JPS6276158A - Electrode material for fuel cell of molten carbonate type - Google Patents

Electrode material for fuel cell of molten carbonate type

Info

Publication number
JPS6276158A
JPS6276158A JP60215879A JP21587985A JPS6276158A JP S6276158 A JPS6276158 A JP S6276158A JP 60215879 A JP60215879 A JP 60215879A JP 21587985 A JP21587985 A JP 21587985A JP S6276158 A JPS6276158 A JP S6276158A
Authority
JP
Japan
Prior art keywords
nickel
electrode material
diameter
powder
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60215879A
Other languages
Japanese (ja)
Inventor
Hideomi Ishibe
英臣 石部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP60215879A priority Critical patent/JPS6276158A/en
Publication of JPS6276158A publication Critical patent/JPS6276158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide a fuel cell electrode material which has a greatly enhance strength and long life and does not undergo cracks or the like under the influence of heat, by making a nickel powder with short nickel fibers. CONSTITUTION:A nickel powder 1 and short nickel fibers 2 of 20-30mum in diameter and 2-20 in aspect ratio (L/D) each are mixed with each other and sintered together to constitute a fuel cell electrode material. Although the diameter of each grain of the nickel powder 1 is selected in terms of the properties (pore diameter and porosity ratio) of the electrode material, it is preferable that the diameter is 0.5-50mum. If the diameter of each of the short fibers 2 were less than 2mum, an electrolyte would not sufficiently enter into the material and the reinforcement thereof would not be enough. If the aspect ratio were less than 2, the nickel fibers 2 would become almost powdery to make it difficult to attain a porosity ratio required for the electrode material and would not perform a reinforcing function. If the aspect ratio were more than 20, it would be difficult to uniformly disperse the nickel fibers 2 and it would be likely to make the strength of the electrode material nonuniform.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は熔融した炭酸リチュムや炭酸カリウムなどのア
ルカリ炭酸塩を電解質とし、その炭酸イオンの移動を利
用して電池反応を行わせる溶融炭酸塩型燃料電池(以下
単に燃料電池という)のアノード極あるいはカソード極
を含む電極材として使用されかつ強度、寿命を向上しう
る溶融炭酸塩型燃料電池電極材に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a molten carbonate fuel cell that uses molten lithium carbonate or an alkali carbonate such as potassium carbonate as an electrolyte and uses the movement of carbonate ions to carry out a cell reaction. The present invention relates to a molten carbonate fuel cell electrode material which can be used as an electrode material including an anode or a cathode of a fuel cell (hereinafter simply referred to as a fuel cell) and which can improve strength and life.

〔従来の技術〕[Conventional technology]

熔融炭酸塩型燃料電池は、一般に500〜800℃程度
に加熱し溶融状とした電解質をその両側に配したアノー
ドとカソードの1組の電極材で挟むとともに、アノード
極には水素を含む燃料ガスを、又カソード極には空気と
炭酸ガスとを各々供給することにより発電する。従来こ
のような電極材としては、ニッケルあるいはニッケルー
コバルトなどのニッケル合金等からなる粉末材料を厚さ
0.5龍、300〜500鶴角程度の薄板状に焼結した
焼結多孔板が用いられてきた。
Molten carbonate fuel cells generally have a molten electrolyte heated to about 500 to 800°C sandwiched between a pair of electrode materials, an anode and a cathode, arranged on both sides, and a fuel gas containing hydrogen is placed at the anode. Electric power is generated by supplying air and carbon dioxide to the cathode. Conventionally, such an electrode material is a sintered porous plate made by sintering a powder material made of nickel or a nickel alloy such as nickel-cobalt into a thin plate with a thickness of 0.5 mm and a thickness of about 300 to 500 mm. I've been exposed to it.

その代表的な粉末材料として、 (A)例えばインターナショナルニッケル社が製造する
lNC0TYPE 255のような平均粒径3μm以下
、見掛密度0.6g/cc程度の微細かつ凹凸に冨んだ
不定形状の粉末。
Typical powder materials include: (A) Fine, irregularly shaped powder with an average particle size of 3 μm or less and an apparent density of about 0.6 g/cc, such as INC0TYPE 255 manufactured by International Nickel Co., Ltd. .

