JPS623030A - Method for forming optical glass element - Google Patents

Method for forming optical glass element

Info

Publication number
JPS623030A
JPS623030A JP14081185A JP14081185A JPS623030A JP S623030 A JPS623030 A JP S623030A JP 14081185 A JP14081185 A JP 14081185A JP 14081185 A JP14081185 A JP 14081185A JP S623030 A JPS623030 A JP S623030A
Authority
JP
Japan
Prior art keywords
mold
press
optical glass
molding
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14081185A
Other languages
Japanese (ja)
Inventor
Masayuki Sakai
界 政行
Hideto Monju
秀人 文字
Kiyoshi Kuribayashi
清 栗林
Masaki Aoki
正樹 青木
Hideyuki Okinaka
秀行 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14081185A priority Critical patent/JPS623030A/en
Publication of JPS623030A publication Critical patent/JPS623030A/en
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Abstract

PURPOSE:To obtain an optical glass element without necessitating polishing process after molding, by forming a pair of press molds using a cemented carbide as the matrix, coating the mold with SiC having a specific composition and pressing a heated and softened glass gob with the mold pair. CONSTITUTION:A cemented carbide composed mainly of WC is used as a matrix and formed to a press mold having the form of the optical glass element to be formed. The press mold is coated with an SiC coating film having a C/Si ratio of 0.7-1.2. A glass gob heated above the softening temperature in an inert atmosphere or in vacuum is pressed with a pair of the above coated molds. An optical lens can be produced by this process without necessitating the grinding and polishing processes.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光学ガラス素子の製造方法に関し、特にプレ
ス成形後、磨き工程等を必要としない光学ガラス素子の
成形方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing an optical glass element, and more particularly to a method for molding an optical glass element that does not require a polishing step or the like after press molding.

従来の技術 近年、光学ガラスレンズは、光学機器のレンズ構成の簡
略化とレンズ部分の軽量化の両方を同時に達成し得る非
球面化の傾向にある。この非球面レンズの製造には、従
来の光学レンズ製造方法である光学研磨法では加工性及
び量産性に劣り、直接プレス成形性が有望視されている
2. Description of the Related Art In recent years, there has been a trend toward aspheric optical glass lenses, which can simultaneously simplify the lens structure of optical instruments and reduce the weight of the lens portion. For manufacturing this aspherical lens, the optical polishing method, which is a conventional optical lens manufacturing method, is inferior in processability and mass production, and direct press moldability is considered to be promising.

この直接プレス成形法というのは、あらかじめ所望の面
品質及び面精度に仕上げた非球面のモールド型の上で、
光学ガラスの塊状物を加熱、あるいはあらかじめ加熱し
であるガラスの塊状物をプレス成形して、プレス成形後
、それ以上の研磨とか磨き工程などの工程を必要とせず
光学レンズを製造する方法である。
This direct press molding method uses an aspherical mold that has been finished to the desired surface quality and precision in advance.
This is a method of manufacturing optical lenses by heating or pre-heating a lump of optical glass and press-molding the glass lump, without requiring any further polishing or polishing process after press-molding. .

しかしながら、上述の光学ガラスレンズの製造方法は、
プレス成形後、得られたレンズの像形成品質が損なわれ
ない程度に優れていなければならない。特に非球面レン
ズの場合、高い精度で成形できることが要求される。
However, the method for manufacturing the optical glass lens described above,
After press molding, the image forming quality of the obtained lens must be excellent to the extent that it is not impaired. Especially in the case of an aspherical lens, it is required that it can be molded with high precision.

したがって、型材料としては、高温度においてガラスに
対して化学作用が最小であること、型のガラスプレス面
にすり傷等の損傷を受けにくいこと、熱衝撃による耐破
壊性能が高いことなどが必要である。
Therefore, the mold material must have minimal chemical effects on the glass at high temperatures, be resistant to damage such as scratches on the glass press surface of the mold, and have high resistance to destruction due to thermal shock. It is.

