点であった高精度加工の困難さを克       
−服し、かつ高融点ガラスを成形しても型とガラスの反
応が非常に少ないという利点が生じる・これ     
  16.。
Function The present invention overcomes the difficulty of high-precision machining, which was a drawback of molds using SiC or Si3N4 sintered bodies, which were conventionally used as molds for the same purpose.
- This has the advantage that there is very little reaction between the mold and the glass even when molding high melting point glass.
16. .

より、長寿命、高信頼性の直接プレス成形法にょ   
    4)る光学ガラス素子の作成が可能となる。 
           ′ヶ、           
      ;ゎユ3゜22、ツーg60MM(Dよウ
ア、2□。    ′□のコパル) (Go) ’に含
有するWCの超硬合金の棒を各2本ずつ準備し、放電加
工によって周囲に切り込みがある曲率半径46朋の凹面
形状の上型と、曲率半径が200膜mの凹面形状の下型
から成る一対のプレス成形用型の形状に加工した。
The direct press molding method has a longer life and higher reliability.
4) It becomes possible to create an optical glass element.
′,
; ゎyu 3゜22, 2 g 60MM (D yo ua, 2 □. '□'s copal) (Go) Prepare two each of WC cemented carbide rods contained in ', and cut around the periphery by electrical discharge machining. A pair of press molding molds were formed, each consisting of a concave upper mold with a certain radius of curvature of 46 m and a concave lower mold with a radius of curvature of 200 mm.

これらの各一対のブロックのプレス成形面を超微細なダ
イヤモンド砥粒を用いて鏡面研摩した結果2時間までで
表面の最大荒さくRm2Lx)が0.02μmの精度に
鏡面加工を行なえた。次にこの鏡面上にスパッタ法によ
り0.2μmの厚みでムで205膜を形成後さらにこの
上にスパッタ法により2μmの厚みで炭素とケイ素の組
成比(C/Si値)が0.7のアモルファス炭化ケイ素
膜を形成して、ガラスプレス成形用の型を作製した。
The press-molded surfaces of each pair of blocks were mirror-polished using ultra-fine diamond abrasive grains. As a result, the surfaces could be mirror-finished to an accuracy of maximum roughness Rm2Lx) of 0.02 μm within 2 hours. Next, a 205 film with a thickness of 0.2 μm is formed on this mirror surface by sputtering, and then a 205 film with a carbon to silicon composition ratio (C/Si value) of 0.7 is further deposited on this mirror with a thickness of 2 μm by sputtering. An amorphous silicon carbide film was formed to prepare a mold for glass press molding.

このようにして作成した型を第1図に示す。この型を第
2図に示すプレスマシンにセットして、5in2が68
%、B20.が11%、 H2L20が10%、に20
が8%および残りが微量成分からなるホウケイ酸アルカ
リ系光学ガラスの半径2Offの球形状の塊状物をプレ
スして両凸のレンズ形状に成形した。
The mold thus created is shown in FIG. This mold was set in the press machine shown in Figure 2, and 5in2 was 68mm.
%, B20. is 11%, H2L20 is 10%, and 20
A spherical lump of alkali borosilicate optical glass having a radius of 2Off and consisting of 8% and the remainder of trace components was pressed and molded into a biconvex lens shape.