(B)金属細線や金属網などを前記粉末焼結材内に埋設
させたもの。
(B) Thin metal wires, metal nets, etc. are embedded in the powder sintered material.

などが知られている。etc. are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記(A)項のニッケル粉末材料のみか
らなる電極材においては、焼結に伴う粉末形状の変化を
抑制しかつ空孔率を大とするという目的から過焼結をさ
けることが必要となり、その結果、各粉末同志が、はと
んど点接触に近い程度の微小面での接合となり、しかも
厚さが小であるため、強度に劣り、その取扱いに性急を
要するという欠点があった。
However, in the electrode material made only of the nickel powder material in item (A) above, it is necessary to avoid oversintering in order to suppress changes in the powder shape due to sintering and increase the porosity. As a result, each powder is joined to each other at a microscopic surface close to a point contact, and the thickness is small, which has the disadvantage of inferior strength and the need for hasty handling. .

又燃料電池は、発電中における500〜800℃の加熱
、停止時の冷却が繰り返され、冷却時には、高温で熔融
状態にあった電解質溶液が、急速に結晶化し、それに伴
って電極材も極度の収縮が生じる結果、このような従来
の電極材では湾曲、変形し、場合によってはキレツ等の
割れを起こすことがあった。
In addition, fuel cells are repeatedly heated to 500 to 800°C during power generation and cooled down when stopped. During cooling, the electrolyte solution, which was in a molten state at a high temperature, rapidly crystallizes, and as a result, the electrode material also deteriorates to an extremely high temperature. As a result of shrinkage, such conventional electrode materials may be bent, deformed, and in some cases cracks such as cracks may occur.

又(B)項の金属細線、メツシュ等補強材を用いる電極
材についても、補強材が粉末径に比べかなり大径である
ため拡散エネルギーの差による焼結不良を生じやすく、
又剛性、曲げ変形に対する曲率径の違い、冷却時の収縮
率の違いなどによって、境界部分にキレツ等の欠陥が現
れやすい。
In addition, regarding electrode materials using reinforcing materials such as thin metal wires and meshes in item (B), the diameter of the reinforcing material is considerably larger than that of the powder, so sintering defects are likely to occur due to differences in diffusion energy.
In addition, defects such as cracks tend to appear at the boundary due to differences in rigidity, curvature diameter with respect to bending deformation, and shrinkage rate during cooling.

そしてこのような欠陥は使用とともに拡大し、やがてそ
の部分から溶融した電解質の流出が起こり、使用が困難
となる。
These defects will expand with use, and eventually molten electrolyte will flow out from the defect, making it difficult to use.

〔発明の目的〕[Purpose of the invention]

本発明は、このような問題点を解決するためになされた
ものでって、特にニッケル粉末にニッケル短繊維を混合
させることを基本として強度を飛I的に向上できかつ熱
影響によってもキレッ等のない寿命の長い燃料電池電極
材の提供を目的とする。
The present invention was made in order to solve these problems, and in particular, by mixing nickel short fibers with nickel powder, the strength can be dramatically improved, and the strength can be improved evenly by thermal effects. The purpose of this invention is to provide fuel cell electrode materials that have a long life and are free from oxidation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、ニッケル粉末1と、繊維径2〜30μm1ア
スペクト比(L/D)2〜20の範囲のニッケル短繊維
2とを混合しかつ一体に焼結したことを特徴とする電極
材である。
The present invention is an electrode material characterized in that nickel powder 1, nickel short fibers 2 having a fiber diameter of 2 to 30 μm, and an aspect ratio (L/D) of 2 to 20 are mixed and sintered together. .

〔実施例〕〔Example〕

以下本発明について実施例に基づきさらに説明する。 The present invention will be further explained below based on Examples.

