JPH0520872B2 - - Google Patents

Info

Publication number
JPH0520872B2
JPH0520872B2 JP60295423A JP29542385A JPH0520872B2 JP H0520872 B2 JPH0520872 B2 JP H0520872B2 JP 60295423 A JP60295423 A JP 60295423A JP 29542385 A JP29542385 A JP 29542385A JP H0520872 B2 JPH0520872 B2 JP H0520872B2
Authority
JP
Japan
Prior art keywords
powder
electrode plate
porous
anode
wood pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60295423A
Other languages
Japanese (ja)
Other versions
JPS62154576A (en
Inventor
Hirozo Matsumoto
Tsuneo Nakanishi
Junji Nakamura
Ikumasa Nishimura
Goro Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Toppan Printing Co Ltd
Priority to JP60295423A priority Critical patent/JPS62154576A/en
Publication of JPS62154576A publication Critical patent/JPS62154576A/en
Publication of JPH0520872B2 publication Critical patent/JPH0520872B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • H01M8/145Fuel cells with fused electrolytes characterised by the electrolyte material comprising carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する技術分野〕 この発明は、アノードおよびカソードからなる
一対のガス拡散性電極とこれら電極に挾持された
電解質タイル板とを有する溶融炭酸塩燃料電池の
製造方法に関する。 〔従来技術とその問題点〕 溶融炭酸塩燃料電池(以下の本文ではMCFC
という)は動作温度が高く、腐食性の大きい溶融
炭酸塩を電解質として使用しているため、電池構
成部材の一つである電極にも種々の要求性能が課
せられている。MCFCの電極、とくに本発明に
関係するアノード電極に対する要求特性は以下の
ようになる。 (1) ガス雰囲気に対し安定であること。 (2) 耐熱性とくにクリープ強度が高いこと。 (3) 急激な電解質流入がなく、ガスと反応できる
こと。 (4) 電気伝導性が高いこと。 (5) 安価であること。 従来、MCFCのアノード電極には多孔質のNi
電極板が広く使用されている。これはNiが耐食
性と導電性をバランスよく具備し、かつ良質の粉
末が入手しやすく、多孔質電極の製造も比較的容
易なためである。 多孔質Ni電極板の製造方法としては、従来下
記の方法が知られている。 (1) テープキヤステイング法 (2) Niメツシユ上にNi粉末のスラリーを塗布し
て焼付ける方法 (3) 海綿状NiにNi粉末スラリーを塗布して焼結
する方法 (4) 黒鉛もしくはアルミナ容器にNi粉末を充填
し、これをそのまま焼結する方法。 (1)のテープキヤステイング法は均一な厚さをも
つた電気化学的に活性の高いNi電極板を得るこ
とができるが、工程が繁雑で経済性に劣ること、
さらに原料粉末に適した可塑剤、分散剤または溶
剤などの種類や組成の選定が難かしく、また製造
工程上の管理が困難であるという欠点を有してい
る。(2)もしくは(3)のNiメツシユや海綿状NiにNi
粉末のスラリーを塗布して焼付ける方法は(1)のテ
ープキヤステイング法より簡便で経済性も高いが
Ni粉末スラリーを均一に塗布することが難しい
ために、得られるNi電極板の表面性状と厚さの
均一性に問題を残すほか、NiメツシユまたはNi
海綿体を支持体として用いているので、電極板と
しての比表面積が小さく電気化学的に活性度の低
下しやすいことが欠点である。(4)の容器に粉末を
充填し、そのままの状態で加圧することなく焼結
する方法は従来知られている中では最も簡便で経
済的な方法であるが、この方法では得られる電極
板の厚さと空孔率を合理的に制御することは極め
て困難であるばかりでなく、それは電極板の大型
化に伴い、より一層顕著になるという欠点を有し
ている。 一方、MCFCのアノード電極として望ましい
細孔容積(空孔率)、平均空孔径、空孔径分布な
どは実験的に決定されるが、これらは主に電解質
タイル板の多孔度および電池の動作条件に依存す
る。良好な電池特性を得るためには、反応を行な
うのに十分なだけの電解質が電解質タイル板から
流入し、かつ反応ガスの電極内の迅速な拡散を妨
げるほどには電解質が流入しないような空孔率、
空孔径などをもつことが電極には要求される。一
般的に言えば前記要件を満たすための多孔質電極
板の空孔率は60〜80%、平均空孔径は1〜10μm
(望ましきは4〜7μm)とされ、前述した製造方
法ではこれら要求をほぼ満足できる多孔質Ni電
極板の製造が可能である。しかし、Ni粉末を原
料とした多孔質Ni電極板はクリープ強度が小さ
いため、電池の運転下において焼結が経時的に進
行して、空孔率および表面積などが減少して
MCFCの電池性能を低下させるという欠点をも
つている。 〔発明の目的〕 本発明の目的は、耐焼結性に富みかつ電極板大
型化の容易な製造方法で得た多孔質Ni電極板を
アノード電極に用いることで、寿命特性の優れた
MCFCを提供することにある。 〔発明の要点〕 この目的は本発明によれば、Niに固溶し、そ
の金属酸化物が易還元性である合金元素を含んだ
Ni合金粉末と木材パルプを水中で混合して抄造
に適する水性スラリーとなし、凝集剤を添加して
粉末をパルプに吸着凝集し抄造することで得た板
状の成形物を、酸化性雰囲気で加熱して木材パル