この際、プレスマシンの成形雰囲気をN2中で行ない、
型温度を800’Cにしてプレス圧力4゜kg/ciで
プレス成形を行ない、そのまま4oo°Cまで型ととも
に冷却して成形物をとり出した。上記のホウケイ酸アル
カリガラスに対する結果を第1表試料f2に示した。ま
たAI!20.以外のスパッタ膜(中間層薄膜)、例え
ばSiO2,ZrO2およびTie2f形成後同様の方
法で形成した型を用いて同様の方法でプレス成形を行な
った結果全表1試料&3〜6に示した。また比較例とし
て中間層薄膜が無い場合の結果を表1試料慮1に示した
。さらに母材の構成元素を変えたwe主成分の超硬合金
を用い、中間層薄膜の組み合せを変えたものの上にSi
とCの組成比と結晶系を変えてSiC薄膜を形成して作
成した型を用いてプレス成形を行なった結果を表1試料
&6〜16に示した。これらの中で中間層を用いてない
型のうち、試料JIL1゜6.12の型はプレス回数1
oO回まで表面状態は良好であるが、1oOo回後では
型表面が一部茶かつ色に変色しておりこの部分の元素分
析よりコバルトとケイ素、ナトリウムおよびカリウムが
検出された。これより、母材中のコバルトがSiC薄膜
中に拡散し、これがガラスと反応し型に付着するため表
面粗さく Rm ax )も悪くなっていることがわか
る。また中間層を用いていない型で試料f14および1
6は、それぞれ数回のプレス実験でガラスと反応したり
膜が剥離するなどしてその後のプレス実験は行なえなか
った。ここで、 SiCのC/Si値が1.4以上(す
なわちC過剰)になると、スパッタ膜がもろくなり基板
との接着力が弱くなり、プレスによる加熱、冷却及びプ
レス圧力によって膜の剥離が発生する。またC/Si値
が0.6以下(すなわちSi過剰)になると遊離Siが
増大するためガラス成分と反応しやすくなり型とガラス
が付着する。本実施例試料f2〜5,7〜11および1
3のプレス型は、母材のWCとSiCコーティング膜の
中間に酸化物層を形成したことにより著しく光学ガラス
のプレス成型性にも優れたものを得ることが出来た。
At this time, the molding atmosphere of the press machine was N2,
Press molding was carried out at a mold temperature of 800°C and a press pressure of 4°kg/ci, and the molded product was then cooled to 40°C together with the mold and taken out. The results for the above borosilicate alkali glass are shown in Table 1, sample f2. AI again! 20. After forming other sputtered films (intermediate thin films) such as SiO2, ZrO2 and Tie2f, press molding was performed in the same manner using molds formed in the same manner.The results are shown in Table 1 Samples & 3 to 6. Further, as a comparative example, the results in the case where there was no intermediate layer thin film are shown in Table 1 Sample Consideration 1. Furthermore, we used cemented carbide as the main component of the base material with different constituent elements, and on top of the material with a different combination of intermediate thin films.
Table 1 Samples &6 to 16 show the results of press molding using molds made by forming SiC thin films with different composition ratios and crystal systems of C and C. Among these molds that do not use an intermediate layer, the mold of sample JIL1゜6.12 has a press count of 1.
The surface condition was good up to oO times, but after 1oOo times, part of the mold surface turned brown and discolored, and elemental analysis of this part detected cobalt, silicon, sodium, and potassium. From this, it can be seen that the cobalt in the base material diffuses into the SiC thin film, reacts with the glass, and adheres to the mold, resulting in a worsening of the surface roughness (Rmax). In addition, samples f14 and 1 were used in the mold without an intermediate layer.
Sample No. 6 reacted with glass or peeled off the film after several press experiments, and subsequent press experiments could not be conducted. Here, when the C/Si value of SiC is 1.4 or more (that is, excessive C), the sputtered film becomes brittle and its adhesion to the substrate becomes weak, and the film peels off due to heating, cooling, and press pressure by pressing. do. Furthermore, when the C/Si value is 0.6 or less (that is, Si is excessive), free Si increases, which makes it easier to react with glass components and cause the mold and glass to adhere. This example sample f2-5, 7-11 and 1
In the press mold No. 3, by forming an oxide layer between the WC base material and the SiC coating film, it was possible to obtain an optical glass with extremely excellent press moldability.

また従来使用されていた炭化ケイ素焼結体型を作製し、
第2図のプレスマシンに本発明の型のかわりにセットし
て、上述と同様のガラスの塊状物を同様の条件でプレス
成形を行った。
In addition, we created the conventionally used silicon carbide sintered mold,
The mold of the present invention was set in the press machine shown in FIG. 2, and a glass lump similar to that described above was press-molded under the same conditions.

この炭化ケイ素焼結体の型の作製は、放電加工後、研削
加工で仕上げ、上述と同様のダイヤモンド砥粒を用いて
表面を鏡面研摩した。この鏡面研摩の工程のみにおいて
も、表面の最大荒さが0.02μm″!で仕上げるのに
、上述の超硬合金で仕上げた場合の20−25倍の40
〜50時間も費した。この炭化ケイ素焼結体の型による
プレス成形の結果も、比較例として第1表(試料&16
)に示した。これはプレスによってガラスと反応して型
と付着するため、実用に供しえないものであった。
The mold of this silicon carbide sintered body was manufactured by electrical discharge machining, followed by grinding, and the surface was polished to a mirror finish using the same diamond abrasive grains as described above. Even in this mirror polishing process alone, the maximum roughness of the surface is 0.02 μm''!
It took ~50 hours. The results of press molding of this silicon carbide sintered body are also shown in Table 1 (Sample & 16
)It was shown to. This could not be put to practical use because it reacted with the glass during pressing and adhered to the mold.