この目的のために、炭化ケイ素、窒化ケイ素などの材料
の型あるいは高密度カーボンの上に炭化ケイ素、窒化ケ
イ素などのコーティング膜を形成した型が適していると
されており、いろいろ検討が加えられている。(例えば
、特開昭62−45613号公報)。
For this purpose, molds made of materials such as silicon carbide or silicon nitride, or molds with a coating film of silicon carbide or silicon nitride formed on high-density carbon, are considered suitable, and various studies have been conducted. ing. (For example, JP-A-62-45613).

発明が解決しようとする問題点 しかしながら、SiC、Si3N4等の材料は硬度が極
めて高いため、これらの材料を加工して球面あるいは非
球面のレンズ成形用の型に高精度に加工することが非常
に困難であり、しかも従来これらの型材に用いられてい
るのはいずれも焼結タイプのものであるため焼結助剤と
してム1203. B2O3等のガラスと比較的反応し
やすい物質が使用されてお9高糖度でレンズを成形でき
ない欠点があった。
Problems to be Solved by the Invention However, since materials such as SiC and Si3N4 have extremely high hardness, it is extremely difficult to process these materials into molds for molding spherical or aspherical lenses with high precision. Moreover, since all of the materials conventionally used for these molding materials are sintered types, mu1203. Since it uses substances such as B2O3 that are relatively easy to react with glass, it has the disadvantage that lenses cannot be molded due to the high sugar content.

一方、カーボンの成形物の上に炭化ケイ素などをコーテ
ィングして作成した型も、形成条件によってその組成比
(C/Eii値)がかなり変化し、得られたSiC薄膜
の性質が一定でないため、母材との接合強度やガラスと
の反応性といづだ点に問題があった。
On the other hand, the composition ratio (C/Eii value) of molds made by coating silicon carbide etc. on carbon moldings varies considerably depending on the forming conditions, and the properties of the resulting SiC thin film are not constant. There were problems with bonding strength with the base material and reactivity with glass.

問題点を解決するだめの手段 本発明は上記問題点を解決するために光学ガラス素子の
成形方法は、超硬合金を母材にし、これを成形すべきレ
ンズ形状の押し型に加工し、さらにその上に均一な厚み
で炭素とケイ素の組成比(C/Si値)が0.7〜1゜
2の範囲であるような炭化ケイ素のコーティング膜を形
成することを特徴とするものである。
Means to Solve the Problems In order to solve the above-mentioned problems, the present invention provides a method for forming an optical glass element by using cemented carbide as a base material, processing this into a mold in the shape of a lens to be molded, and further A silicon carbide coating film having a uniform thickness and a carbon to silicon composition ratio (C/Si value) in the range of 0.7 to 1°2 is formed thereon.

ここで、母材として用いる超硬合金は、放電加工が可能
であるばかりでなく、一般的な研削加工を行なう場合に
おいても、従来ガラスレンズ直接プレス成形の型として
用いられた硬度の高い炭化ケイ素や窒化ケイ素よりも容
易に高精度な型形状の加工ができる特徴がある。また、
母材として用いる超硬合金はコーティング膜として用い
る炭化ケイ素と熱膨張率がよく一致しているために、ガ
ラスのプレス成形の際の型加熱、プレス成型、冷却の熱
サイクルのくり返しにも耐える強い膜接着力が得られる
特徴がある。
Here, the cemented carbide used as the base material is not only capable of electrical discharge machining, but also can be used for general grinding using silicon carbide, which has high hardness and is conventionally used as a mold for direct press molding of glass lenses. It has the characteristic that it can be processed into mold shapes with higher precision than silicon nitride or silicon nitride. Also,
The cemented carbide used as the base material has a coefficient of thermal expansion that closely matches that of the silicon carbide used as the coating film, so it is strong enough to withstand the repeated thermal cycles of mold heating, press molding, and cooling during glass press forming. It has the characteristic of providing film adhesion.