前記ニッケル粉末1は、例えば、ニッケルテトラカーボ
ニルN1(GO)午の熱分解により製造される微細なカ
ーボニル粉末やアトマイズ粉末であって、これらは、使
用する電解質に不溶な金属、例えば純ニッケル、ニッケ
ルに若干の他の元素を混入させた二゛ンケル合金、さら
には異質の粉末材料の表面上にニッケルメッキを施した
ものなどが用いられる。
The nickel powder 1 is, for example, a fine carbonyl powder or atomized powder produced by thermal decomposition of nickel tetracarbonyl N1 (GO), and these are metals that are insoluble in the electrolyte used, such as pure nickel and nickel. Nickel alloys, in which some other elements are mixed in, and nickel plating on the surface of different powder materials are also used.

又その粉末径は、使用しようとする電極(オの特性(空
孔径、空孔率)によって選択されるが、その範囲は0.
5〜50μm程度がよい。
The powder diameter is selected depending on the characteristics (pore diameter, porosity) of the electrode to be used, but the range is 0.
Approximately 5 to 50 μm is preferable.

0.5μmよりも微細な粉末では形成される空孔径t)
微小となり、良好な電池反応が行われず、逆に50μm
以上では、空孔が相となり、7ItM’質が流出し易く
、好ましくない。
The pore diameter t) formed in powders finer than 0.5 μm
The size becomes so small that a good battery reaction does not take place, and on the contrary, the size of 50 μm
In the above case, the pores become a phase and the 7ItM' substance tends to flow out, which is not preferable.

又ニッケル短繊維2としては、111記ニツケル粉末1
と同様な材料を用いた繊維径2〜30μm、又繊維径に
対し2〜20倍の長さを有したほぼ針状の短繊維であり
この関係は一般にアスペクト比(L /’ D )と定
義される。
Further, as the nickel short fiber 2, nickel powder 1 of No. 111 is used.
It is a nearly acicular short fiber with a fiber diameter of 2 to 30 μm and a length of 2 to 20 times the fiber diameter, and this relationship is generally defined as the aspect ratio (L/'D). be done.

このような短繊維は、例えば特開昭57−21520号
明dlu書が開示するように複数本の微細な繊維材料を
その精品粒界で切1tliする方法、あるいは工具で所
定長さに切断する方法、その他種々方法で得た短繊維を
使用することができる。
Such short fibers can be produced, for example, by cutting a plurality of fine fiber materials at their fine grain boundaries, as disclosed in Japanese Patent Application Laid-Open No. 57-21520, or by cutting them into a predetermined length with a tool. Short fibers obtained by this method and various other methods can be used.

又他の例としては、高速で回転し、その周囲に複数の突
起を形成したディスク表面上に熔融した材料の液滴を落
下せしめる熔融法、あるいは工具にびびり振動を誘起さ
せながら直接所望の短繊維に切削する方法などである。
Other examples include a melting method in which droplets of molten material fall onto the surface of a disk that rotates at high speed and has a plurality of protrusions around it, or a method in which droplets of molten material are dropped directly onto the surface of a disk that rotates at high speed and has a plurality of protrusions formed around it, or a method in which droplets of the molten material are dropped directly onto the surface of a disk that rotates at high speed to form a desired short distance while inducing chatter vibrations in the tool. For example, cutting into fibers.

なお前記短繊維2は、その端部に鉤のないものが均一に
分散させ易く好ましい。
It is preferable that the short fibers 2 have no hooks at their ends because they can be easily dispersed uniformly.

そして該短繊維2の繊維径は、電極材として要求される
特性により選択されるものであって、繊維径2μmより
も小の場合には、前記粉末の場合と同様に空孔径を微細
とし、電解質の侵入が不十分となるとともに、?ili
強の点からも十分とはいえない。
The fiber diameter of the short fibers 2 is selected depending on the characteristics required for the electrode material, and when the fiber diameter is smaller than 2 μm, the pore diameter is made fine as in the case of the powder, Along with insufficient electrolyte penetration,? ili
It cannot be said that it is sufficient in terms of strength.

又30μmを超えた場合には空孔径、空孔率を過大とし
電解質の液もれ原因となり好ましくない。
Moreover, if it exceeds 30 μm, the pore diameter and porosity become too large, which causes electrolyte leakage, which is not preferable.

