JP2000268827A - Metal pseudo porous substance and its manufacture, electrode plate for battery using the same and manufacture of plates, and battery using electrode plates - Google Patents

Metal pseudo porous substance and its manufacture, electrode plate for battery using the same and manufacture of plates, and battery using electrode plates

Info

Publication number
JP2000268827A
JP2000268827A JP11067129A JP6712999A JP2000268827A JP 2000268827 A JP2000268827 A JP 2000268827A JP 11067129 A JP11067129 A JP 11067129A JP 6712999 A JP6712999 A JP 6712999A JP 2000268827 A JP2000268827 A JP 2000268827A
Authority
JP
Japan
Prior art keywords
metal
short
substrate
active material
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11067129A
Other languages
Japanese (ja)
Inventor
より子 ▲高▼井
Yoriko Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11067129A priority Critical patent/JP2000268827A/en
Publication of JP2000268827A publication Critical patent/JP2000268827A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide metal pseudo porous pieces causing no projections on the surface in the compression process in a method of filling an active material using an active material filling tool upon studding metal short fibers on a base board in an inclination in substantially one direction and to provide an electrode plate for battery not requiring the metal short fibers to be shorter than the active material to be applied for filling and not degrading the discharging characteristic at a large current. SOLUTION: An electrode plate for battery is formed with metal pseudo porous pieces structured so that metal short fibers 2 are studded on a base board 1 in inclination substantially parallel with one another at an angle θ with respect to the board 1. These metal pseudo porous pieces are manufactured by orienting metal short fibers 1 having magnetism by a magnetic field and studding them on base board applied with adhesive, removing the resin of a binding medium, baking, filling the active material in the direction in which the metal short fibers 2 are inclined, and subjecting the obtained object to a pressurizing process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池用電極板に用
いられる金属疑似多孔体とその製造方法に関し、また、
その金属疑似多孔体を用いた電池用電極板とその製造方
法並びにその電池用電極板を用いた電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal pseudo-porous body used for an electrode plate for a battery and a method for producing the same.
The present invention relates to a battery electrode plate using the metal pseudo-porous body, a method for manufacturing the same, and a battery using the battery electrode plate.

【0002】[0002]

【従来の技術】従来、電池用電極板としては、海綿状3
次元網目構造の金属発泡多孔体が広く用いられている。
従来の金属発泡多孔体は、樹脂発泡体に化学メッキによ
り金属膜を形成して導電性を付与する処理を施した後、
更に電気メッキにより金属層を形成する。その後、この
金属発泡多孔体は、所定温度で所定時間加熱して、焼結
を行って得られる。しかし、この金属発泡多孔体は、メ
ッキ設備を使用して製造するため製造コストが高い。ま
た、この金属発泡多孔体を使用した電池用電極板は、充
填した活物質の利用度がおよそ90%程度であり実質的
な接触面積が大きくできないため、大電流での放電特性
が向上しない等の課題を有していた。
2. Description of the Related Art Conventionally, spongy 3 has been used as an electrode plate for a battery.
Metal foam porous bodies having a three-dimensional network structure are widely used.
Conventional metal foam porous body, after performing a process of forming a metal film by chemical plating on the resin foam and imparting conductivity,
Further, a metal layer is formed by electroplating. Thereafter, the metal foamed porous body is obtained by heating at a predetermined temperature for a predetermined time and performing sintering. However, since the metal foamed porous body is manufactured using plating equipment, the manufacturing cost is high. Also, in the battery electrode plate using the metal foamed porous body, the utilization of the filled active material is about 90%, and the substantial contact area cannot be increased, so that the discharge characteristics at a large current are not improved. Had the problem of.

【0003】そこで、特開平9−265991号公報に
開示したように、本発明者は、金属基板上に磁性を有す
る金属粉体と結合媒体としての樹脂とからなる金属含有
繊維を剣山状に林立させて形成した金属多孔体を発明し
た。この金属多孔体は、磁性を有した金属もしくは合金
からなる短い繊維(以下、これらの金属含有繊維、金属
繊維、合金繊維のすべてを金属短繊維と称す)を磁力に
よって基板上に垂直に配向して林立させた後、固定する
ことで金属基板の両面に金属短繊維を剣山状に形成して
いる。この金属多孔体は、活物質の充填度が高く、かつ
活物質と電極基板との接触面積が大きくなることから、
特に大電流が必要となる場合がある電動モータ用の2次
電池用電極基板として有用されていた。
Accordingly, as disclosed in Japanese Patent Application Laid-Open No. Hei 9-265991, the present inventor has proposed a method of forming a metal-containing fiber comprising a metal powder having magnetism and a resin as a binding medium on a metal substrate in a sword-like manner. A porous metal body formed by the above was invented. The porous metal body vertically orients short fibers made of a magnetic metal or alloy (hereinafter, all of these metal-containing fibers, metal fibers, and alloy fibers are referred to as short metal fibers) on a substrate by magnetic force. After arranging them, they are fixed to form metal short fibers on both sides of the metal substrate in the shape of a sword. Since the metal porous body has a high active material filling degree and a large contact area between the active material and the electrode substrate,
In particular, it has been useful as an electrode substrate for a secondary battery for an electric motor that may require a large current.

【0004】[0004]

【発明が解決しようとする課題】上述したような、金属
短繊維を基板上に垂直に林立させた金属多孔体を用いて
電池用電極板を作成した場合には、以下のような問題が
生ずることがあった。以下、図8の(a)から図9の
(b)を参照して従来技術の問題点について説明する。
第一の問題は、金属多孔体に活物質を充填する際に生じ
る金属短繊維の基板からの離脱である。図8の(a)に
示すように、活物質の充填工程では、活物質塗布部30
の射出口を金属多孔体53に近接して走行させ、射出口
から活物質31を吐出させ、活物質31を金属多孔体5
3に塗り込むように充填している。この際、金属短繊維
51が基板52に垂直に林立しているので、活物質31
の粘性によってノズル30の走行方向へ金属短繊維51
が倒される力50が働く。従って、図8の(b)に示す
ように、基板52から離脱してしまう金属短繊維51a
が生じる場合があった。
When a battery electrode plate is formed using a porous metal body in which short metal fibers are vertically erected on a substrate as described above, the following problems occur. There was something. Hereinafter, problems of the related art will be described with reference to FIGS. 8A to 9B.
The first problem is separation of short metal fibers from the substrate, which occurs when the porous metal body is filled with the active material. As shown in FIG. 8A, in the active material filling step, the active material application section 30 is used.
Of the active material 31 is ejected from the injection port, and the active material 31 is discharged from the metal porous body 5.
No. 3 is filled. At this time, since the short metal fibers 51 stand perpendicularly to the substrate 52, the active material 31
The metal short fibers 51 move in the traveling direction of the nozzle 30 due to the viscosity of
A force 50 is exerted. Therefore, as shown in FIG. 8B, the short metal fibers 51a
Sometimes occurred.

【0005】第二の問題は、活物質を充填した金属多孔
体53を圧縮する加圧工程で生じる金属短繊維の倒れや
折れである。この加圧工程は、充填した活物質の充填密
度を高めるために行われる工程で、図9の(a)に示す
ように、活物質を充填した金属多孔体53を上下からロ
ール40で挟んで圧縮する方法が用いられる。この際、
基板52に対して垂直に林立した金属短繊維51の中に
は、圧縮する方向と逆方向に傾斜している金属短繊維5
1bがある。すると、圧縮の結果、図9の(b)に示す
ように、圧縮方向と逆方向に倒れる金属短繊維51cが
発生する。また、場合によっては、図9の(c)に示す
ように、長さ方向の中程で折れてしまう金属短繊維51
dが発生する。
[0005] The second problem is that the short metal fibers fall or break in the pressurizing step of compressing the porous metal body 53 filled with the active material. This pressurizing step is a step performed to increase the filling density of the filled active material, and as shown in FIG. 9A, a metal porous body 53 filled with an active material is sandwiched between rolls 40 from above and below. A compression method is used. On this occasion,
Among the short metal fibers 51 standing perpendicular to the substrate 52, the short metal fibers 5 inclined in the direction opposite to the compression direction are included.
1b. Then, as a result of the compression, as shown in FIG. 9B, short metal fibers 51c which fall in the direction opposite to the compression direction are generated. In some cases, as shown in FIG. 9C, the metal short fibers 51 that are broken in the middle of the length direction.
d occurs.

【0006】上述した2つの現象は、どちらの場合も圧
縮後の金属多孔体の表面に突起を形成する原因となる。
このような突起は、電池に組み上げる際、極板同士をシ
ョートさせないために挟まれるセパレータを傷つけた
り、穴を開けたりする原因となり、完成した電池の歩留
まりを低下させていた。この問題の解決策として、基板
上に林立させる金属短繊維の長さを短くすることが考え
られる。つまり、金属多孔体上に充填塗布する活物質層
の厚さより短い金属短繊維を林立させておけば、完成後
の電極板表面に金属短繊維が突起となって出てくること
はない。しかし、この方法では、活物質に対する接触面
積が狭くなり、放電特性、特に大電流での放電特性が劣
化するという問題があった。2次電池の大電流特性は今
後大きく展開することが期待できる電気自動車用等の分
野で最も注目される特性であるので、この大電流特性を
劣化させないための解決策が望まれていた。
The above two phenomena cause the formation of protrusions on the surface of the porous metal body after compression in both cases.
Such projections, when assembled into a battery, cause the separator sandwiched between them to prevent short-circuiting between the electrode plates or cause a hole to be formed, thereby lowering the yield of the completed battery. As a solution to this problem, it is conceivable to shorten the length of the short metal fibers to be grown on the substrate. That is, if short metal fibers shorter than the thickness of the active material layer to be filled and applied on the porous metal body are established, the short metal fibers do not appear as protrusions on the surface of the completed electrode plate. However, this method has a problem that the contact area with the active material is reduced, and the discharge characteristics, particularly, the discharge characteristics at a large current are deteriorated. Since the large current characteristic of the secondary battery is the most noticeable characteristic in the field of electric vehicles and the like, which is expected to greatly expand in the future, a solution for preventing the deterioration of the large current characteristic has been desired.