プを焼失飛散させた後、これを還元性雰囲気で加
熱して前記の加熱処理で生じた金属酸化物の還元
と粉末の焼結を行うことにより製造した多孔質電
極板をアノード電極に用いることにより達成され
る。 金属など固体の硬化および強化の機構として
は、歪み硬化、析出硬化、分散硬化、変態硬化、
固溶硬化および拡散硬化などの方法が考えられて
いる。本発明では、多孔質Ni電極板のクリープ
強度を向上する方法として、固溶強化の考え方を
採用することにした。この固溶強化とは、主成分
に他の元素を固溶させ固体内の転位の運動を妨げ
ることにより硬化もしくは強化するものである。 また、本発明の方法では後述するごとく、抄造
で得た成形物を大気中もしくは酸化性雰囲気中に
て500℃前後に加熱する工程がある。この工程で、
成形物を形成している粉末は必然的に酸化され
る。この際、生じた金属酸化物は650°〜1000℃で
の還元雰囲気中の加熱処理によつて容易に還元さ
れるものでなければならない。 ところで、金属と酸素の反応で生成する金属酸
化物の安定性は通常遊離エネルギーによつて調べ
られており、その負の絶対値が大きいものほど安
定である。各種金属の遊離エネルギーを比較する
第1表のようになる。Ag、Auなどの貴金属では
その値が小さく、Al、Crなどの卑金属では大き
い。
TECHNICAL FIELD This invention relates to a method for manufacturing a molten carbonate fuel cell having a pair of gas diffusive electrodes consisting of an anode and a cathode and an electrolyte tile plate sandwiched between the electrodes. [Prior art and its problems] Molten carbonate fuel cells (MCFC in the following text)
Since these batteries have high operating temperatures and use highly corrosive molten carbonate as an electrolyte, various performance requirements are imposed on the electrodes, which are one of the battery components. The characteristics required for the MCFC electrode, particularly the anode electrode related to the present invention, are as follows. (1) Stable in gas atmosphere. (2) High heat resistance, especially creep strength. (3) Ability to react with gas without sudden electrolyte inflow. (4) High electrical conductivity. (5) It must be inexpensive. Conventionally, porous Ni was used as an anode electrode for MCFC.
Electrode plates are widely used. This is because Ni has a good balance of corrosion resistance and conductivity, and high-quality powder is easily available, and porous electrodes are relatively easy to manufacture. The following methods are conventionally known as methods for manufacturing porous Ni electrode plates. (1) Tape casting method (2) Method of applying Ni powder slurry on Ni mesh and baking it (3) Method of applying Ni powder slurry on spongy Ni and sintering it (4) Graphite or alumina container A method is to fill Ni powder into the container and sinter it as is. The tape casting method (1) can produce electrochemically highly active Ni electrode plates with uniform thickness, but the process is complicated and is less economical.
Furthermore, it is difficult to select the type and composition of a plasticizer, dispersant, or solvent suitable for the raw material powder, and it is also difficult to control the manufacturing process. (2) or (3) Ni mesh or spongy Ni
The method of coating and baking a powder slurry is simpler and more economical than the tape casting method in (1).
Because it is difficult to uniformly apply Ni powder slurry, there are problems with the surface quality and uniformity of the thickness of the resulting Ni electrode plate.