又アスペクト比2以下では実質的に粉末状に近づき、燃
料電池電極材用として要求される空孔率をうるのが困難
となり、又補強材としての役目を果たし得ない。
If the aspect ratio is less than 2, the material becomes substantially powder-like, making it difficult to obtain the porosity required for fuel cell electrode materials, and failing to function as a reinforcing material.

又30以上では、均一に分散させることが困難となり強
度的偏在部分を発生させやすいという問題がある。
Moreover, if it is 30 or more, it becomes difficult to uniformly disperse it, and there is a problem that it is easy to generate unevenly distributed parts.

なお本発明にいう電極材とは、アノード極及びカソード
極のいずれか一方もしくはその両者を怠味している。
Note that the electrode material referred to in the present invention refers to one or both of an anode and a cathode.

ニッケル粉末、ニッケル短繊維1.2は所望の割合で均
一に混合せしめた後、金型内に充項せしめ焼結すること
によって例えば板状体に形成される。なお焼結条件とし
ては、例えば温度900〜1200℃加圧力100〜3
000kg/cd、時間10分〜5時間程度であって、
過焼結はさける方がよい。
Nickel powder and short nickel fibers 1.2 are uniformly mixed in a desired ratio, then filled in a mold and sintered to form, for example, a plate-shaped body. The sintering conditions include, for example, a temperature of 900 to 1200°C and a pressure of 100 to 3.
000kg/cd, time of about 10 minutes to 5 hours,
It is better to avoid oversintering.

又画素材の混合割合、空孔径、空孔率については、電極
特性に応じて決定される。−例として、アノード極用と
しては、空孔径0.5〜10μm1空孔率50〜90%
、短繊維を5〜50−t%とした厚さ0.8 n程度の
ものを用い、又カソード極用としては、前記短繊維30
〜90−t%、空孔径5〜15μm程度に形成できる。
Further, the mixing ratio of the image material, the pore diameter, and the porosity are determined depending on the electrode characteristics. - For example, for an anode electrode, pore diameter is 0.5 to 10 μm, porosity is 50 to 90%
, about 0.8 nm in thickness and containing 5 to 50-t% of short fibers, and for the cathode, 30-t% of the above-mentioned short fibers were used.
~90-t% and a pore diameter of approximately 5 to 15 μm.

本発明においては、このようにニッケル粉末1に該ニッ
ケル粉末に近似な大きさのニッケル短繊維2を所望比率
で分散せしめることにより、両者の拡散接合を強固にし
、又熱影響や曲げなどに対してもよく追従し、可撓性を
も備わったものとなる。特に補強材である短繊維2はi
i図に示すごとく電極材4内部で3次元的な方向性で配
向しているため、該短繊維2は、前記ニッケル粉末1な
どが構成する空孔Pを、さらに細分し、微細かつ高空孔
率にするとともに、隣接する前記粉末2あるいは短繊維
1とも接合し、又その長さも比較的短いため、電極材4
の変形等にたいしてはよく順応するものとなる。
In the present invention, by dispersing short nickel fibers 2 having a size similar to that of the nickel powder in the nickel powder 1 at a desired ratio, the diffusion bonding between the two is strengthened, and it is also resistant to thermal effects and bending. It can be easily tracked and has flexibility. In particular, the short fiber 2 which is a reinforcing material is i
As shown in Figure i, the short fibers 2 are oriented in a three-dimensional direction inside the electrode material 4, so that the short fibers 2 further subdivide the pores P constituted by the nickel powder 1, etc., and form fine and high-porosity particles. The electrode material 4
It adapts well to deformation, etc.

このように本発明の電極材の片面に金属繊維を用いた焼
結ウェブ屓、あるいは金属メツシュなどの?′fi強材
を用いうろことにより、さらに強度を増すことができ、
このとき両者をさらに焼結した複合構造としてもよく、
特に焼結ウェブの場合においては可撓性にすぐれたもの
とな、す、又その境界面での剥離も防止できる。そして
これを装置内にくみ込むには前記補強材側にガスを供給
し、粉末層側は電解質に隣接して装着する。
In this way, the electrode material of the present invention may be made of a sintered web using metal fibers on one side, or a metal mesh. The strength can be further increased by using scales made of 'fi reinforced material.
At this time, it is also possible to have a composite structure in which both are further sintered.
Particularly in the case of a sintered web, it has excellent flexibility and can also prevent peeling at the interface. To introduce this into the device, gas is supplied to the reinforcing material side, and the powder layer side is installed adjacent to the electrolyte.