【0007】本発明は、基板に対して金属短繊維を実質
的に一定方向へ傾斜して林立させて、活物質充填具を用
いて活物質を充填する方法において、圧縮工程の際に表
面に突起を生じない金属疑似多孔体を提供することを目
的とする。また、本発明は、金属短繊維の長さを充填塗
布する活物質層の厚さより短くする必要もなく、大電流
での放電特性を劣化させない電池用電極板を提供するこ
とを目的とする。
According to the present invention, there is provided a method of filling an active material with an active material filler using a method in which short metal fibers are inclined in a substantially constant direction with respect to a substrate and filled with an active material filler. It is an object of the present invention to provide a metal pseudo-porous body that does not generate protrusions. Another object of the present invention is to provide a battery electrode plate which does not require the length of the short metal fiber to be shorter than the thickness of the active material layer to be filled and applied, and which does not deteriorate the discharge characteristics at a large current.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の金属疑似多孔体は、基板上に金属短繊維の
繊維軸を前記基板に対して所定の角度で互いに実質的に
平行に傾斜して配向させて形成したことを特徴とする。
この金属疑似多孔体によれば、活物質の充填時に金属短
繊維にかかる力による金属短繊維の基板からの離脱を防
止し、圧縮工程の際に表面に突起を生じることなく圧縮
できる。従って、この金属疑似多孔体を用いて電池用電
極板を形成すれば、セパレーターに傷をつけたり穴を開
けたりすることのない電池用電極板を形成することがで
きる。また、金属短繊維をさらに短く形成する必要がな
いので、放電特性を劣化させることがない。
In order to solve the above-mentioned problems, a metal pseudo-porous body of the present invention has a fiber axis of short metal fibers on a substrate which is substantially parallel to each other at a predetermined angle with respect to the substrate. It is characterized by being formed to be inclined and oriented.
According to the metal pseudo-porous body, the short metal fibers are prevented from being detached from the substrate due to the force applied to the short metal fibers when the active material is filled, and can be compressed without causing any protrusion on the surface in the compression step. Therefore, if a battery electrode plate is formed using this metal pseudo-porous body, a battery electrode plate can be formed without damaging or puncturing the separator. Further, since it is not necessary to form the short metal fibers even shorter, the discharge characteristics are not deteriorated.

【0009】また、本発明の金属疑似多孔体の製造方法
は、基板表面に接着層を形成する工程と、磁界を作用さ
せながら磁性を有する金属短繊維を前記接着層を形成さ
れた基板の上方から落下させ、前記金属短繊維を前記基
板上に前記基板に対して互いに実質的に平行に傾斜して
林立させる工程と、前記金属短繊維が傾斜して林立した
基板に磁界を作用させながら前記接着層を硬化させて前
記金属短繊維を前記基板に対して互いに実質的に平行に
林立させて固定する工程と、前記金属短繊維が林立した
基板を焼結する工程とを有することを特徴とする。この
金属疑似多孔体の製造方法によれば、磁性を有する金属
短繊維を磁界により基板上に一定方向に互いに実質的に
平行に傾斜して林立させて形成できる。
Further, in the method for producing a pseudo-porous metal material according to the present invention, a step of forming an adhesive layer on a substrate surface and a step of forming a short metal fiber having magnetism while applying a magnetic field above the substrate on which the adhesive layer is formed are performed. Dropping the metal short fibers on the substrate and tilting the substrate substantially parallel to each other to form a forest, and applying a magnetic field to the substrate where the metal short fibers are inclined and growing. Curing the adhesive layer and fixing the short metal fibers to the substrate substantially parallel to each other, and sintering the substrate with the short metal fibers. I do. According to the method for manufacturing a pseudo-porous metal body, short metal fibers having magnetism can be formed on a substrate by a magnetic field so as to be inclined substantially in parallel to each other in a predetermined direction.

【0010】また、本発明の電池用電極板は、本発明の
金属疑似多孔体に活物質を充填塗布して活物質層を形成
した電池用電極板であって、前記活物質層の厚さが前記
金属疑似多孔体の金属短繊維の高さより薄く形成され、
前記活物質層より突出した金属短繊維が傾斜している方
向に折り曲げられて所定の厚さに形成されていることを
特徴とする。この電池用電極板によれば、表面に金属短
繊維の突起を生じることがないのでセパレータに傷を付
けることのない電極板を提供できるとともに、金属短繊
維と活物質との接触面積も大きくできるので、大電流で
の放電特性の良い電池用電極板を提供できる。
The battery electrode plate of the present invention is a battery electrode plate in which an active material is formed by filling and coating the pseudo-porous metal of the present invention with an active material. Is formed thinner than the height of the short metal fibers of the pseudo metal porous body,
The short metal fibers protruding from the active material layer are bent in a direction inclined to have a predetermined thickness. According to this battery electrode plate, it is possible to provide an electrode plate that does not damage the separator since projections of short metal fibers do not occur on the surface, and it is possible to increase the contact area between the short metal fibers and the active material. Therefore, it is possible to provide a battery electrode plate having excellent discharge characteristics at a large current.

【0011】また、本発明の電池用電極板の製造方法
は、本発明の金属疑似多孔体の斜めに配向している金属
短繊維の傾斜している方向に沿って活物質を塗り込み、
前記金属短繊維の高さより低い厚さの活物質層を形成す
る工程と、前記金属短繊維の傾斜方向に圧縮処理を行い
突出している金属短繊維を活物質層の上に折り曲げて所
定の厚さの電極板を形成する工程とを有することを特徴
とする。この製造方法によれば、本発明の電池用電極板
を容易に製造できる。
In the method for producing a battery electrode plate according to the present invention, the active material is applied along the inclined direction of the obliquely oriented short metal fibers of the pseudo metal porous body of the present invention.
A step of forming an active material layer having a thickness lower than the height of the short metal fibers, and compressing the short metal fibers in an inclined direction to bend the protruding short metal fibers onto the active material layer to have a predetermined thickness. Forming an electrode plate. According to this manufacturing method, the battery electrode plate of the present invention can be easily manufactured.

【0012】また、本発明の電池は、本発明の電池用電
極板を少なくとも正極に用いたことを特徴とする。この
電池によれば、電極板に突出物がないため、極板のショ
ートなどによる不良の発生を防止して良好な歩留まりで
電池を製造できるとともに、金属短繊維と活物質との接
触面積を大きくできるため、大電流における放電特性を
良好にできる。
Further, the battery of the present invention is characterized in that the battery electrode plate of the present invention is used at least as a positive electrode. According to this battery, since there is no protrusion on the electrode plate, it is possible to manufacture a battery with a good yield by preventing the occurrence of defects such as short-circuiting of the electrode plate, and to increase the contact area between the short metal fiber and the active material. Therefore, discharge characteristics at a large current can be improved.

【0013】[0013]

【発明の実施の形態】以下、本発明に係る好適な実施例
について説明する。本発明に係る金属疑似多孔体及びそ
の製造方法を実施例1として図面を参照しつつ説明す
る。また、本発明に係る電池用電極板の製造方法を実施
例2として、そして電池の好適な実施例を実施例3とし
てそれぞれ図面を参照しつつ説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments according to the present invention will be described below. A pseudo metal porous body and a method for manufacturing the same according to the present invention will be described as a first embodiment with reference to the drawings. A method for manufacturing a battery electrode plate according to the present invention will be described as Example 2 and a preferred example of a battery will be described as Example 3 with reference to the drawings.

【0014】《実施例1》以下、本発明に係る実施例1
の金属疑似多孔体及びその製造方法について図1ないし
図4を参照しつつ説明する。図1は、実施例1の金属疑
似多孔体の概略構成を示す側面図である。図2は、実施
例1に用いる金属短繊維の製造工程を示す工程図であ
る。図3の(a)は、実施例1に用いる金属短繊維の一
例を示す縦断面図である。図3の(b)は、図3の
(a)の金属短繊維の横断面図である。図4は、実施例
1の金属疑似多孔体の製造工程を説明する図である。図
1において、基板1は、電池用電極板として使用するこ
とから導電性を有する金属により形成されている。最近
の2次電池として主力になりつつあるニッケル水素電池
やリチウムイオン電池においては、基板1は主としてニ
ッケル板で形成されている。この基板1の形状としては
板状の他に繊維状の金属を織った布状のものや、繊維状
の金属を集めて圧縮等して得られる不織布状のものを用
いることができる。また、必要に応じて基板1の表面に
メッキ等の処理を施したり、活物質との接触面積の増大
と付着力の増大のための多数の小さい貫通孔を設ける穿
孔処理などの加工が施される。
<< Embodiment 1 >> Hereinafter, Embodiment 1 according to the present invention will be described.
The pseudo metal porous body and the method of manufacturing the same will be described with reference to FIGS. FIG. 1 is a side view showing a schematic configuration of the pseudo metal porous body of Example 1. FIG. 2 is a process diagram showing a process for producing short metal fibers used in Example 1. FIG. 3A is a longitudinal sectional view illustrating an example of the short metal fiber used in the first embodiment. FIG. 3B is a cross-sectional view of the short metal fiber of FIG. FIG. 4 is a diagram illustrating a process for manufacturing the pseudo-porous metal body of Example 1. In FIG. 1, a substrate 1 is formed of a conductive metal because it is used as an electrode plate for a battery. In nickel-metal hydride batteries and lithium-ion batteries, which are becoming mainstays as recent secondary batteries, the substrate 1 is mainly formed of a nickel plate. As the shape of the substrate 1, besides a plate shape, a cloth shape obtained by weaving fibrous metal or a nonwoven fabric obtained by collecting and compressing fibrous metal can be used. Further, if necessary, the surface of the substrate 1 is subjected to a process such as plating, or a process such as a perforation process for providing a large number of small through holes for increasing the contact area with the active material and increasing the adhesive force. You.

【0015】金属短繊維2は、導電性を有し、活物質と
の接触面積を大きくするために基板1に植え付けられた
もので、材質としては、好ましくは基板1と同じものを
用いる。金属短繊維は長さ0.2mmから数mm、太
さ、十数〜数百μmのものが用いられる。余り長くなり
すぎると、活物質の充填がしにくくなり、太すぎると、
単位体積あたりの活物質の充填量が減る。また、金属短
繊維の植付密度は、1cm2当たり1200本ないし1
800本程度が好ましい。基板1と金属短繊維2は一体
となすために焼成によって固定されている。基板1に対
する金属短繊維2の傾斜角度θは、およそ30度から7
0度の角度範囲が望ましく、特に約50度において良い
結果が得られた。あまり傾斜角度が大きすぎると従来例
で説明した垂直に林立させた場合と同様な問題が生じ
る。また、傾斜角度が小さすぎると活物質の充填の際に
倒れてしまい傾斜角度が0度に近くなり、活物質との接
触面積を大きくするという効果が発揮されなくなる。
The short metal fibers 2 have conductivity and are planted on the substrate 1 in order to increase the contact area with the active material. The same material as that of the substrate 1 is preferably used. The short metal fibers have a length of 0.2 mm to several mm, a thickness of tens to several hundreds of μm. If too long, it will be difficult to fill the active material, if too thick,
The amount of active material per unit volume is reduced. The planting density of short metal fibers is 1200 to 1 per cm 2.
About 800 are preferable. The substrate 1 and the short metal fibers 2 are fixed by firing so as to be integrated. The inclination angle θ of the short metal fiber 2 with respect to the substrate 1 is about 30 degrees to 7 degrees.
An angle range of 0 degrees is desirable, and good results have been obtained, especially at about 50 degrees. If the inclination angle is too large, the same problem as in the case of standing vertically as described in the conventional example occurs. On the other hand, if the inclination angle is too small, it falls down at the time of filling the active material, and the inclination angle approaches 0 degree, so that the effect of increasing the contact area with the active material cannot be exhibited.