Since the corpus cavernosum is used as a support, the disadvantage is that the specific surface area of the electrode plate is small and the electrochemical activity tends to decrease. Method (4) of filling a container with powder and sintering it in that state without applying pressure is the simplest and most economical method known to date. Not only is it extremely difficult to rationally control the thickness and porosity, but it also has the disadvantage of becoming more noticeable as the electrode plate becomes larger. On the other hand, the pore volume (porosity), average pore diameter, pore size distribution, etc. that are desirable for the anode electrode of MCFC are determined experimentally, but these mainly depend on the porosity of the electrolyte tile plate and the operating conditions of the battery. Dependent. In order to obtain good cell performance, the air space must be such that enough electrolyte flows through the electrolyte tiles to carry out the reaction, but not so much that it prevents the rapid diffusion of the reactant gases within the electrode. porosity,
Electrodes are required to have pore diameters, etc. Generally speaking, the porosity of a porous electrode plate to meet the above requirements is 60 to 80%, and the average pore diameter is 1 to 10 μm.
(preferably 4 to 7 μm), and the manufacturing method described above can produce a porous Ni electrode plate that substantially satisfies these requirements. However, porous Ni electrode plates made from Ni powder have low creep strength, so sintering progresses over time during battery operation, reducing porosity and surface area.
It has the disadvantage of reducing the battery performance of MCFC. [Objective of the Invention] The object of the present invention is to use a porous Ni electrode plate, which is highly sintering resistant and obtained by a manufacturing method that allows for easy enlargement of the electrode plate, as an anode electrode, thereby providing an anode with excellent life characteristics.
Our goal is to provide MCFC. [Summary of the Invention] According to the present invention, this purpose is to form an alloy containing an alloying element which is dissolved in Ni and whose metal oxide is easily reducible.
Ni alloy powder and wood pulp are mixed in water to form an aqueous slurry suitable for papermaking, and a flocculant is added to adsorb and agglomerate the powder onto the pulp to form a plate-shaped product. After heating the wood pulp to burn it out and scatter it, the wood pulp is heated in a reducing atmosphere to reduce the metal oxides produced in the heat treatment and sinter the powder. A porous electrode plate is used as an anode. This is achieved by using it as an electrode. Mechanisms of hardening and strengthening of solids such as metals include strain hardening, precipitation hardening, dispersion hardening, transformation hardening,
Methods such as solid solution hardening and diffusion hardening have been considered. In the present invention, we have decided to adopt the concept of solid solution strengthening as a method of improving the creep strength of a porous Ni electrode plate. This solid solution strengthening is hardening or strengthening by dissolving other elements in the main component and hindering the movement of dislocations within the solid. Furthermore, as described below, the method of the present invention includes a step of heating the molded product obtained by papermaking to around 500° C. in the air or an oxidizing atmosphere. In this process,