(以下余 白) 発明の効果 以上の説明から明らかなように、本発明の光9ガラスの
直接プレス成形法及び型はWC全主成夕とする超硬合金
を母材とし、これを成形すべき黄学ガラス形状の押し型
に加工して、その上に均一な厚みで、k120. 、S
iO2,ZrO□及びTio2(7) −8以上を形成
後、さらにその上にSiとCの組成封(c/Si値〕が
0.7〜1.2の間であるようなフモルファスーSiC
,a−8iO及びアモルファス−SiCとα−SiCの
混合物のうちいずれか一種のコーティング膜を形成した
一対の型を用い、不活性ズス雰囲気において成形すべき
ガラスの軟化意思」の温度に加熱後加圧成形したことを
特徴としてしるので、従来用いられていた炭化ケイ素焼
結体を主体とする型と比較してガラスを成形した場合C
反応性が少なくなるばかりか高精度の型形状の力1工も
容易である。また酸化物中間層の形成は型大命という点
で非常に大きな利点を生じる。
(Left below) Effects of the Invention As is clear from the above explanation, the direct press molding method and mold for Hikari 9 glass of the present invention uses a cemented carbide as a base material mainly composed of WC, and molds the same. Processed into a press mold in the shape of yellow glass, and then stamped on it with a uniform thickness, k120. , S
After forming iO2, ZrO□, and Tio2(7) -8 or more, fumorphous SiC is further formed on top of which the Si and C composition seal (c/Si value) is between 0.7 and 1.2.
, a-8iO and a mixture of amorphous-SiC and α-SiC, the glass to be formed is heated in an inert gas atmosphere to a temperature at which the glass is softened and then heated. Since it is characterized by being pressure-formed, when molding glass, C
Not only is reactivity reduced, but it is also easier to create a highly accurate mold shape. Furthermore, the formation of an oxide intermediate layer has a very large advantage in terms of mold life.

また実施例で、母材として用いる超硬合金にWC全生成
分とするものについて述べてきたが、特にこれに限るわ
けではなく、Tie、T工N、ム120゜:  及びO
r、02等を主成分とするサーメットについても全て有
効であることが確認されている。
In addition, in the examples, the cemented carbide used as the base material has been described as having all the WC components, but it is not limited to this.
It has been confirmed that all cermets containing r, 02, etc. as main components are also effective.

【図面の簡単な説明】 第1図は本発明の実施例における光学ガラス素1  子
のプレス成形用型を示す図、第2図は同実施例で用いた
プレスマシンの一部切欠正面図である。 11・・・・・・上型、12・・・・・・下型、11′
・・・・・・上型のプレス面、12′・・・・・・下型
のプレス面、11′・・・・・・切り込み部、13・・
・・・・上型用加熱ヒータ、14・・・・・・下型用加
熱ヒータ、15・・・・・・上型用ピストンシリンダ、
16・・・・・・下型用ピストンシリンダ、17・・・
・・・原料ガラス塊状物、18・・・・・・原料ガラス
、  供給治具、19・・・・・・成形ガラス取り出し
口、2゜・・・・・・原料ガラス予備加熱炉、21・・
・・・・おおい。 1    代理人の氏名 弁理士 中 尾 敏 男 ほ
か1名12’−m−下型のブレス面 第2図
[Brief Description of the Drawings] Fig. 1 is a diagram showing a press-molding mold for an optical glass element 1 in an embodiment of the present invention, and Fig. 2 is a partially cutaway front view of a press machine used in the same embodiment. be. 11... Upper mold, 12... Lower mold, 11'
...Press surface of upper die, 12'...Press surface of lower die, 11'...Notch part, 13...
... Heater for upper mold, 14 ... Heater for lower mold, 15 ... Piston cylinder for upper mold,
16... Piston cylinder for lower mold, 17...
... Raw glass lumps, 18 ... Raw material glass, supply jig, 19 ... Molded glass outlet, 2° ... Raw material glass preheating furnace, 21.・
...Wow. 1. Name of agent: Patent attorney Toshio Nakao and one other person 12'-m-Bottom mold brace surface Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)超硬合金を母材とし、これを成形すべき光学ガラ
ス素子形状の押し型に加工し、その上に均一な厚みで、
酸化アルミニウム(Al_2O_3)、酸化ケイ素(S
iO_2)、酸化ジルコニウム(ZrO_2)および酸
化チタン(TiO_2)の一種以上を含むコーティング
膜を形成し、さらにその上に均一な厚みで、炭化ケイ素
(SiC)のコーティング膜を形成した一対の型を用い
、不活性ガスふん囲気において成形すべきガラスの軟化
点以上の温度に加熱後加圧成形することを特徴とする光
学ガラス素子の成形方法。
(1) Use cemented carbide as a base material, process this into a mold in the shape of the optical glass element to be molded, and place it on top of it with a uniform thickness.
Aluminum oxide (Al_2O_3), silicon oxide (S
Using a pair of molds, a coating film containing one or more of zirconium oxide (ZrO_2), zirconium oxide (ZrO_2), and titanium oxide (TiO_2) is formed, and a silicon carbide (SiC) coating film is further formed with a uniform thickness on top of the coating film. A method for forming an optical glass element, which comprises heating the glass to a temperature equal to or higher than the softening point of the glass to be formed in an inert gas atmosphere, and then press-forming the glass.
(2)炭化ケイ素のコーティング膜が炭素とケイ素の組
成比(C/Si値)で0.7〜1.2の範囲である炭化
ケイ素であることを特徴とする特許請求の範囲第1項記
載の光学ガラス素子の成形方法。
(2) Claim 1, characterized in that the silicon carbide coating film is silicon carbide having a carbon to silicon composition ratio (C/Si value) in the range of 0.7 to 1.2. A method for forming optical glass elements.
(3)炭化ケイ素のコーティング膜が、アモルファス炭
化ケイ素(A−SiC)、アルファ炭化ケイ素(a−S
iC)あるいはアモルファス炭化ケイ素とアルファ炭化
ケイ素の混合物のうちいずれか一種から成ることを特徴
とする特許請求の範囲第1項記載の光学ガラス素子の成
形方法。
(3) The silicon carbide coating film is made of amorphous silicon carbide (A-SiC), alpha silicon carbide (a-S
2. The method for molding an optical glass element according to claim 1, wherein the glass element is made of one of iC) or a mixture of amorphous silicon carbide and alpha silicon carbide.
(4)母材として用いる超硬合金が、タングステンカー
バイド(WC)を主成分とすることを特徴とする特許請
求の範囲第1項記載の光学ガラス素子の成形方法。
(4) The method for molding an optical glass element according to claim 1, wherein the cemented carbide used as the base material has tungsten carbide (WC) as a main component.
JP14558885A 1985-07-02 1985-07-02 Method for molding optical glass element Expired - Lifetime JPS627639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14558885A JPS627639A (en) 1985-07-02 1985-07-02 Method for molding optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14558885A JPS627639A (en) 1985-07-02 1985-07-02 Method for molding optical glass element