【0016】金属短繊維2の製造方法及び基板1上への
金属短繊維2の林立方法としては、特開平10−129
235号公報及び特開平10−94128号公報に開示
されているものを用いる。以下、上記文献から引用も含
め、それぞれの具体的な製造方法を説明する。以下の説
明においては、結合媒体としての樹脂を含んだ状態での
繊維と、結合媒体を除去する処理(以下、脱媒処理と称
す)及び焼成処理を施した後の繊維をどちらも金属短繊
維と称する。
A method for producing the short metal fibers 2 and a method for arranging the short metal fibers 2 on the substrate 1 are described in JP-A-10-129.
No. 235 and JP-A-10-94128 are used. Hereinafter, each of the specific manufacturing methods will be described, including references from the above documents. In the following description, both the fibers containing the resin as the binding medium and the fibers subjected to the treatment for removing the binding medium (hereinafter referred to as de-solvent treatment) and the calcination treatment are referred to as metal short fibers. Called.

【0017】[金属短繊維2の製造方法の説明]本発明
の金属疑似多孔体に用いる金属短繊維2は、基板への林
立工程において磁界を用いて配向させて電池用電極板を
形成するために磁性を有することが必要となる。2次電
池として今後注目されているリチウムイオン電池やニッ
ケル水素電池等では、電極板としてはニッケルが主とし
て用いられる。電池用電極板材料として、イオン化傾向
等の電気的特性としても、磁性を有することが必要であ
るという本発明に用いる金属短繊維2の素材としてもニ
ッケルは好適な材料である。このニッケルを金属として
繊維状に加工することにより本発明に用いる金属短繊維
2を得ることができる。具体的には、溶融させたニッケ
ルを紡糸ノズルを通して糸状に引き出したり、バルク状
のニッケルを削りだして短繊維状のくずとして得る方法
等がある。
[Explanation of Method for Producing Short Metal Fiber 2] The short metal fiber 2 used for the pseudo-porous metal of the present invention is oriented by using a magnetic field in the step of arranging the substrate to form an electrode plate for a battery. Must have magnetism. In a lithium-ion battery, a nickel-metal hydride battery, and the like, which are attracting attention as a secondary battery in the future, nickel is mainly used as an electrode plate. Nickel is a suitable material for the battery electrode plate material as the material of the short metal fiber 2 used in the present invention, which is required to have magnetism as well as electrical characteristics such as ionization tendency. By processing this nickel into a fibrous form as a metal, the short metal fibers 2 used in the present invention can be obtained. Specifically, there is a method of drawing molten nickel into a thread through a spinning nozzle, or shaving bulk nickel to obtain short fiber waste.

【0018】しかし、これらの方法は一般に容易にはで
きずコスト高の原因になる上に、純金属の短繊維となる
ために重量が重くなり、電極板にしたときの目付量(単
位面積当たりの重量)を超過してしまう。そのため、実
施例1では、より低コストでより軽い金属短繊維2とし
て、ニッケル粉末と結合媒体としての樹脂を混練したも
のを紡糸法により糸状に引いたものを切断して用いる。
この紡糸法に用いる金属ニッケル粉としては、粒径がサ
ブミクロンから数百μm程度のものを用い、好ましくは
数μmから数十μmが適している。これは作成する金属
短繊維2の太さとして数百μmのものが適しているから
である。つまり、この範囲以上の大きな金属粉を用いる
と糸状に紡糸できなくなるし、この範囲以下の小さい金
属粉を用いると金属粉末の表面積が大きくなりすぎて樹
脂との混練が困難になってくるためである。金属粉の形
状は球状、角状、針状、板状等特に限定はない。また数
種類の形状を混合して用いてもよい。さらに、主成分と
してニッケル粉が含有されていれば他の非磁性の粒子を
含んでいてもかまわない。
However, these methods are generally not easy and cause a high cost. In addition, since they are made of short fibers of pure metal, the weight becomes heavy, and the weight per unit area of the electrode plate (per unit area) Weight). Therefore, in the first embodiment, the kneaded nickel powder and the resin as the binding medium, which are drawn into a thread shape by the spinning method, are cut and used as the lighter metal short fibers 2 at lower cost.
As the metal nickel powder used in the spinning method, a powder having a particle size of about submicron to several hundred μm is used, and preferably several μm to several tens μm is suitable. This is because the short metal fibers 2 to be formed have a thickness of several hundred μm. In other words, if a metal powder larger than this range is used, spinning into a thread shape becomes impossible, and if a metal powder smaller than this range is used, the surface area of the metal powder becomes too large and kneading with the resin becomes difficult. is there. The shape of the metal powder is not particularly limited, such as a sphere, a square, a needle, and a plate. Further, several types of shapes may be mixed and used. Further, other non-magnetic particles may be included as long as nickel powder is contained as a main component.

【0019】上記ニッケル粉末と混練する結合媒体であ
る樹脂としては、好ましくは、水系または有機溶剤系の
樹脂が用いられる。具体的には、ポリスチレン、ポリプ
ロピレン、ポリエチレン、ポリメチルメタアクリレー
ト、ポリビニルアルコール、ポリビニルブチラール、ポ
リアクリルニトリル、ポリエチレングリコール、ポリ乳
酸、エチレンとビニルアルコールとの共重合体、スチレ
ンアクリル共重合体、各種セルロース系プラスチック、
各種ナイロン、ポリウレタン、ポリエステル熱可塑性エ
ラストマー、熱可塑性ポリイミド等が挙げられる。必要
とする性能によって上記各樹脂を含めて種々の樹脂の中
から選ばれるが、これらの中でも加熱分解による結合媒
体を除去する脱媒工程や、金属短繊維と基板との焼成工
程で不純物が残らないような樹脂が選ばれる。すなわ
ち、加熱分解により残査のでる金属塩、環状結合等を含
まない樹脂で、加熱分解しやすい酸素を含む脂肪族系炭
化水素ポリマーが望ましい。結合媒体は1種類の樹脂で
ある必要はなく、2種類以上の樹脂を混合して使用する
こともできる。また、結合媒体として上記樹脂だけでな
く、可塑剤、分散剤等を用いることもできる。具体的に
はフタル酸ブチルベンジル(DBP)、フタル酸オクチ
ルベンジル(DOP)等が例として挙げられる。
As the resin serving as a binding medium to be kneaded with the nickel powder, an aqueous or organic solvent-based resin is preferably used. Specifically, polystyrene, polypropylene, polyethylene, polymethyl methacrylate, polyvinyl alcohol, polyvinyl butyral, polyacrylonitrile, polyethylene glycol, polylactic acid, a copolymer of ethylene and vinyl alcohol, a styrene acrylic copolymer, various celluloses Plastic,
Various nylons, polyurethanes, polyester thermoplastic elastomers, thermoplastic polyimides and the like can be mentioned. Depending on the required performance, the resin is selected from various resins including the above-mentioned resins. Among these, impurities are left in the desolvation step of removing the binding medium by thermal decomposition and the firing step of the short metal fiber and the substrate. A resin that does not exist is selected. That is, it is desirable to use an aliphatic hydrocarbon polymer containing oxygen that is easily decomposed by heating and is a resin that does not contain metal salts, cyclic bonds, and the like, which are left over by thermal decomposition. The binding medium does not need to be one kind of resin, and two or more kinds of resins can be mixed and used. In addition, a plasticizer, a dispersant, or the like can be used as the binding medium in addition to the above resin. Specific examples include butylbenzyl phthalate (DBP) and octylbenzyl phthalate (DOP).

【0020】金属粉と樹脂の混合比率は、金属粉(磁
性、非磁性を含む):樹脂が90:10から60:40
までに範囲で使用可能である。望ましくは、金属粉:樹
脂が85:15から70:30の範囲である。この範囲
より金属粉の含有量が多いと、混練物をペレット状に成
形できず、紡糸が困難になる。また、この範囲より金属
粉の含有量が少ないと金属粉の焼結後の結合度に問題が
生じる上、紡糸後の出来上がりの繊維が粘着性を有する
ため取り扱いにくい等の弊害が生じる。
The mixing ratio of the metal powder and the resin is as follows: metal powder (including magnetic and non-magnetic): resin is 90:10 to 60:40.
Can be used in a range up to. Desirably, the ratio of metal powder to resin is in the range of 85:15 to 70:30. If the content of the metal powder is larger than this range, the kneaded material cannot be formed into pellets, and spinning becomes difficult. On the other hand, if the content of the metal powder is less than the above range, there is a problem in the degree of bonding of the metal powder after sintering.

【0021】次に、金属短繊維の製造工程について図2
を参照して説明する。図2に示すように、混練工程6で
は、金属短繊維の主材料となる金属粉と、結合媒体とな
る樹脂とをボールミルなどで十分混練して粘土状の混練
物を得る。これらの混練には、ボールミルの他、3本ロ
ール、ニーダー、エクストルーダー等の公知の混練機を
用いることができる。ペレット成形工程7では、粘土状
の混練物を押出機によりペレット状に成形する。加熱溶
融工程8では、ペレット状に成形した混練物を溶融温度
まで加熱して液状にする。紡糸工程9では、液状になっ
た混練物を紡糸ノズルを通して引き落とし、繊維状に加
工する。
Next, the process for producing short metal fibers is shown in FIG.
This will be described with reference to FIG. As shown in FIG. 2, in the kneading step 6, a metal powder as a main material of the short metal fibers and a resin as a binding medium are sufficiently kneaded with a ball mill or the like to obtain a clay-like kneaded material. Known kneading machines such as a three-roll mill, a kneader, and an extruder can be used for the kneading in addition to the ball mill. In the pellet forming step 7, the clay-like kneaded material is formed into a pellet by an extruder. In the heating and melting step 8, the kneaded material formed into a pellet is heated to a melting temperature to be in a liquid state. In the spinning step 9, the kneaded material in a liquid state is pulled down through a spinning nozzle and processed into a fibrous shape.

【0022】このとき、図3に示すように、金属含有量
の高いペレットを使用して、金属粉含有量の多い繊維を
芯部4に配置し、強度を補うためにその外周の鞘部5に
樹脂を配置した複合紡糸を行うこともできる。紡糸ノズ
ルの断面形状は三角、四角、それ以上の多角形、円、楕
円、星形等の種々の形状のものが使用でき、特に限定は
ない。切断工程10では、紡糸工程9で作成した金属含
有繊維を必要な長さに切りそろえ実施例1で使用する金
属短繊維2を得る。
At this time, as shown in FIG. 3, using a pellet having a high metal content, fibers having a high metal powder content are arranged on the core portion 4 and a sheath portion 5 on the outer periphery thereof for supplementing the strength. Composite spinning in which a resin is disposed on the substrate. The cross-sectional shape of the spinning nozzle may be various shapes such as a triangle, a square, a polygon having a larger number, a circle, an ellipse, and a star, and is not particularly limited. In the cutting step 10, the metal-containing fibers prepared in the spinning step 9 are cut to a required length to obtain the short metal fibers 2 used in Example 1.