作用 本発明は上記した方法により、従来同じ目的の型として
用いられていた、SiCや5i5N4の焼結体を用いた
型の欠点でちった高精度加工の困難さを克服し、かつナ
トリウムやカリウム等のアルカリ元素やバリウムを多量
に含有するガラスを成形しても型とガラスの反応が少な
いという利点が生じる。これより、長寿命、高信頼性の
直接プレス成形法による光学ガラス素子の作成が可能と
なる。
Operation The present invention overcomes the difficulty of high-precision machining due to the drawbacks of molds using sintered bodies of SiC or 5i5N4, which have been conventionally used as molds for the same purpose, by the method described above, and Even when glass containing a large amount of alkali elements such as barium is molded, there is an advantage that there is little reaction between the mold and the glass. This makes it possible to create an optical glass element with a long life and high reliability by direct press molding.

実施例 直径30mm、長さ60市の円柱状で、2重量%のコバ
ルト(Go、)を含有するWCの超硬合金の棒を各2本
ずつ準備し、放電加工によって周囲に切り込みがある曲
率半径46m111の凹面形状の上型と、曲率半径が2
00 mmの凹面形状の下型から成る一対のプレス成形
用型の形状に加工した。
Example Two cylindrical rods of WC cemented carbide containing 2% by weight of cobalt (Go), each having a diameter of 30 mm and a length of 60 cm, were prepared, and the curvature of the rods was cut by electric discharge machining. The upper mold has a concave shape with a radius of 46m111 and a radius of curvature of 2
It was processed into the shape of a pair of press molding molds consisting of a lower mold with a concave shape of 0.00 mm.

これらの各一対のブロックのプレス成形面を超微細なダ
イヤモンド砥粒を用いて境面研磨した結果2時間までで
表面の最大荒さくRmax)が0・02μmの精度に鏡
面加工を行なえた。次にこの鏡面上にスパッタ法により
2μmの厚みで炭素とケイ素の組成比(C/Si値)が
0.8のアモルファス炭化ケイ素膜を形成して、ガラス
プレス成形用の型を作製した。
As a result of polishing the press-formed surfaces of each pair of blocks using ultrafine diamond abrasive grains, it was possible to mirror-finish the surfaces to an accuracy of 0.02 μm (maximum roughness Rmax) within 2 hours. Next, an amorphous silicon carbide film having a thickness of 2 μm and a composition ratio of carbon to silicon (C/Si value) of 0.8 was formed on this mirror surface by sputtering to prepare a mold for glass press molding.

このようにして作成した型を第1図に示す。この型を第
2図に示すプレスマシンにセットして、5102がes
%r B2O3が11%、 Na2Oが10%。
The mold thus created is shown in FIG. This mold is set in the press machine shown in Fig. 2, and 5102 is es
%r B2O3 11%, Na2O 10%.

N20が8チおよび残りが微量成分からなるホウケイ酸
アルカリ系光学ガラス、及び8102力81%。
Borosilicate alkali optical glass consisting of 8 parts of N20 and the rest of trace components, and 8102 strength of 81%.

B2O5が17チ、  BaOポロ0チおよび残りが微
量成分からなるホウケイ酸バリウム系光学ガラスの2種
類の半径20m1l+の球形状の塊状物をプレスして両
凸のレンズ形状に成形した。成形条件としては、N2雰
囲気中で、型温度をs o o ”(:にしてプレス圧
力4okg/afで成形を行ない、そのまま400℃ま
で型とともに冷却して成形物をとり出した。上記のホウ
ケイ酸アルカリガラスに対するプレス結果を第1表試料
陽3に、また上記のホウケイ酸バリウム系ガラスに対す
るプレス結果を第2表試料N19に示しだ。
Two types of spherical lumps of barium borosilicate optical glass each having a radius of 20 ml+ were pressed and formed into a biconvex lens shape, each consisting of 17 pieces of B2O5, 0 pieces of BaO, and the remaining trace components. The molding conditions were as follows: Molding was carried out in a N2 atmosphere with a mold temperature of 4 kg/af, and the mold was cooled to 400°C together with the mold, and the molded product was taken out. The pressing results for acid-alkali glass are shown in Sample No. 3 in Table 1, and the pressing results for the above barium borosilicate glass are shown in Table 2, Sample N19.