Publications (1)

Publication Number Publication Date
JPS627639A true JPS627639A (en) 1987-01-14

Family

ID=15388556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14558885A Expired - Lifetime JPS627639A (en) 1985-07-02 1985-07-02 Method for molding optical glass element

Country Status (1)

Country Link
JP (1) JPS627639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114605058A (en) * 2022-03-28 2022-06-10 维达力实业(深圳)有限公司 Thermal transfer printing mold and preparation device of anti-glare glass
CN114702235A (en) * 2022-03-28 2022-07-05 维达力实业(深圳)有限公司 Anti-glare glass, preparation method thereof and display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114605058A (en) * 2022-03-28 2022-06-10 维达力实业(深圳)有限公司 Thermal transfer printing mold and preparation device of anti-glare glass
CN114702235A (en) * 2022-03-28 2022-07-05 维达力实业(深圳)有限公司 Anti-glare glass, preparation method thereof and display device
CN114605058B (en) * 2022-03-28 2024-01-26 维达力实业(深圳)有限公司 Thermal transfer mold and preparation device of anti-dazzle glass
CN114702235B (en) * 2022-03-28 2024-01-26 维达力实业(深圳)有限公司 Anti-glare glass, preparation method thereof and display device

Similar Documents

Publication Publication Date Title
KR900002704B1 (en) Elements and a molding method using the same
KR900000622B1 (en) Method for forming of optical glass element
JPS60127246A (en) Mold for direct compression molding of optical glass lens
JPS6228091B2 (en)
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JPS627639A (en) Method for molding optical glass element
JPH0421608B2 (en)
JPS63103836A (en) Mold for molding optical glass element
JPH0361614B2 (en)
JPS623030A (en) Method for forming optical glass element
JPH0572336B2 (en)
JPH11268920A (en) Forming mold for forming optical element and its production
JPS60176928A (en) Mold for press molding glass lens
JPS62292637A (en) Production of optical glass element
JPS63166729A (en) Production of optical glass element
JPH0416415B2 (en)
JPS6311285B2 (en)
JPH01111738A (en) Molding die for molded glass
JPS6395128A (en) Production of optical glass element
JPS63277530A (en) Production of optical glass element
JPH0572335B2 (en)
JPS61256931A (en) Molding method for optical glass element
JPS60176929A (en) Mold for press molding glass lens
JPH0140780B2 (en)
JPS63134526A (en) Forming mold for formed glass article

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term