【0023】[金属短繊維2を基板に対して互いに実質
的に平行に傾斜して林立させた金属疑似多孔体の製造方
法の説明]以下、実施例1の金属疑似多孔体の製造方法
について図4を参照しつつ説明する。図4に示すよう
に、実施例1の金属疑似多孔体の製造方法は基本的に以
下の4つの工程を有している。 (1)接着層形成工程 (2)配向(林立)工程 (3)硬化工程 (4)焼成工程 図4は、連続的に剣山状の金属疑似多孔体を製造する製
造方法について示しており、基板1は図の左から右方向
へ図示しない搬送手段によって搬送されているものとす
る。
[Explanation of a method of manufacturing a pseudo metal porous body in which short metal fibers 2 are erected substantially parallel to each other with respect to a substrate] A method of manufacturing a pseudo metal porous body of Example 1 will be described below. This will be described with reference to FIG. As shown in FIG. 4, the method for manufacturing a metal pseudo-porous body of Example 1 basically has the following four steps. (1) Adhesive layer forming step (2) Orientation (forest) step (3) Curing step (4) Firing step FIG. 4 shows a manufacturing method for continuously producing a sword-like metal pseudo-porous body, and a substrate. 1 is assumed to be transported from left to right in the figure by transport means (not shown).

【0024】接着層形成工程では、基板1上に吹き付け
ノズル12によって接着剤13を吹き付けながら接着層
14を形成する。接着剤13は、樹脂に金属粉体を混ぜ
たものを用いる。接着剤13として用いることのできる
樹脂は前述した金属短繊維2の製造に用いる結合媒体の
材料と同じである。しかし、脱媒工程や焼成工程で除去
されてしまうのが望ましいので、できるだけ高温による
燃焼で残留物を残さない材料がよい。具体的には、接着
剤13に用いる樹脂としては、ポリビニルアセテート樹
脂、アクリル樹脂、ブチラール樹脂等が用いられる。ま
た、これらの樹脂を溶解する溶媒としては、ポリビニル
アセテート樹脂に対しては、純水やブタノール、メチル
セルソルブ、シクロヘキサノン、酢酸メチル、テトラヒ
ドロフタン等の炭化水素系以外の有機溶剤がある。アク
リル樹脂やブチラール樹脂には、メチルエチルケトンや
イソホロン等のケトン系、テトラヒドロフランやエチレ
ングリコールモノエチルエステル等のエーテル系、その
他アルコール系炭化水素等の有機溶剤を単独または混合
して用いることができる。これらの樹脂と溶媒の比率は
粘度に応じて決めることができ、乾燥速度なども考慮に
入れて決めることができる。
In the adhesive layer forming step, the adhesive layer 14 is formed on the substrate 1 while spraying the adhesive 13 by the spray nozzle 12. As the adhesive 13, a mixture of resin and metal powder is used. The resin that can be used as the adhesive 13 is the same as the material of the binding medium used for manufacturing the short metal fibers 2 described above. However, it is desirable that the material be removed in the deoxidizing step or the firing step, and therefore, a material that does not leave a residue by burning at as high a temperature as possible is preferable. Specifically, as a resin used for the adhesive 13, a polyvinyl acetate resin, an acrylic resin, a butyral resin, or the like is used. Solvents for dissolving these resins include pure water and organic solvents other than hydrocarbon solvents such as butanol, methylcellosolve, cyclohexanone, methyl acetate, and tetrahydrophthalane for polyvinyl acetate resins. Organic solvents such as ketones such as methyl ethyl ketone and isophorone, ethers such as tetrahydrofuran and ethylene glycol monoethyl ester, and other organic solvents such as alcohol hydrocarbons can be used alone or in combination for the acrylic resin and butyral resin. The ratio between the resin and the solvent can be determined according to the viscosity, and can be determined in consideration of the drying speed and the like.

【0025】金属粉体は、後に焼成することを考慮する
と、使用する金属短繊維2の主元素と同じ主元素を用い
た金属粉体を用いるのが好ましい。ここで、接着剤13
中の樹脂は、接着剤13中の金属粉体および林立させる
金属短繊維2を固定させるために必要であり、金属粉体
は、金属短繊維2と基板1とを焼成させやすくするため
に接着剤13中に混在させる。接着層14の厚さは特に
限定するものではないが、林立させる金属短繊維2と基
板1とを焼成によって結合させるという役目が達成させ
るだけの厚さが必要である。また厚すぎると電池用電極
板にしたときの目付量が重くなってしまうという問題も
あり、0.数mmから数mmの厚みが適している。接着
層の形成工程は、ここでは吹き付けノズルを用いる方法
を示したが、塗布法や基板を接着剤に浸すことで接着層
を形成するディップ法、あらかじめ他の平面に接着層を
形成しておいて、それを転写する方法等を用いることが
できる。また、本工程の目的は基板1上に接着層を形成
することにあるので、これらの方法に限定するものでは
ないことはいうまでもない。
Considering that the metal powder is fired later, it is preferable to use a metal powder using the same main element as the main element of the short metal fiber 2 to be used. Here, the adhesive 13
The resin inside is necessary to fix the metal powder in the adhesive 13 and the short metal fibers 2 to be established, and the metal powder is bonded to the metal short fibers 2 and the substrate 1 to facilitate firing. Mixed in agent 13. Although the thickness of the adhesive layer 14 is not particularly limited, the adhesive layer 14 needs to have such a thickness as to achieve the function of bonding the short metal fibers 2 and the substrate 1 to be forested by firing. If the thickness is too large, there is also a problem that the weight per unit area of the battery electrode plate becomes heavy, and a thickness of 0.1 mm to several mm is suitable. Here, the method of forming the adhesive layer uses a spray nozzle. However, a coating method, a dipping method of forming an adhesive layer by immersing a substrate in an adhesive, or an adhesive layer formed on another plane in advance is used. Then, a method of transferring the same can be used. Since the purpose of this step is to form an adhesive layer on the substrate 1, it goes without saying that the present invention is not limited to these methods.

【0026】次に林立工程を説明する。この林立工程
は、電磁石15により磁界16を印加しながら、磁性を
有する金属短繊維2を入れた籠18を揺さぶり、金属短
繊維2をバラバラの状態で落下させる。すると、金属短
繊維2が磁界16の向きになるように空中で回転し、基
板1上の接着層14に磁界16の向きに配向して着地さ
せる。これにより、金属短繊維2が基板1に対して所定
の角度で互いに実質的に平行に傾斜した林立状態を作成
できる。
Next, the forestation process will be described. In this forestation step, while applying a magnetic field 16 by the electromagnet 15, the basket 18 containing the short metal fibers 2 having magnetism is shaken, and the short metal fibers 2 are dropped in a discrete state. Then, the short metal fibers 2 rotate in the air so as to be in the direction of the magnetic field 16, and land on the adhesive layer 14 on the substrate 1 in the direction of the magnetic field 16. Thereby, a stand-up state in which the short metal fibers 2 are inclined substantially parallel to each other at a predetermined angle with respect to the substrate 1 can be created.

【0027】電磁石15は基板1の上下に配置し、上下
の電磁石15が同じ向きに磁界16が発生するように電
流を流す。実施例1では電磁石15を基板1の上下に2
つ用いているが、基板1の上側または下側のどちらか一
方でも可能である。磁界16の発生に関しては電磁石あ
るいは永久磁石のどちらを用いてもよく、また、電磁石
と永久磁石とを併用することも可能である。しかし、本
発明の場合は、基板1に対して金属短繊維2を互いに実
質的に平行に傾斜して林立させるため、磁界16を制御
できる電磁石15を使用するのが好適である。さらに、
磁界16は直流磁界でも交流磁界でもよく、それらの併
用、組み合わせでも可能である。このとき、電磁石15
はその発生する磁界16が走行する基板1に対して傾斜
しているように配置し、金属短繊維2が基板1に対して
互いに実質的に平行に一定の角度で傾斜した状態で落下
するように磁界16を印加する。
The electromagnets 15 are arranged above and below the substrate 1, and a current flows so that the upper and lower electromagnets 15 generate a magnetic field 16 in the same direction. In the first embodiment, the electromagnet 15 is
Although one is used, either one of the upper side and the lower side of the substrate 1 can be used. Regarding generation of the magnetic field 16, either an electromagnet or a permanent magnet may be used, and the electromagnet and the permanent magnet may be used in combination. However, in the case of the present invention, it is preferable to use the electromagnet 15 that can control the magnetic field 16 in order to make the short metal fibers 2 stand substantially parallel to each other with respect to the substrate 1. further,
The magnetic field 16 may be a DC magnetic field or an AC magnetic field, and may be used in combination or in combination. At this time, the electromagnet 15
Is arranged so that the generated magnetic field 16 is inclined with respect to the substrate 1 on which it travels, so that the short metal fibers 2 fall with respect to the substrate 1 while being inclined substantially parallel to each other at a certain angle. A magnetic field 16 is applied.

【0028】基板1は、傾斜した状態で落下する金属短
繊維2に対して、それを基板1に対して垂直側に起こそ
うとする方向に走行する。従って、単に磁界16を基板
1に対して斜めに作用させるだけでは、金属短繊維2を
基板1上で所定の角度で互いに実質的に平行に傾斜して
林立させるには十分ではない。基板1の走行方向に合わ
せて、磁界16の基板1に対する傾斜角度や磁界16の
強度を調節する必要があり、これらの傾斜角度や強度は
一義的に限定できるものではない。金属短繊維2を落下
させる方法としては、籠18に金属短繊維2を入れ、籠
18を揺動させながら落下させる方法を示したが、スリ
ットを有するホッパ等から落下させる方法や、いわゆる
ふるいのような網目状の隙間から落下させる方法や、空
気とともに吹き飛ばし落下させる方法などが適用でき
る。しかし、本発明はこれらの方法に限定するものでは
なく、磁界16中で互いに実質的に平行に基板に対して
一定の角度で傾斜した状態で金属短繊維2を落下させる
ことができればよい。
The substrate 1 travels in a direction in which the metal short fibers 2 falling in an inclined state are caused to rise vertically to the substrate 1. Therefore, simply applying the magnetic field 16 obliquely to the substrate 1 is not enough to cause the short metal fibers 2 to stand on the substrate 1 at a predetermined angle substantially parallel to each other. It is necessary to adjust the inclination angle of the magnetic field 16 with respect to the substrate 1 and the strength of the magnetic field 16 in accordance with the traveling direction of the substrate 1, and the inclination angle and the intensity cannot be uniquely limited. As a method for dropping the short metal fibers 2, a method in which the short metal fibers 2 are put into the basket 18 and dropped while swinging the basket 18 has been described, but a method of dropping from a hopper having a slit or a so-called sieve is used. A method of dropping from such a mesh-like gap or a method of blowing and dropping with air can be applied. However, the present invention is not limited to these methods, as long as the metal short fibers 2 can be dropped in the magnetic field 16 in a state of being substantially parallel to each other and inclined at a certain angle with respect to the substrate.