The powder forming the molding is necessarily oxidized. At this time, the metal oxide produced must be easily reduced by heat treatment in a reducing atmosphere at 650° to 1000°C. By the way, the stability of metal oxides produced by the reaction of metal and oxygen is usually investigated by free energy, and the greater the negative absolute value, the more stable the metal oxide is. Table 1 compares the free energies of various metals. The value is small for noble metals such as Ag and Au, and large for base metals such as Al and Cr.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に基づき説明する。 実施例 1 この実施例では、多孔質電極板の製造方法につ
いて述べる。 (A) 試料の調整 Ni−8Co(平均粒径6.5μm、共還元法で製造)
45部 木材パルプ 5部 水 1000部 (B) 凝集剤 ポリアクリルアミド系アニオン凝集剤0.1%水溶
液 {三洋化成(株)製、商品名「サンフロツク
AH200P」} 30部 ポリアクリルアミド系カチオン凝集剤0.1%水溶
液 {三洋化成(株)製、商品名「サンフロツクC−
009P」} 20部 2程度の容器に水1000部と木材パルプ5部
を入れ、10〜20分ほど撹拌して水に十分分散さ
せて、そこへNi−8Co合金粉末45部を加えて5
〜10分ほど撹拌して水性スラリーを作る。その
中へあらかじめ作つておいたポリアクリルアミ
ド系アニオン凝集剤(0.1%水溶液)を30部添
加し、1分ほど撹拌し、さらにあらかじめ作つ
ておいたポリアクリルアミド系カチオン凝集剤
(0.1%水溶液)を20部添加し、1分ほど撹拌し
て凝集フロツクを作る。前記工程で凝集した試
料を抄造機で抄造して300mm角で厚み10mmの成
形物を得た。この成形物を電気炉に入れ、大気
中において常温より150℃/Hの速度で500℃ま
で加熱し、この温度で2時間保持して成形物に
含まれる木材パルプ、凝集剤を焼失飛散させた
後、室温まで冷却した。その後、前記処理を経
た成形物を水素炉に装入し、水素を流しながら
常温より300℃/Hの速度で600℃まで昇温し、
これ以降は150℃/Hの速度で800℃まで昇温さ
せ、800℃に1時間保持して多孔質のNi−8Co
合金電極板を得た。この電極板の厚さは0.88
mm、空孔率は72.0%、平均空孔半径は3.02μm
そして比表面積は0.203m2/gであつた。 以上のごとく、本発明の方法はアノード電極
に要求される空孔特性を満足し、大型電極板を
容易に得ることができる。なお、他の合金粉末
を原料としても、以上と同様の工程によつて多
孔質の電極板を製造できることは明白である。 実施例 2 この実施例では、実施例1の条件にて得た多孔
質のNi電極板(平均粒径4.7μmのカーボニルニ
ツケル粉末使用)およびNi合金電極板(共還元
法で製造した平均粒径が5〜8μmの粉末を使用)
のクリープ強度を検討した。クリープ強度は、温
度:650℃、雰囲気:真空、荷重:2.5Kg/cm2の圧
縮クリープ試験を行い、その時の圧縮クリープひ
ずみの大小によつて判断した。前記条件で200時
間試験した際の多孔質電極板の圧縮クリープひず
みを第1図に示す。多孔質Ni電極板のクリープ
ひずみは47%であるが、合金元素を固溶した多孔
質電極板のそれは5%以下であり、合金元素の固
溶によつてクリープ強度が顕著に増加することが
確認できた。 実施例 3 この実施例では、直径が35mmで厚さ0.9mm前後
の本発明に関する多孔質Ni合金電極板および比
較の多孔質Ni電極板をアノード電極に用いて
MCFCを構成し、その電池性能を調べた。
MCFCは、リチウムアルミネートを電解質保持
材として共晶組成電解質成分(47.5重量%炭酸リ
チウム−52.5重量%カリウム)を55重量%含有す
る50mm〓×2mm厚の電解質タイル板をアノードと
カソード間に配置し、燃料室および酸化剤室を備
え、かつ集電子を兼ねたハウジングで電極板と電
解質タイル板とを両面から押しつけた構造の単電
池を構成した。かかる構成の単電池に、燃料ガス
組成はH2+20%CO2、酸化剤ガス組成はAir+30
%CO2からなるガスを0.5/minの流量で供給
し、650℃で電流−電圧特性の関係を測定した。
結果を第2表に示す。
Hereinafter, the present invention will be explained based on examples. Example 1 This example describes a method for manufacturing a porous electrode plate. (A) Sample preparation Ni-8Co (average particle size 6.5 μm, manufactured by co-reduction method)
45 parts wood pulp 5 parts water 1000 parts (B) Flocculant 0.1% aqueous solution of polyacrylamide-based anionic flocculant {manufactured by Sanyo Chemical Co., Ltd., product name "Sunfloc"
AH200P''} 30 parts polyacrylamide-based cationic flocculant 0.1% aqueous solution {manufactured by Sanyo Chemical Co., Ltd., product name: ``Sunfloc C-''
009P''} 20 parts Put 1,000 parts of water and 5 parts of wood pulp in a 2-sized container, stir for about 10 to 20 minutes to fully disperse it in the water, and add 45 parts of Ni-8Co alloy powder to it.
Stir for ~10 minutes to create an aqueous slurry. Add 30 parts of the polyacrylamide-based anion flocculant (0.1% aqueous solution) prepared in advance into the mixture, stir for about 1 minute, and then add 20 parts of the pre-prepared polyacrylamide-based cationic flocculant (0.1% aqueous solution). Add 100% of the mixture and stir for about 1 minute to form a cohesive floc. The sample agglomerated in the above step was made into a paper using a paper making machine to obtain a molded product having a square size of 300 mm and a thickness of 10 mm. This molded product was placed in an electric furnace, heated from room temperature to 500°C at a rate of 150°C/H in the air, and held at this temperature for 2 hours to burn off and scatter the wood pulp and flocculant contained in the molded product. After that, it was cooled to room temperature. Thereafter, the molded product subjected to the above treatment is placed in a hydrogen furnace, and the temperature is raised from room temperature to 600°C at a rate of 300°C/H while flowing hydrogen.