〔実施例−1〕 熔融アトマイズ法により得た粉末径30μm、見掛密度
3.6g/ccのニッケル粉末と、繊維径20μm1平
均アスペクト比8.8のニッケル短繊維45wt%とを
、容器内で均一に混合させた後、厚さ0.8 Bの焼結
体4になるように焼結処理を行った。なおこの時の焼結
条件は、温度1000℃、加圧力100kg/etaで
あり、得られた焼結体4の空孔率は72%であっ、た。
[Example-1] Nickel powder with a powder diameter of 30 μm and an apparent density of 3.6 g/cc obtained by the melt atomization method and 45 wt% of short nickel fibers with a fiber diameter of 20 μm and an average aspect ratio of 8.8 were mixed in a container. After uniformly mixing, a sintering process was performed to obtain a sintered body 4 having a thickness of 0.8 B. The sintering conditions at this time were a temperature of 1000° C. and a pressure of 100 kg/eta, and the porosity of the obtained sintered body 4 was 72%.

この試料を中25馴に切り、引張試験と、第2図に示す
くり返し曲げテストによりキレッ発生に至るまでの回数
を調べた。その結果を第1表に示す。
This sample was cut into 25mm diameter pieces and subjected to a tensile test and a repeated bending test as shown in FIG. 2 to determine the number of times it took to break. The results are shown in Table 1.

〔実施例−2〕 実施例1と同一の素材を使用し、繊維径12μm厚さQ
、 5 +uのウェブ焼結体上に均一に満たし、全厚さ
0.8鶴の複合焼結体となした後、巾25■■の引張試
験片と、くり返し曲げ試験片を得、その試験を行った。
[Example-2] The same material as in Example 1 was used, and the fiber diameter was 12 μm and the thickness Q
, 5+U was uniformly filled onto a web sintered body to form a composite sintered body with a total thickness of 0.8 mm, and a tensile test piece with a width of 25 mm and a repeated bending test piece were obtained, and the test was performed. I did it.

その結果は第1表に示す。The results are shown in Table 1.

〔比較例〕[Comparative example]

熔融アトマイズ粉、粉末径30μmのニッケル粉末を、
厚さ0.8fl空孔率50%の°焼結体となし、巾25
mの試料片を得て実施例と同様の試験を行った・ 第1表 〔効果〕 以」二詳述したごとく、本発明の’lff1材は、ニッ
ケル粉末に繊維径2・〜30μmかつアスペクト比2〜
20にll!iI整されたニッケル短繊維を均一に分散
させているため、前記短繊維が三次元方向に向いて均一
に分布することにより、その強度を大巾に向上しうると
ともに、その空孔1冬、空孔率を容易かつ精度よく調整
できる。
Melted atomized powder, nickel powder with a powder diameter of 30 μm,
Thickness: 0.8 fl, porosity: 50%, sintered body, width: 25 mm
A test similar to that of the example was conducted using a sample piece of 2.0 m in diameter. Ratio 2~
At 20! Since the arranged nickel short fibers are uniformly dispersed, the short fibers are uniformly distributed in the three-dimensional direction, which greatly improves the strength of the short fibers, and also reduces the pore size. Porosity can be adjusted easily and accurately.

又前記空孔も、均一化でき又強度とともに寿命を大巾に
向上しうる。
Moreover, the pores can be made uniform, and the strength and life can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す拡大斜視図、第2図
は電極材の試験方法を示す概略図である。 1−ニッケル粉末、 2−・・ニッケル短繊維、4−電
極材。
FIG. 1 is an enlarged perspective view showing one embodiment of the present invention, and FIG. 2 is a schematic diagram showing a method for testing electrode materials. 1- Nickel powder, 2- Nickel short fiber, 4- Electrode material.