【0029】次に硬化工程について説明する。この工程
は、接着層14上に落下し林立した金属短繊維2を、接
着層14を硬化させて固定する工程である。林立工程で
基板1に対して互いに実質的に平行に傾斜した状態で接
着層14に植えられた金属短繊維2は、磁界16の作用
によって林立しているが、磁界16の作用がなくなると
自重で倒れてしまう。そこで倒れてしまう前に、接着層
14を硬化し、固定するのが本工程の目的である。その
ために、金属短繊維2が倒れないように磁界16を作用
させた状態で熱風ノズル19から熱風を当てて、接着層
14を硬化させる。従って、本工程で作用させる磁界1
6の方向は、金属短繊維2を林立させた方向と同じ方向
に作用させる。熱風はおよそ20度から100度程度の
温度の空気流で、風速数十cm/秒から数十m/秒程度
までの一般的な熱風発生器を用いることができる。しか
し、基板1の搬送速度や、硬化工程に作用させる磁界1
6を印加している部分の長さ、または用いる接着層14
の粘度等に関係し、この熱風の温度、風速を限定するこ
とはできない。さらに、接着層の成分により不活性ガス
の熱風が好ましい場合には、窒素ガスの熱風などを用い
ることもできる。
Next, the curing step will be described. In this step, the metal short fibers 2 that have fallen and stood on the adhesive layer 14 are fixed by curing the adhesive layer 14. The short metal fibers 2 planted in the adhesive layer 14 in a state of being inclined substantially in parallel with the substrate 1 in the stand-up process stand by the action of the magnetic field 16, but lose their own weight when the action of the magnetic field 16 stops. And fall down. The purpose of this step is to cure and fix the adhesive layer 14 before it falls down. For this purpose, hot air is applied from a hot air nozzle 19 while the magnetic field 16 is applied so that the short metal fibers 2 do not fall down, and the adhesive layer 14 is cured. Therefore, the magnetic field 1 applied in this step
The direction of 6 acts in the same direction as the direction in which the short metal fibers 2 were established. The hot air is an air flow having a temperature of about 20 to 100 degrees, and a general hot air generator having a wind speed of several tens cm / sec to several tens m / sec can be used. However, the transfer speed of the substrate 1 and the magnetic field 1 acting on the curing process
6 or the length of the adhesive layer 14 to be used.
It is not possible to limit the temperature and the speed of the hot air in relation to the viscosity and the like of the hot air. Further, when hot air of an inert gas is preferable depending on the components of the adhesive layer, hot air of a nitrogen gas can be used.

【0030】このときに作用させる磁界16は交流磁界
より直流磁界が望ましい。交流磁界では、磁界の極性が
一定時間内で何度も切り替わるため、林立させた金属短
繊維2が動く可能性が生じてくるからである。従って、
電磁石はもとより、磁界の極性の一定な永久磁石による
磁界も使うことができる。また、図4において、林立工
程と硬化工程で作用させる磁界の付与は同一の電磁石1
5で行うように示したが、別々の磁石を用いてもよい。
例えば、林立工程では電磁石15を用い、硬化工程では
永久磁石を用いることもできる。この工程の目的は、林
立させた金属短繊維2を倒れない程度に基板1に固定す
るのが目的であるので、接着層14が完全に硬化する必
要はなく、金属短繊維2が磁界16を作用させなくても
倒れない程度に硬化すればよい。実施例1では、熱風を
当てて硬化させる方法について説明したが、ヒータによ
る加温で硬化させたり、硬化速度の早い樹脂を接着剤と
して用いて常温放置して硬化させてもよい。他に、接着
層の樹脂に紫外線や電子線硬化型の特殊な樹脂を用いた
場合は、それらを照射して硬化させる方法を用いること
ができる。
The magnetic field 16 applied at this time is preferably a DC magnetic field rather than an AC magnetic field. This is because, in an alternating magnetic field, the polarity of the magnetic field is switched many times within a certain period of time, so that there is a possibility that the stapled metal short fibers 2 move. Therefore,
Not only electromagnets, but also magnetic fields from permanent magnets having a constant magnetic field polarity can be used. In FIG. 4, the application of the magnetic field applied in the forestation step and the curing step is performed by the same electromagnet 1.
Although it is shown that the operation is performed in step 5, separate magnets may be used.
For example, an electromagnet 15 can be used in the forestry process, and a permanent magnet can be used in the hardening process. Since the purpose of this step is to fix the short metal fibers 2 that have been established to the substrate 1 to the extent that they do not fall, the adhesive layer 14 does not need to be completely cured, and the short metal fibers 2 generate the magnetic field 16. What is necessary is just to harden to the extent that it does not fall without acting. In the first embodiment, the method of curing by applying hot air has been described. However, the curing may be performed by heating with a heater, or the resin may be cured at room temperature by using a resin having a high curing speed as an adhesive. In addition, when a special resin of an ultraviolet ray or electron beam curing type is used as the resin of the adhesive layer, a method of irradiating them and curing them can be used.

【0031】次に焼成工程について説明する。本工程
は、硬化工程により金属短繊維2を林立させた基板1に
含まれている結合媒体としての樹脂成分を加熱分解によ
り除去する脱媒工程と、金属成分を焼成して固化する焼
成工程を含んでいる。従って、脱媒工程は焼成炉20の
ヒータ21を制御して雰囲気温度を300度から600
度で行い、焼成工程は雰囲気温度を800度から120
0度程度で行う。使用する金属粉の材料によって、水素
もしくは水素を混合した気体を雰囲気ガス導入口22か
ら焼成炉20の中に導入し、排気口23から排出して還
元雰囲気で焼成することも可能である。また、窒素等を
用いた不活性ガス雰囲気中で行うこともできる。
Next, the firing step will be described. This step includes a desolventization step of removing a resin component as a binding medium contained in the substrate 1 in which the short metal fibers 2 are established by the curing step by thermal decomposition, and a firing step of firing and solidifying the metal component. Contains. Accordingly, in the desolvation step, the atmosphere temperature is controlled from 300 degrees to 600 degrees by controlling the heater 21 of the firing furnace 20.
And the baking process is performed by changing the ambient temperature from 800 degrees to 120 degrees.
Perform at about 0 degrees. Depending on the material of the metal powder to be used, it is also possible to introduce hydrogen or a mixed gas of hydrogen into the firing furnace 20 through the atmospheric gas inlet 22 and discharge it through the exhaust port 23 to fire in a reducing atmosphere. Further, it can be performed in an inert gas atmosphere using nitrogen or the like.

【0032】脱媒工程と焼成工程は連続で行った方がよ
く、500度程度の温度で一定時間保持した後、800
度から1200度まで温度を上昇させるというような温
度分布を有する焼成炉20中で行うのが望ましい。ま
た、500度程度の温度で保持する脱媒工程の間は窒素
雰囲気で、高温の焼成工程は還元雰囲気でというように
雰囲気と昇温パターンを組み合わせることも可能であ
る。但し、脱媒工程と焼成工程においては、使用する焼
成炉や処理する基板の大きさによって温度や保持時間な
どの処理条件が非常に変わるので、上記の値を参考に実
験で確認することが必要となる。
It is preferable that the desolvation step and the calcination step be performed continuously, and after holding at a temperature of about 500 ° C. for a certain period of time,
It is desirable to perform the heating in the firing furnace 20 having a temperature distribution such that the temperature is increased from the temperature to 1200 degrees. Further, it is also possible to combine the atmosphere and the temperature rising pattern, for example, in a nitrogen atmosphere during the solvent removal step of maintaining the temperature at about 500 degrees, and in a reducing atmosphere in the high-temperature baking step. However, in the desolvation step and baking step, processing conditions such as temperature and holding time vary greatly depending on the baking furnace used and the size of the substrate to be processed, so it is necessary to confirm experimentally with reference to the above values Becomes

【0033】以上の工程は、基板1の片面に金属短繊維
2を剣山状に所定の角度で互いに実質的に平行に林立さ
せた金属疑似多孔体を製造する方法であるが、上述の硬
化工程の終了後、基板1の裏側にも同じ工程を施すこと
で基板1の両面に金属短繊維2を剣山状に所定の角度で
互いに実質的に平行に林立させることも可能である。具
体的には、(1)接着層形成工程、(2)林立工程、
(3)硬化工程、そして基板1を裏返して(4)接着層
形成工程、(5)林立工程、(6)硬化工程、及び
(7)焼成工程、という工程を経ることによって基板1
の両面に金属短繊維2を剣山状に配向して林立させた金
属疑似多孔体を得ることができる。
The above process is a method for producing a metal pseudo-porous body in which short metal fibers 2 are erected substantially parallel to each other at a predetermined angle on a single surface of a substrate 1 at a predetermined angle. After the completion of the above, by performing the same process on the back side of the substrate 1, it is also possible to form the short metal fibers 2 on both sides of the substrate 1 in a sword-shaped manner substantially parallel to each other at a predetermined angle. Specifically, (1) an adhesive layer forming step, (2) a forestry step,
(3) curing step, and turning the substrate 1 upside down, (4) adhesive layer forming step, (5) forestry step, (6) curing step, and (7) baking step
Thus, a pseudo metal porous body can be obtained in which the short metal fibers 2 are oriented in a sword mountain shape on both surfaces to form a forest.