まだ母材の構成元素を変えたwe主成分の超硬合金を用
い、スパッタ法でSiCコーティング膜のCとSiの組
成比(C/Si値)を変えて作成した型を用いて真空雰
囲気(162Torr)でプレス成形を行った結果を第
1表試料N!11〜2,4〜6及び第2表試料陽7〜8
,10〜12に示した。ここで比較のためC/Si値が
0・6と1・4のものを示したがこれらはガラスと反応
17たり、膜自身が剥離するなどして実用に供しえない
ものであった。
A vacuum atmosphere ( Table 1 shows the results of press forming at 162 Torr). 11-2, 4-6 and Table 2 sample positive 7-8
, 10-12. Here, for comparison, films with a C/Si value of 0.6 and 1.4 are shown, but these cannot be put to practical use because they react with glass or the film itself peels off.

また、従来使用されていた炭化ケイ素および窒化ケイ素
焼結体型を作製し、第2図のプレス、マシンに本発明の
型のかわりにセットして、上述と同様のガラスの塊状物
を同様の条件でプレス成形を行ったO この炭化ケイ素および窒化ケイ素焼結体型の作製は、放
電加工後、研削加工で仕上げ、上述と同様のダイヤモン
ド砥粒を用いて表面を鏡面研磨した。この鏡面研磨の工
程のみにおいても、表面の最大荒さが0.02μmまで
仕上げるのに、上述の超硬合金で仕上げた場合の20〜
26倍の40〜60時間も費した。この炭化ケイ素およ
び窒化ケイ素焼結体型によるプレス成形の結果も、比較
例として第2表試料N113,14に示した。これらは
プレスによってガラスと反応して型と付着するため、実
用に供しえ々いものであった。
In addition, conventionally used silicon carbide and silicon nitride sintered molds were prepared and set in the press and machine shown in Fig. 2 instead of the molds of the present invention, and the same glass lumps as described above were processed under the same conditions. The silicon carbide and silicon nitride sintered bodies were press-formed with O. After electrical discharge machining, the sintered bodies were finished by grinding, and the surfaces were polished to a mirror finish using the same diamond abrasive grains as described above. Even in this mirror polishing process alone, the maximum surface roughness can be finished to 0.02 μm, which is 20 to
It took 40 to 60 hours, 26 times longer. The results of press forming using the silicon carbide and silicon nitride sintered molds are also shown in Samples N113 and 14 in Table 2 as comparative examples. These were difficult to put to practical use because they reacted with the glass during pressing and adhered to the mold.

(以 下金 白) 未来 苦   薫   簀 第1表、第2表かられかるように本実施例試料M2〜6
,8〜11のプレス型は、従来から使われていた炭化ケ
イ素および窒化ケイ素焼結体型よりも著しく光学ガラス
のプレス成形性にも優れたものを得ることが出来た。こ
こでSiCのC/Si値が1・4以上(すなわちC過剰
)になるとスパッタ膜のビッカース硬度(Hv)の低下
は少ないが膜がもろくなり基板との接着力が弱くなり、
プレスによる加熱、冷却及びプレス圧力によって膜の剥
離が発生する。またC/Si値が0.6以下(すなわち
Si過剰)になると遊離Siが増大し、このためビッカ
ース硬度の低下も大きくなる。このだめガラス成分と反
応しやすくなり、型とガラスが付着する。
(Hereinafter referred to as Kinpaku) As can be seen from Tables 1 and 2, samples M2 to 6 of this example
The press molds of Nos. , 8 to 11 were able to provide optical glasses with significantly superior press moldability compared to conventionally used silicon carbide and silicon nitride sintered molds. Here, when the C/Si value of SiC is 1.4 or more (that is, excessive C), the Vickers hardness (Hv) of the sputtered film does not decrease much, but the film becomes brittle and the adhesive force with the substrate becomes weak.
The heating, cooling, and pressing pressure caused by the press cause peeling of the film. Furthermore, when the C/Si value becomes 0.6 or less (that is, excessive Si), free Si increases, and therefore the Vickers hardness decreases significantly. It easily reacts with this waste glass component, causing the mold and glass to adhere.