After this, the temperature was raised to 800°C at a rate of 150°C/H and held at 800°C for 1 hour to form a porous Ni-8Co.
An alloy electrode plate was obtained. The thickness of this electrode plate is 0.88
mm, porosity is 72.0%, average pore radius is 3.02μm
The specific surface area was 0.203 m 2 /g. As described above, the method of the present invention satisfies the pore characteristics required for an anode electrode and can easily produce a large electrode plate. Note that it is clear that a porous electrode plate can be manufactured using other alloy powders as raw materials through the same process as described above. Example 2 In this example, a porous Ni electrode plate (using carbonyl nickel powder with an average particle size of 4.7 μm) obtained under the conditions of Example 1 and a Ni alloy electrode plate (using a carbonyl nickel powder with an average particle size of 4.7 μm produced by a co-reduction method) were used. (use powder with a diameter of 5 to 8 μm)
The creep strength of the steel was investigated. Creep strength was determined by performing a compression creep test at a temperature of 650° C., atmosphere: vacuum, and load: 2.5 Kg/cm 2 and based on the magnitude of the compression creep strain at that time. Figure 1 shows the compressive creep strain of the porous electrode plate when tested under the above conditions for 200 hours. The creep strain of a porous Ni electrode plate is 47%, but that of a porous electrode plate containing alloying elements as a solid solution is less than 5%, indicating that the creep strength increases significantly with the solid solution of alloying elements. It could be confirmed. Example 3 In this example, a porous Ni alloy electrode plate according to the present invention and a comparative porous Ni electrode plate having a diameter of 35 mm and a thickness of about 0.9 mm were used as an anode electrode.
We constructed an MCFC and investigated its battery performance.
In MCFC, a 50 mm × 2 mm thick electrolyte tile plate containing 55% by weight of eutectic composition electrolyte components (47.5% by weight lithium carbonate - 52.5% by weight potassium) is placed between the anode and cathode using lithium aluminate as an electrolyte holding material. A unit cell was constructed in which an electrode plate and an electrolyte tile plate were pressed against each other from both sides of a housing that was equipped with a fuel chamber and an oxidizer chamber, and also served as a current collector. In a cell with this configuration, the fuel gas composition is H 2 + 20% CO 2 and the oxidant gas composition is Air + 30%.
A gas consisting of % CO 2 was supplied at a flow rate of 0.5/min, and the relationship between current and voltage characteristics was measured at 650°C.
The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれ
ば、Niに固溶し、その金属酸化物が易還元性で
ある合金元素を含んだNi合金粉末と木材パルプ
を水中で混合して水性スラリーとし、これに凝集
剤を加えて粉末を吸着凝集せしめ、抄造によつて
板状の成形物を得、この成形物を酸化性雰囲気と
還元性雰囲気の二つの工程で加熱処理を行うこと
によつて製造した多孔質Ni合金電極板が耐焼結
性に優れていることに着目し、これをMCFCの
アノードに組み込むことにより、MCFCの長期
にわたる電池性能を維持することが可能となつ
た。
As is clear from the above description, according to the present invention, a Ni alloy powder containing an alloying element that is dissolved in Ni and whose metal oxide is easily reducible is mixed in water with wood pulp to form an aqueous slurry. A flocculant is added to this to adsorb and agglomerate the powder, a plate-shaped molded product is obtained by papermaking, and this molded product is heat-treated in two steps: in an oxidizing atmosphere and in a reducing atmosphere. Focusing on the excellent sintering resistance of the manufactured porous Ni alloy electrode plate, they incorporated it into the MCFC anode, making it possible to maintain the long-term battery performance of the MCFC.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種多孔質電極板の圧縮クリープ試験
の結果を示すグラフである。
FIG. 1 is a graph showing the results of compression creep tests on various porous electrode plates.