【0034】《実施例2》以下、本発明に係る実施例2
の電池用電極板の製造方法について図5ないし図7を参
照しつつ説明する。図5は、実施例2の電池用電極板の
製造方法における活物質充填工程を示す図である。図6
は、活物質充填工程における活物質充填量と金属短繊維
の高さとの関係を説明する断面図である。図7は、実施
例2の電池用電極板の製造方法における加圧工程を示す
断面図である。実施例1で得た金属疑似多孔体に活物質
を塗布充填する活物質充填工程と、それを加圧する加圧
工程を経ることで電池用電極板が製造できる。図5に示
すように、活物質充填工程は、金属疑似多孔体32に活
物質31を充填する工程である。活物質31は活物質塗
布部30のスリットに外部から図示しないポンプ等で供
給され、基板1に対して金属短繊維2を互いに実質的に
平行に傾斜して林立させた金属疑似多孔体32に金属短
繊維2の傾斜した方向に沿って塗り込められるようにし
て充填される。具体的には、活物質塗布部30の活物質
の吐出方向を金属短繊維の傾斜方向に平行にして充填す
る。ここで、活物質塗布部30を、金属疑似多孔体32
の金属短繊維2の傾斜している方向33(すなわち、金
属短繊維2の根元から先端部への方向が基板1面に投影
される方向)へ走行させ、スリットから活物質31を吐
出させ、金属疑似多孔体32に充填する。このような方
向に塗布することによって、金属短繊維2には余分な外
力が加わらず、金属短繊維2が基板1から脱離すること
が防止される。
Embodiment 2 Hereinafter, Embodiment 2 according to the present invention will be described.
The method of manufacturing the battery electrode plate will be described with reference to FIGS. FIG. 5 is a diagram illustrating an active material filling step in the method for manufacturing a battery electrode plate of Example 2. FIG.
FIG. 3 is a cross-sectional view illustrating a relationship between an active material filling amount and a height of short metal fibers in an active material filling step. FIG. 7 is a cross-sectional view illustrating a pressing step in the method for manufacturing a battery electrode plate of Example 2. An electrode plate for a battery can be manufactured through an active material filling step of applying and filling an active material to the pseudo metal porous body obtained in Example 1, and a pressurizing step of pressing the active material. As shown in FIG. 5, the active material filling step is a step of filling the pseudo metal porous body 32 with the active material 31. The active material 31 is supplied to the slit of the active material application unit 30 from the outside by a pump or the like (not shown), and the metal pseudo-porous body 32 in which the short metal fibers 2 are inclined substantially in parallel to the substrate 1 so as to stand. Filling is performed so that the metal short fibers 2 can be applied along the inclined direction. Specifically, the active material is filled in such a manner that the discharge direction of the active material from the active material application section 30 is parallel to the inclination direction of the short metal fibers. Here, the active material application section 30 is replaced with a metal pseudo porous body 32.
In the direction 33 in which the short metal fibers 2 are inclined (that is, the direction in which the direction from the base to the tip of the short metal fibers 2 is projected on the surface of the substrate 1), and the active material 31 is discharged from the slits. The metal pseudo porous body 32 is filled. By applying in such a direction, no extra external force is applied to the short metal fibers 2 and the short metal fibers 2 are prevented from detaching from the substrate 1.

【0035】また、上記に示した活物質の塗布方法のほ
か、グラビア版を用いて金属疑似多孔体32の表面に活
物質31を塗布する方法も可能である。その際にも基板
1の表面に互いに実質的に平行に林立させた金属短繊維
2の傾斜している方向に塗布する。図6に示すように、
上述のように活物質が充填された金属疑似多孔体32に
おいて、金属短繊維2の基板1からの高さAは活物質3
1の塗布厚Bより大きいことが必要である。これによ
り、塗布した活物質31の厚さ方向全域に渡って、金属
短繊維2が存在することとなり、活物質31に対する金
属短繊維2の接触面積を十分に確保でき、大電流におけ
る放電特性が向上する。
In addition to the method of applying the active material described above, a method of applying the active material 31 to the surface of the metal pseudo-porous body 32 using a gravure plate is also possible. Also at this time, the coating is performed in the inclined direction of the short metal fibers 2 erected substantially parallel to each other on the surface of the substrate 1. As shown in FIG.
In the metal pseudo-porous body 32 filled with the active material as described above, the height A of the short metal fibers 2 from the substrate 1 is equal to the active material 3.
It is necessary to be larger than the coating thickness B of 1. As a result, the short metal fibers 2 are present over the entire area in the thickness direction of the applied active material 31, and the contact area of the short metal fibers 2 with the active material 31 can be sufficiently ensured, and the discharge characteristics at a large current can be improved. improves.

【0036】図7に示すように、加圧工程は、活物質3
1を充填した金属疑似多孔体32に圧力をかけ、活物質
31の充填度をより高めるために行う。この工程は、活
物質31を充填した金属疑似多孔体32を、少なくとも
表面を樹脂等で被覆した一対のロール40、40で挟み
込み圧力をかけながら通過させて行う。この際も、前述
した活物質充填工程と同様に、金属疑似多孔体32の基
板1上の金属短繊維2が傾斜している方向に倒れるよう
な回転方向41にロール40を回転させる。このように
することによって、加圧工程後の金属疑似多孔体32の
表面に突起がなくなり、電池用電極板として使用した
際、セパレータを傷つけることが防止される。
As shown in FIG. 7, the pressurizing step is performed using the active material 3
Pressure is applied to the metal pseudo-porous body 32 filled with 1 to increase the degree of filling of the active material 31. In this step, the metal pseudo-porous body 32 filled with the active material 31 is sandwiched between a pair of rolls 40, at least the surfaces of which are covered with a resin or the like, and passed while applying pressure. At this time, similarly to the above-described active material filling step, the roll 40 is rotated in the rotation direction 41 such that the short metal fibers 2 on the substrate 1 of the pseudo metal porous body 32 fall in the inclined direction. By doing so, there is no protrusion on the surface of the metal pseudo-porous body 32 after the pressing step, and when used as a battery electrode plate, it is possible to prevent the separator from being damaged.

【0037】《実施例3》以下、本発明係る金属疑似多
孔体を電池用電極板として用いた実施例3の電池につい
て説明する。金属粉としてカーボニル法によって作成し
た平均粒径3μmのニッケル粉を用い、結合媒体として
の樹脂はブチラール樹脂(積水化学工業(株)製:BL
ー1)を用いた。金属粉を75重量%とブチラール樹脂
を20重量%とを混合し、さらに可塑剤としてDBPを
5重量%加え十分に混練して粘土状の混練物を作成し
た。次いで押し出し機により、この混練物をペレット状
に成形した。得られたペレットはペレットの容器である
バレルの温度をブチラール樹脂の溶融温度(約200
℃)に調整した押し出し機に供給し、紡糸ノズルから吐
出させた。吐出した金属の繊維はそのまま冷却して引き
取るのではなく、引き落とし倍率(巻き取り倍率)20
倍で巻き取った。このときの巻き取り速度は約70m/
分であった。得られた金属の長繊維を長さ2mmに切り
そろえ、金属短繊維を得た。この金属短繊維の直径は平
均150μmであった。
Embodiment 3 Hereinafter, a battery according to Embodiment 3 using the metal pseudo-porous body according to the present invention as a battery electrode plate will be described. Nickel powder having an average particle size of 3 μm prepared by the carbonyl method was used as the metal powder, and the resin as the binding medium was butyral resin (BL made by Sekisui Chemical Co., Ltd .: BL
-1) was used. 75% by weight of metal powder and 20% by weight of butyral resin were mixed, and 5% by weight of DBP was added as a plasticizer, and the mixture was sufficiently kneaded to prepare a clay-like kneaded material. Then, the kneaded product was formed into a pellet by an extruder. The obtained pellets were heated to the melting temperature of butyral resin (about 200
° C), and the mixture was discharged from a spinning nozzle. The discharged metal fiber is not cooled and taken off as it is, but a draw-down magnification (winding magnification) 20
Wound in double. The winding speed at this time is about 70 m /
Minutes. The obtained metal long fibers were cut into a length of 2 mm to obtain short metal fibers. The average diameter of the short metal fibers was 150 μm.

【0038】この金属短繊維を用い、前述の実施例1で
説明した製造方法によって、実施例2の金属疑似多孔体
を作成した。このとき、基板には厚さ0.6mmのニッ
ケル板を用い、目付量を軽くするために穿孔処理を行っ
た。穿孔した孔の大きさは平均直径1mmである。この
基板上に金属短繊維との接着層として0.7mmの接着
層をスプレーによって形成した。金属短繊維間の平均距
離が約0.9mm程度になるように落下させた。基板の
走行速度はおよそ1cm/秒で、作用させた磁界の方向
は基板に対しておよそ50度であった。作用させた磁界
の強さは約500エルステッドであり、基板に対する金
属短繊維の傾斜角度はおよそ50度であった。基板の走
行速度が非常に遅いので、作用させた磁界の方向の基板
に対する傾斜角度と出来上がった基板と金属短繊維との
なす角度はほとんど同じとなった。
Using this short metal fiber, a pseudo-porous metal body of Example 2 was prepared by the production method described in the above-mentioned Example 1. At this time, a nickel plate having a thickness of 0.6 mm was used for the substrate, and a perforation process was performed to reduce the weight per unit area. The size of the perforated hole is 1 mm in average diameter. An adhesive layer having a thickness of 0.7 mm was formed on the substrate by spraying as an adhesive layer with short metal fibers. The metal short fibers were dropped so that the average distance between them was about 0.9 mm. The traveling speed of the substrate was approximately 1 cm / sec, and the direction of the applied magnetic field was approximately 50 degrees with respect to the substrate. The strength of the applied magnetic field was about 500 Oe, and the inclination angle of the short metal fiber with respect to the substrate was about 50 degrees. Since the traveling speed of the substrate was very slow, the inclination angle of the direction of the applied magnetic field with respect to the substrate was almost the same as the angle formed between the completed substrate and the short metal fibers.

【0039】このようにして作成した金属短繊維を林立
させた基板を磁界を作用させた状態で乾燥固定した。そ
の後、窒素雰囲気中400℃で脱媒処理を行って結合媒
体である樹脂を除去し、還元雰囲気中1000℃で焼成
処理を行った。脱媒処理の時間はおよそ30分、焼成処
理の温度1000℃での炉の保持時間は3分であった。
焼成処理後は還元雰囲気のまま自然冷却を行った。
The substrate on which the short metal fibers thus formed were erected was dried and fixed while a magnetic field was applied. After that, the resin serving as a binding medium was removed by removing the solvent at 400 ° C. in a nitrogen atmosphere, and then subjected to a baking treatment at 1000 ° C. in a reducing atmosphere. The time of the deaeration treatment was about 30 minutes, and the holding time of the furnace at the temperature of 1000 ° C. for the baking treatment was 3 minutes.
After the firing treatment, natural cooling was performed in a reducing atmosphere.