Claims (1)

【特許請求の範囲】[Claims] (1)ニッケル粉末と繊維径2〜30μm、アスペクト
比(L/D)2〜20のニッケル短繊維との混合粉末を
一体に焼結してなることを特徴とする溶融炭酸塩型燃料
電池電極材。
(1) A molten carbonate fuel cell electrode characterized by being formed by integrally sintering a mixed powder of nickel powder and short nickel fibers with a fiber diameter of 2 to 30 μm and an aspect ratio (L/D) of 2 to 20. Material.
JP60215879A 1985-09-28 1985-09-28 Electrode material for fuel cell of molten carbonate type Pending JPS6276158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60215879A JPS6276158A (en) 1985-09-28 1985-09-28 Electrode material for fuel cell of molten carbonate type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60215879A JPS6276158A (en) 1985-09-28 1985-09-28 Electrode material for fuel cell of molten carbonate type

Publications (1)

Publication Number Publication Date
JPS6276158A true JPS6276158A (en) 1987-04-08

Family

ID=16679769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60215879A Pending JPS6276158A (en) 1985-09-28 1985-09-28 Electrode material for fuel cell of molten carbonate type

Country Status (1)

Country Link
JP (1) JPS6276158A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041212A1 (en) * 2004-10-14 2006-04-20 Canon Kabushiki Kaisha Membrane electrode assembly for fuel cell, method of producing same, and fuel cell
WO2011018202A3 (en) * 2009-08-13 2011-04-07 Mtu Onsite Energy Gmbh Electrode for a molten carbonate fuel cell and method for the production thereof
JP2017123240A (en) * 2016-01-06 2017-07-13 日本特殊陶業株式会社 Electrochemical reaction single cell, interconnector-electrochemical reaction single cell composite body, and electrochemical reaction cell stack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041212A1 (en) * 2004-10-14 2006-04-20 Canon Kabushiki Kaisha Membrane electrode assembly for fuel cell, method of producing same, and fuel cell
WO2011018202A3 (en) * 2009-08-13 2011-04-07 Mtu Onsite Energy Gmbh Electrode for a molten carbonate fuel cell and method for the production thereof
JP2017123240A (en) * 2016-01-06 2017-07-13 日本特殊陶業株式会社 Electrochemical reaction single cell, interconnector-electrochemical reaction single cell composite body, and electrochemical reaction cell stack

Similar Documents

Publication Publication Date Title
US11565322B2 (en) Additively manufactured component and production method therefor
US4116804A (en) Catalytically active porous nickel electrodes
US5219678A (en) Nickel-metal hydride secondary cell, and method of manufacturing the same, hydrogen absorbing alloy particles for cell, method of manufacturing the same
US5518833A (en) Nonwoven electrode construction
EP0459351B1 (en) Method of manufacturing electrodes of molten carbonate fuel cell and electrode manufactured thereby
WO2022041351A1 (en) Metal bipolar plate for fuel cell and preparation method therefor
JPS58212070A (en) Cathode composite for fusible carbonate fuel battery
US3367801A (en) Fuel cell including electrode of silver, nickel, and zinc
US5312580A (en) Methods of manufacturing porous metal alloy fuel cell components
JPH05101832A (en) Anode for carbonate fuel battery
US3321286A (en) Sintered fuel cell electrodes of metal and activated carbon
US4654195A (en) Method for fabricating molten carbonate ribbed anodes
JPS6276158A (en) Electrode material for fuel cell of molten carbonate type
JPH06260169A (en) Creeping-proof electrolyte/electrode structure for high-temperature fuel cell
JPS58131664A (en) Fuel cell
JPH0869804A (en) Anode for fused carbonate fuel cell and its preparation
JP2000268827A (en) Metal pseudo porous substance and its manufacture, electrode plate for battery using the same and manufacture of plates, and battery using electrode plates
JP2005280164A (en) Composite sheet body and its manufacturing method
US3900342A (en) Silver catalyst and a method of its manufacture
JPS6276157A (en) Electrode material for fuel cell of molten carbonate type
JPH032342A (en) Composition containing lead and aluminum
JPS60154464A (en) Molten carbonate fuel cell
Hryniewicz et al. Porous sinters for elevated-temperature natural-gas fuel cells
JPH0311503B2 (en)
JPH0520872B2 (en)