Claims (1)

【特許請求の範囲】 1 Niに固溶し、その金属酸化物が易還元性で
ある元素を含んだNi合金粉末と木材パルプを水
中で混合して抄造に適する水性スラリーとなし、
凝集剤を添加して粉末をパルプに吸着凝集し抄造
することで得た板状の成形物を、酸化性雰囲気で
加熱して木材パルプを焼失飛散させた後、還元雰
囲気で加熱して金属酸化物を還元するとともに粉
末を焼結してアノードを形成し、このアノードと
カソードとの間に電解質タイルを介在させて単位
電池を構成することを特徴とする溶融炭酸塩燃料
電池の製造方法。 2 特許請求の範囲第1項記載の元素はCu、Co、
Ag、Pd、Fe、Mo、Wより選ばれた少なくとも
1種の元素であることを特徴とする溶融炭酸塩燃
料電池の製造方法。
[Claims] 1. A Ni alloy powder containing an element that is dissolved in Ni and whose metal oxide is easily reducible is mixed in water with wood pulp to form an aqueous slurry suitable for papermaking,
A plate-shaped molded product obtained by adding a coagulant and adsorbing and aggregating the powder to the pulp and forming it into paper is heated in an oxidizing atmosphere to burn off the wood pulp and scatter, and then heated in a reducing atmosphere to oxidize the metal. 1. A method for manufacturing a molten carbonate fuel cell, which comprises reducing a substance and sintering a powder to form an anode, and interposing an electrolyte tile between the anode and the cathode to constitute a unit cell. 2 The elements described in claim 1 include Cu, Co,
A method for producing a molten carbonate fuel cell, comprising at least one element selected from Ag, Pd, Fe, Mo, and W.
JP60295423A 1985-12-27 1985-12-27 Manufacture of molten carbonate fuel cell Granted JPS62154576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60295423A JPS62154576A (en) 1985-12-27 1985-12-27 Manufacture of molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60295423A JPS62154576A (en) 1985-12-27 1985-12-27 Manufacture of molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS62154576A JPS62154576A (en) 1987-07-09
JPH0520872B2 true JPH0520872B2 (en) 1993-03-22

Family

ID=17820413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60295423A Granted JPS62154576A (en) 1985-12-27 1985-12-27 Manufacture of molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS62154576A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366855A (en) * 1986-09-05 1988-03-25 Kawasaki Heavy Ind Ltd Electrode for molten salt fuel cell
AT399424B (en) * 1992-07-10 1995-05-26 Miba Sintermetall Ag METHOD FOR PRODUCING A SINTER ELECTRODE FOR A GALVANIC ELEMENT
US6844102B2 (en) 2002-02-27 2005-01-18 Gencell Corporation Aqueous based electrolyte slurry for MCFC and method of use
DE102006047823A1 (en) * 2006-08-07 2008-02-14 Mtu Cfc Solutions Gmbh Electrode for a molten carbonate fuel cell and process for its preparation
JP5978601B2 (en) * 2011-03-23 2016-08-24 沖電気工業株式会社 Shutter device and automatic transaction device

Also Published As

Publication number Publication date
JPS62154576A (en) 1987-07-09

Similar Documents

Publication Publication Date Title
US4663250A (en) Reduction of electrode dissolution
EP1748509B1 (en) Fuel cell and gas diffusion electrode for fuel cell
US5312580A (en) Methods of manufacturing porous metal alloy fuel cell components
US4654195A (en) Method for fabricating molten carbonate ribbed anodes
US4999155A (en) Method for forming porous oxide dispersion strengthened carbonate fuel cell anodes with improved anode creep resistance
US5415833A (en) Method for forming molten carbonate fuel cell anodes
JPH0520872B2 (en)
JPH0869804A (en) Anode for fused carbonate fuel cell and its preparation
JP3705665B2 (en) Iron-chromium sintered alloy, method for producing the same, and fuel cell separator using the same
JPH01186561A (en) Fuel cell
US6585931B1 (en) Molten carbonate fuel cell anode and method for manufacturing the same
KR101952806B1 (en) Metal-supported solid oxide fuel cell and manufacturing method thereof
JPS58129781A (en) Fused salt type fuel cell
JPH0548581B2 (en)
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
JPH0520871B2 (en)
JPS58119161A (en) Manufacture of electrode for fused salt fuel battery
JPH0548580B2 (en)
US3405009A (en) Fuel cell and fuel cell electrode containing nickel-transition metal intermetallic catalyst
KR100467347B1 (en) Manufacture method of oxide dispersed fuel electrode and fuel electrode
JPS6288272A (en) Fused carbonate fuel cell
KR100331083B1 (en) An anode of molten carbonate fuel cell
JP3852177B2 (en) Method for treating cathode for molten carbonate fuel cell
JPH0520870B2 (en)
Hryniewicz et al. Porous sinters for elevated-temperature natural-gas fuel cells