【0040】次に金属疑似多孔体に充填した活物質につ
いて述べる。市販の水酸化ニッケル粉末92部、酸化コ
バルト(CoO)粉末8部を混合した後、これをカルボ
キシルメチルセルロースの2重量%水溶液を用いて活物
質のペーストを作成した。このペーストを金属疑似多孔
体に充填塗着し、90℃で乾燥して電池用電極板を得
た。得られた電池用電極板は、加圧処理して0.9mm
厚に調整した。このようにして得られた電極板をフッ素
樹脂ディスパージョンの2重量%水溶液に浸漬し、幅4
2mmに裁断して正極板とした。一方、負極板としては
以下の工程で作成した水素吸蔵合金を用いた。この負極
の材料としては、MmNi5系合金の一つであるMmN
3.55Mn0.4Al0.3Co0.75を粉砕して得た粒径50
μm以下の合金粉末を80℃、30%KOHアルカリ溶
液に1時間浸漬し、アルカリ可溶分を取り除いて活性化
処理を施した。この活性化処理を施した合金粉末に1.
5重量%CMC水溶液を加えてペーストとし、厚さ1m
mの発泡状ニッケル板に充填し加圧して負極の電極板を
作成した。その後、フッ素樹脂ディスパージョンの5重
量%水溶液に浸漬し、幅42mmに裁断して厚さ0.5
mmに調整して負極板とした。
Next, the active material filled in the pseudo metal porous body will be described. After mixing 92 parts of commercially available nickel hydroxide powder and 8 parts of cobalt oxide (CoO) powder, the mixture was mixed with a 2% by weight aqueous solution of carboxymethyl cellulose to prepare a paste of an active material. The paste was filled and coated on a pseudo-porous metal material and dried at 90 ° C. to obtain a battery electrode plate. The obtained battery electrode plate was subjected to a pressure treatment to 0.9 mm.
The thickness was adjusted. The electrode plate thus obtained was immersed in a 2% by weight aqueous solution of a fluororesin dispersion, and the width was 4 mm.
It was cut into 2 mm to obtain a positive electrode plate. On the other hand, as the negative electrode plate, a hydrogen storage alloy prepared in the following steps was used. As a material of the negative electrode, MmN5 which is one of MmNi 5 series alloys is used.
Particle size 50 obtained by grinding i 3.55 Mn 0.4 Al 0.3 Co 0.75
An alloy powder having a diameter of not more than μm was immersed in a 30% KOH alkaline solution at 80 ° C. for 1 hour to remove an alkali-soluble component and to perform an activation treatment. The activated alloy powder was treated with 1.
Add 5% by weight CMC aqueous solution to make paste, thickness 1m
m, and pressed to form a negative electrode plate. Then, it is immersed in a 5% by weight aqueous solution of a fluororesin dispersion, cut into a width of 42 mm, and has a thickness of 0.5 mm.
mm to obtain a negative electrode plate.

【0041】この負極板と正極板とを浸水処理したポリ
プロピレン不織布セパレータを介在して巻き回し、F−
SCサイズの電池ケースに収納、比重1.30のKOH
水溶液に30g/lの水酸化リチウムを溶解した電解液
を注入し、ケースを密閉してニッケル水素蓄電池とし
た。
The negative electrode plate and the positive electrode plate are wound with a polypropylene nonwoven fabric separator which has been subjected to a water immersion treatment, and
Stored in SC size battery case, KOH with specific gravity 1.30
An electrolytic solution in which 30 g / l of lithium hydroxide was dissolved was poured into the aqueous solution, and the case was sealed to obtain a nickel-metal hydride battery.

【0042】以上のようにして本発明の金属疑似多孔体
を用いた実施例3の電池を50個作成した。また、本発
明の効果を確認するために、基板上に林立させる金属短
繊維を基板上に垂直に配向した従来例の金属多孔体を用
いた電池50個を同様に作成し、比較例1とした。これ
ら実施例3の電池と比較例1の電池についてショート試
験を実施した結果を表1に示す。
As described above, 50 batteries of Example 3 using the pseudo-porous metal body of the present invention were produced. In addition, in order to confirm the effect of the present invention, 50 batteries using a metal porous body of a conventional example in which short metal fibers to be grown on a substrate were vertically oriented on the substrate were similarly prepared. did. Table 1 shows the results of the short test performed on the battery of Example 3 and the battery of Comparative Example 1.

【0043】[0043]

【表1】 [Table 1]

【0044】表1に示すように、比較例1の従来の金属
多孔体を用いた電池がショート不良が6%(3/50)
発生したのに対し、本発明の金属疑似多孔体を用いた電
池はショート不良が0%であり、セパレータを傷つけに
くいことが分かる。
As shown in Table 1, the short-circuit failure of the battery using the conventional porous metal body of Comparative Example 1 was 6% (3/50).
On the other hand, the battery using the metal pseudo-porous body of the present invention had 0% short-circuit failure, indicating that the separator was not easily damaged.

【0045】次に、本発明に係る実施例3における金属
短繊維の長さに関する効果を確認するために試作した比
較例2の電池について説明する。この比較例2の電池の
正極板には、長さが、0.7mmの金属短繊維を準備
し、実施例3の電池と同様に、基板との角度50度で、
同様の密度になるように作成した金属疑似多孔体を用い
た。この金属疑似多孔体に塗布後の厚みが約1mmとな
るように活物質を塗布し、乾燥後加圧処理を行い、厚さ
0.9mmの正極板を作成した。この正極板と実施例3
に使用した負極板を使用して実施例3と同様にニッケル
水素蓄電池を作成し比較例2の電池とした。実施例3の
電池と比較例2の電池について、290mA(0.1C
mAに相当)で15時間充電し、1時間放置後、放電特
性を調べた。放電初期の電圧はおよそ1.2Vで1.0V
になるまでの時間で放電量を決めた。この比較例2の電
池と実施例3の電池の放電特性を比較した結果を表2に
示す。
Next, a description will be given of a battery of Comparative Example 2 which was experimentally manufactured in order to confirm the effect on the length of the short metal fiber in Example 3 according to the present invention. For the positive electrode plate of the battery of Comparative Example 2, a short metal fiber having a length of 0.7 mm was prepared, and, as in the battery of Example 3, at an angle of 50 degrees with the substrate,
A pseudo metal porous body prepared to have a similar density was used. An active material was applied to the metal pseudo-porous body so that the thickness after application was about 1 mm, and after drying, pressure treatment was performed to prepare a 0.9 mm thick positive electrode plate. This positive electrode plate and Example 3
A nickel-metal hydride storage battery was prepared in the same manner as in Example 3 using the negative electrode plate used in Example 3 to obtain a battery of Comparative Example 2. For the battery of Example 3 and the battery of Comparative Example 2, 290 mA (0.1 C
(equivalent to mA) for 15 hours, and left for 1 hour, and then examined for discharge characteristics. Initial discharge voltage is about 1.2V and 1.0V
The discharge amount was determined based on the time until the discharge time. Table 2 shows the results of comparing the discharge characteristics of the battery of Comparative Example 2 and the battery of Example 3.

【0046】[0046]

【表2】 [Table 2]

【0047】放電量の小さい場合には、比較例2の電池
と実施例3の電池とにほとんど違いは見られないもの
の、放電量の大きい場合では、実施例3の電池の放電特
性が優れているのがわかる。これは、活物質に対する接
触面積の違いによるものである。
When the amount of discharge is small, there is almost no difference between the battery of Comparative Example 2 and the battery of Example 3, but when the amount of discharge is large, the battery of Example 3 has excellent discharge characteristics. You can see that This is due to the difference in the contact area with the active material.

【0048】[0048]

【発明の効果】以上、実施例について詳細に説明したと
ころから明らかなように、本発明は次の効果を有する。
本発明の金属多孔質体は、基板上に金属短繊維が基板に
対して互いに実質的に平行に傾斜して林立しているた
め、傾斜の方向に沿って活物質を充填し、加圧して電池
用電極板を形成すると、活物質充填後の金属疑似多孔体
の表面に突起をなくすることができる。従って、本発明
の電池用電極板を用いて電池を製造すると、セパレータ
に対する傷付を防止し、極板間のショートをなくすると
いう効果を有する。また、金属短繊維の林立した高さを
活物質の塗布層の厚さより高くすることで、金属短繊維
と活物質との接触面積を拡大できるため、大電流におけ
る放電特性を劣化させないという効果を有する。
As is apparent from the detailed description of the embodiments, the present invention has the following effects.
The metal porous body of the present invention, since the metal short fibers are inclined and stand substantially parallel to each other with respect to the substrate on the substrate, filling the active material along the direction of the inclination, pressurizing. When the battery electrode plate is formed, it is possible to eliminate projections on the surface of the metal pseudo-porous body after filling the active material. Therefore, when a battery is manufactured using the battery electrode plate of the present invention, there is an effect that damage to the separator is prevented and a short circuit between the electrode plates is eliminated. In addition, by making the height of the short metal fibers higher than the thickness of the active material coating layer, the contact area between the short metal fibers and the active material can be increased, so that the effect of not deteriorating the discharge characteristics at a large current can be obtained. Have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施例1の金属疑似多孔体を示す
側面図である。
FIG. 1 is a side view showing a pseudo metal porous body of Example 1 according to the present invention.

【図2】本発明に係る実施例1の金属疑似多孔体に用い
る金属短繊維の製造工程の工程図である。
FIG. 2 is a process diagram of a manufacturing process of short metal fibers used for a pseudo-porous metal body of Example 1 according to the present invention.

【図3】本発明に係る実施例1の金属疑似多孔体に用い
る別の実施形態の複合紡糸を行った金属短繊維を示し、
(a)は金属短繊維の縦断面図であり、(b)は金属短
繊維の横断面図である。
FIG. 3 shows a short metal fiber obtained by performing composite spinning of another embodiment used for the pseudo-porous metal body of Example 1 according to the present invention;
(A) is a longitudinal sectional view of a short metal fiber, and (b) is a transverse sectional view of a short metal fiber.

【図4】本発明に係る実施例1の金属疑似多孔体の製造
工程を示す図である。
FIG. 4 is a view showing a process for manufacturing a pseudo-porous metal body of Example 1 according to the present invention.

【図5】本発明に係る実施例2の電池用電極の製造にお
ける活物質の充填塗布工程を示す図である。
FIG. 5 is a view showing a step of filling and applying an active material in the production of the battery electrode of Example 2 according to the present invention.

【図6】本発明に係る実施例2の電池用電極において金
属短繊維の長さと活物質厚の関係を示す断面図である。
FIG. 6 is a cross-sectional view showing the relationship between the length of a short metal fiber and the thickness of an active material in a battery electrode of Example 2 according to the present invention.

【図7】本発明に係る実施例2の電池用電極の製造にお
ける加圧工程を示す断面図である。
FIG. 7 is a cross-sectional view showing a pressurizing step in the manufacture of the battery electrode of Example 2 according to the present invention.

【図8】(a)は従来の金属疑似多孔体に活物質を充填
する工程を示す図であり、(b)は従来の金属疑似多孔
体に活物質を充填する際に金属短繊維が基板から離脱し
た状態を示す図である。
8A is a view showing a step of filling a conventional pseudo-porous metal body with an active material, and FIG. 8B is a view showing a step of filling a conventional pseudo-porous metal body with an active material by short metal fibers. It is a figure showing the state where it was separated from.

【図9】(a)は従来の活物質を充填した金属疑似多孔
体を加圧処理する工程を示す図であり、(b)は従来の
加圧工程の際互い違いに圧縮された金属短繊維を示す図
であり、(c)は従来の加圧工程の際表面に突出した金
属短繊維を示す図である。
FIG. 9 (a) is a view showing a step of subjecting a conventional pseudo-porous metal filled with an active material to a pressure treatment, and FIG. 9 (b) is a view showing metal short fibers alternately compressed during the conventional pressure step. (C) is a diagram showing metal short fibers protruding from the surface during a conventional pressing step.