以上(7)コとからSiCノC/Si値を0.7〜1.
2の間に制御することにより良好な成形性が得られるこ
とがわかる。
Based on the above (7), the SiC C/Si value is 0.7 to 1.
It can be seen that good moldability can be obtained by controlling the temperature between 2 and 2.

また母材の構成元素もweを主成分として、GOlTi
CおよびTaG等を含むもの全てについて有効であるこ
とがわかる。また実施例で、母材として用いる超硬合金
にweを主成分とするものについて述べてきたが、特に
これに限るわけではなく、TiC、TiN 、 A12
05 +及びOr502等を主成分とするサーメットに
ついても全て有効であることが確認されている。
In addition, the constituent elements of the base material are mainly we, and GOlTi
It can be seen that it is effective for all substances including C and TaG. Furthermore, in the examples, the cemented carbide used as the base material has been described as having we as the main component, but it is not limited to this, and may include TiC, TiN, A12, etc.
It has been confirmed that all cermets whose main components are cermets such as 05+ and Or502 are also effective.

発明の効果 以上の説明から明らかなように、本発明の光学ガラスの
直接プレス成形法及び型はWCを主成分とする超硬合金
を母材とし、これを成形すべき光学ガラス形状の押し型
に加工して、その上に均一な厚みで、炭素とケイ素の組
成比(G /Si値)が0・7〜1.2の範囲であるよ
うな炭化ケイ素のコーティング膜を形成した一対の型を
用い、不活性ガス雰囲気あるいは真空下において成形す
べきガラスの軟化点以上の温度に加熱後加圧成形したこ
とを特徴としているので、従来用いられていた炭化ケイ
素や窒化ケイ素を主体とする焼結体を用いた型と比較し
てガラスを成形した場合の反応性が少なくなるばかりか
、一般的な研削加工を行なう場合においても従来よりも
容易に高精度な型形状の加工ができる利点がある。
Effects of the Invention As is clear from the above explanation, the direct press molding method and mold for optical glass of the present invention uses a cemented carbide whose main component is WC as a base material, and presses the mold into the shape of the optical glass to be molded. A pair of molds on which a silicon carbide coating film with a uniform thickness and a carbon to silicon composition ratio (G/Si value) in the range of 0.7 to 1.2 is formed. It is characterized in that it is heated to a temperature above the softening point of the glass to be molded and then pressure-formed in an inert gas atmosphere or under vacuum, so it is different from conventionally used sintered materials mainly made of silicon carbide or silicon nitride. Compared to molds using solid bodies, this method not only has less reactivity when molding glass, but also has the advantage of being able to more easily form high-precision mold shapes than before when performing general grinding processing. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における光学ガラス素子のプレ
ス成形用型を示す図、第2図は同実施例で用いたプレス
マシンの一部切欠正面図である。 11・・・・・・上型、12・・・・・・下型、11′
・・・・・・上型のプレス面、12′・・・・・・下型
のプレス面、11″・・・・・・切シ込み部、13・・
・・・・上型用加熱ヒータ、14・・・・・・下型用加
熱ヒータ、16・・・・・・上型用ピストンシリンダ、
16・・・・・・下型用ピストンシリンダ、17・・・
・・・原料ガラス塊状物、18・・・・・・原料ガラス
供給治具、19・・・・・・成形ガラス取り出し口、2
0・・・・・・原料ガラス予備加熱炉、21・・・・・
・おおい。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
−一上型 12’−−°下型のプレス面
FIG. 1 is a diagram showing a press-molding mold for an optical glass element in an embodiment of the present invention, and FIG. 2 is a partially cutaway front view of a press machine used in the same embodiment. 11... Upper mold, 12... Lower mold, 11'
...Press surface of upper die, 12'...Press surface of lower die, 11''...Cut part, 13...
... Heater for upper mold, 14 ... Heater for lower mold, 16 ... Piston cylinder for upper mold,
16... Piston cylinder for lower mold, 17...
... Raw glass lumps, 18 ... Raw glass supply jig, 19 ... Molded glass outlet, 2
0... Raw glass preheating furnace, 21...
・Oi. Name of agent: Patent attorney Toshio Nakao and 1 other person11
−1st upper die 12′−−°press surface of lower die