【符号の説明】[Explanation of symbols]

1 基板 2 金属短繊維 4 芯部 5 鞘部 6 混練工程 7 ペレット成型工程 8 加熱溶融工程 9 紡糸工程 10 切断工程 DESCRIPTION OF SYMBOLS 1 Substrate 2 Metal short fiber 4 Core part 5 Sheath part 6 Kneading process 7 Pellet molding process 8 Heat melting process 9 Spinning process 10 Cutting process

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H014 AA04 BB01 BB05 CC04 EE05 HH06 5H016 AA05 BB01 BB05 BB09 CC07 EE01 HH13 5H017 AA02 AA03 AS01 AS10 BB04 BB06 BB08 CC00 DD01 EE01 EE09 HH03  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に短い繊維状の金属物質(当該金
属物質を以下の各請求項において金属短繊維と称す)の
繊維軸を前記基板に対して所定の角度で互いに実質的に
平行に傾斜して配向させて形成したことを特徴とする金
属疑似多孔体。
1. A fiber axis of a short fibrous metal material (hereinafter, referred to as a metal short fiber in each of the following claims) on a substrate substantially parallel to each other at a predetermined angle with respect to the substrate. A pseudo-porous metal body formed by being inclined and oriented.
【請求項2】 基板表面に接着層を形成する工程と、 前記接着層を形成した基板に磁界を作用させながら磁性
を有する金属短繊維を前記接着層を形成された基板の上
方から落下させ、前記金属短繊維の繊維軸を前記基板に
対して所定の方向に互いに実質的に平行に傾斜して林立
させる工程と、 前記金属短繊維が互いに実質的に平行に林立した基板に
磁界を作用させながら前記接着層を硬化させて、前記金
属短繊維を前記基板に対して互いに実質的に平行に傾斜
して林立した状態で固定する工程と、 前記金属短繊維が傾斜して林立した基板を焼結する工程
と、を有することを特徴とする金属疑似多孔体の製造方
法。
A step of forming an adhesive layer on the surface of the substrate, and dropping short metal fibers having magnetism from above the substrate on which the adhesive layer is formed while applying a magnetic field to the substrate on which the adhesive layer is formed; Causing the fiber axes of the short metal fibers to stand in a predetermined direction with respect to the substrate so as to be substantially parallel to each other; and applying a magnetic field to the substrate in which the short metal fibers stand substantially in parallel to each other. Curing the adhesive layer while fixing the short metal fibers to the substrate in a state where the short metal fibers are inclined and substantially parallel to each other in a forest. And a method of producing a pseudo-porous metal material.
【請求項3】 請求項1に記載の金属疑似多孔体に活物
質を充填して活物質層を形成した電池用電極板であっ
て、前記活物質層の厚さが前記金属疑似多孔体の金属短
繊維の基板からの高さより薄く形成され、前記活物質層
より突出した前記金属短繊維が傾斜した方向に折り曲げ
られて前記電池用電極板が所定の厚さに形成されている
ことを特徴とする電池用電極板。
3. An electrode plate for a battery in which an active material is filled in the pseudo metal porous body according to claim 1, wherein the active material layer has a thickness of the metal pseudo porous body. The metal electrode plate is formed to be thinner than the height of the metal short fiber from the substrate, the metal short fiber protruding from the active material layer is bent in an inclined direction, and the battery electrode plate is formed to a predetermined thickness. Battery electrode plate.
【請求項4】 請求項1に記載の金属疑似多孔体に、基
板に対して互いに実質的に平行に傾斜して林立している
金属短繊維の傾斜した方向に沿って活物質を塗り込み、
前記金属短繊維の高さより低い厚みの活物質層を形成す
る工程と、 前記金属短繊維の傾斜した方向に沿って圧縮処理を行
い、前記金属短繊維を前記活物質層の上に折り曲げて所
定の厚さの電池用電極板を形成する工程と、を有するこ
とを特徴とする電池用電極板の製造方法。
4. An active material is applied to the metal pseudo-porous body according to claim 1 along an inclined direction of the short metal fibers that stand in a direction substantially parallel to each other with respect to the substrate.
A step of forming an active material layer having a thickness lower than the height of the short metal fibers, performing a compression process along an inclined direction of the short metal fibers, bending the short metal fibers onto the active material layer, and Forming a battery electrode plate having a thickness of 3 mm.
【請求項5】 請求項3に記載の電池用電極板を少なく
とも正極に用いたことを特徴とする電池。
5. A battery using the battery electrode plate according to claim 3 at least for a positive electrode.
JP11067129A 1999-03-12 1999-03-12 Metal pseudo porous substance and its manufacture, electrode plate for battery using the same and manufacture of plates, and battery using electrode plates Pending JP2000268827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11067129A JP2000268827A (en) 1999-03-12 1999-03-12 Metal pseudo porous substance and its manufacture, electrode plate for battery using the same and manufacture of plates, and battery using electrode plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11067129A JP2000268827A (en) 1999-03-12 1999-03-12 Metal pseudo porous substance and its manufacture, electrode plate for battery using the same and manufacture of plates, and battery using electrode plates

Publications (1)

Publication Number Publication Date
JP2000268827A true JP2000268827A (en) 2000-09-29

Family

ID=13335993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11067129A Pending JP2000268827A (en) 1999-03-12 1999-03-12 Metal pseudo porous substance and its manufacture, electrode plate for battery using the same and manufacture of plates, and battery using electrode plates

Country Status (1)

Country Link
JP (1) JP2000268827A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260648A (en) * 2001-02-28 2002-09-13 Toshiba Battery Co Ltd Positive electrode for nickel.hydrogen secondary battery, manufacturing method of the same, and the nickel.hydrogen secondary battery with positive electrode incorporated therein
JP2009283452A (en) * 2008-04-23 2009-12-03 Nissan Motor Co Ltd Electrode for lithium ion secondary battery and battery using this
JP2009295331A (en) * 2008-06-03 2009-12-17 Sony Corp Anode collector, its forming method, anode, and secondary battery
KR101041932B1 (en) 2008-10-15 2011-06-16 한국과학기술연구원 Electrode for secondary battery and the fabrication method thereof, and secondary battery using the same
JP2011165665A (en) * 2010-02-05 2011-08-25 Robert Bosch Gmbh Manufacturing method of cathode structure for li battery which has aligned structure of cycle resistance
EP2673824A1 (en) * 2011-02-07 2013-12-18 Robert Bosch GmbH Structured arrester for battery cells
US10293153B2 (en) 2014-05-30 2019-05-21 University Of Utah Research Foundation Pseudoporous surface of implantable materials and methods of making the same
CN113035573A (en) * 2020-04-10 2021-06-25 东莞东阳光科研发有限公司 Electrode structure material, method for preparing electrode structure material and electrolytic capacitor
CN113186657A (en) * 2021-04-29 2021-07-30 西安建筑科技大学 Metal-wrapped short fiber cloth forming device and using method thereof
CN114614020A (en) * 2022-03-21 2022-06-10 合肥国轩高科动力能源有限公司 Preparation method of composite current collector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260648A (en) * 2001-02-28 2002-09-13 Toshiba Battery Co Ltd Positive electrode for nickel.hydrogen secondary battery, manufacturing method of the same, and the nickel.hydrogen secondary battery with positive electrode incorporated therein
JP2009283452A (en) * 2008-04-23 2009-12-03 Nissan Motor Co Ltd Electrode for lithium ion secondary battery and battery using this
JP2009295331A (en) * 2008-06-03 2009-12-17 Sony Corp Anode collector, its forming method, anode, and secondary battery
KR101041932B1 (en) 2008-10-15 2011-06-16 한국과학기술연구원 Electrode for secondary battery and the fabrication method thereof, and secondary battery using the same
JP2011165665A (en) * 2010-02-05 2011-08-25 Robert Bosch Gmbh Manufacturing method of cathode structure for li battery which has aligned structure of cycle resistance
EP2673824A1 (en) * 2011-02-07 2013-12-18 Robert Bosch GmbH Structured arrester for battery cells
JP2014508382A (en) * 2011-02-07 2014-04-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Patterned current collector for battery cells
US10293153B2 (en) 2014-05-30 2019-05-21 University Of Utah Research Foundation Pseudoporous surface of implantable materials and methods of making the same
CN113035573A (en) * 2020-04-10 2021-06-25 东莞东阳光科研发有限公司 Electrode structure material, method for preparing electrode structure material and electrolytic capacitor
CN113035573B (en) * 2020-04-10 2022-09-27 东莞东阳光科研发有限公司 Electrode structure material, method for preparing electrode structure material and electrolytic capacitor
CN113186657A (en) * 2021-04-29 2021-07-30 西安建筑科技大学 Metal-wrapped short fiber cloth forming device and using method thereof
CN114614020A (en) * 2022-03-21 2022-06-10 合肥国轩高科动力能源有限公司 Preparation method of composite current collector

Similar Documents

Publication Publication Date Title
EP2037516B1 (en) Lithium battery and method for fabricating anode thereof
KR101477782B1 (en) Electrode for lithum-sulphur secondary battery using composite of polymer nanofiber, aluminum thin film, carbon nanotube and sulphur, and fabricating method thereof
JP2008181879A (en) Three-dimensional battery
KR101103198B1 (en) A forming method of electrode active material layer of a secondary battery developing dispersibility of electroconductive particles
US20110059362A1 (en) Methods for forming foamed electrode structures
JP2007012572A (en) Nickel hydrogen battery
JP2000268827A (en) Metal pseudo porous substance and its manufacture, electrode plate for battery using the same and manufacture of plates, and battery using electrode plates
EP1056144B1 (en) Metallic porous body and method of manufacturing the same and battery current collector having the same
CN112640153A (en) Method of forming carbon-based active layer for anode of lead-carbon battery and active layer formed thereby
CN101728523B (en) Active material for cell and its manufacturing method
US3625765A (en) Production of battery electrode
KR20160051199A (en) Electrode-adhesive layer composite, method of producing the same, and secondary battery comprising the same
JPH11242958A (en) Nonsintered positive electrode for alkaline storage battery and alkaline storage battery using the same
CN1149696C (en) Alkaline battery using spongy metal substrate
CN1095208C (en) Method for producing alkaline battery and electrode thereof
EP3960921A1 (en) Non-woven fabric, method for producing non-woven fabric, solid electrolyte membrane, method for producing solid electrolyte membrane, all-solid-battery, and method for producing all-solid-state battery
US20190109324A1 (en) Reticulated electrode for lead-acid battery and fabrication method thereof
JPH10172539A (en) Electrode for storage battery and its manufacture
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JPH10134824A (en) Manufacture of metal porous body and battery using it
JP2024038797A (en) battery
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JPH05314988A (en) Sintered substrate for square alkaline storage battery and manufacture thereof
JPH10334893A (en) Manufacture of alkaline storage battery and its electrode
JPH11102698A (en) Alkaline storage battery and manufacture of electrode thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101