Claims (2)

【特許請求の範囲】[Claims] (1)超硬合金を母材とし、これを成形すべき光学ガラ
ス素子型形状の押し型に加工し、さらにその上に均一な
厚みで、炭素とケイ素の組成比(C/Si値)が0.7
〜1.2の範囲であるような炭化ケイ素(SiC)のコ
ーティング膜を形成した一対の型を用い、不活性ガスふ
ん囲気あるいは真空下において成形すべきガラスをその
軟化温度以上に加熱後加圧成形することを特徴とする光
学ガラス素子の成形方法。
(1) Using cemented carbide as a base material, process this into a mold in the shape of the optical glass element to be molded, and then apply a uniform thickness to the mold with a carbon to silicon composition ratio (C/Si value). 0.7
Using a pair of molds coated with a silicon carbide (SiC) coating having a temperature in the range of ~1.2, the glass to be molded is heated to above its softening temperature under an inert gas atmosphere or vacuum, and then pressurized. A method for molding an optical glass element, characterized by molding.
(2)超硬合金が、タングステンカーバイド(WC)を
主成分とすることを特徴とする特許請求の範囲第(1)
項記載の光学ガラス素子の成形方法。
(2) Claim (1) characterized in that the cemented carbide has tungsten carbide (WC) as a main component.
A method for molding an optical glass element as described in .
JP14081185A 1985-06-27 1985-06-27 Method for forming optical glass element Expired - Lifetime JPS623030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14081185A JPS623030A (en) 1985-06-27 1985-06-27 Method for forming optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14081185A JPS623030A (en) 1985-06-27 1985-06-27 Method for forming optical glass element

Publications (1)

Publication Number Publication Date
JPS623030A true JPS623030A (en) 1987-01-09

Family

ID=15277287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14081185A Expired - Lifetime JPS623030A (en) 1985-06-27 1985-06-27 Method for forming optical glass element

Country Status (1)

Country Link
JP (1) JPS623030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198877A (en) * 2005-01-20 2006-08-03 Toyo Advanced Technologies Co Ltd Mold for molding resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198877A (en) * 2005-01-20 2006-08-03 Toyo Advanced Technologies Co Ltd Mold for molding resin
JP4690058B2 (en) * 2005-01-20 2011-06-01 トーヨーエイテック株式会社 Mold for resin molding

Similar Documents

Publication Publication Date Title
KR900002704B1 (en) Elements and a molding method using the same
KR900000622B1 (en) Method for forming of optical glass element
JPS60127246A (en) Mold for direct compression molding of optical glass lens
JPS6228091B2 (en)
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JPH0421608B2 (en)
JPS623030A (en) Method for forming optical glass element
JPS63103836A (en) Mold for molding optical glass element
JPS627639A (en) Method for molding optical glass element
JPH0572336B2 (en)
JPS6296331A (en) Method of molding optical glass element and mold therefor
JP2002274867A (en) Optical glass element press forming die and optical glass element
KR870001737B1 (en) The mould for making lenses by press
JPH0361614B2 (en)
JPS6311285B2 (en)
JPS60176928A (en) Mold for press molding glass lens
JP3185299B2 (en) Glass lens molding die and glass lens molding device
JPS63166729A (en) Production of optical glass element
JPH01111738A (en) Molding die for molded glass
JPH0572335B2 (en)
JPH0481530B2 (en)
JPS60176929A (en) Mold for press molding glass lens
JPH0388730A (en) Press-forming die for glass
JP2964367B2 (en) Mold for optical element molding
JPS63134527A (en) Method for forming optical glass element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term