JPH0520871B2 - - Google Patents

Info

Publication number
JPH0520871B2
JPH0520871B2 JP60295422A JP29542285A JPH0520871B2 JP H0520871 B2 JPH0520871 B2 JP H0520871B2 JP 60295422 A JP60295422 A JP 60295422A JP 29542285 A JP29542285 A JP 29542285A JP H0520871 B2 JPH0520871 B2 JP H0520871B2
Authority
JP
Japan
Prior art keywords
powder
electrode
wood pulp
molded product
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60295422A
Other languages
Japanese (ja)
Other versions
JPS62154575A (en
Inventor
Hirozo Matsumoto
Tsuneo Nakanishi
Junji Nakamura
Ikumasa Nishimura
Goro Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Toppan Printing Co Ltd
Priority to JP60295422A priority Critical patent/JPS62154575A/en
Publication of JPS62154575A publication Critical patent/JPS62154575A/en
Publication of JPH0520871B2 publication Critical patent/JPH0520871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する技術分野〕 この発明は、溶融炭酸塩を電解質として作動す
る燃料電池に係り、特にこの燃料電池に組み込ま
れる燃料極(アノード)の製造方法に関する。 〔従来技術とその問題点〕 溶融炭酸塩燃料電池(以下の本分ではMCFC
という)は動作温度が高く、腐食性の高い溶融炭
酸塩を使用しているため、燃料極(以下、アノー
ドという)と酸化極(以下、カソードという)に
用いる電極材料にも種々の要求性能が課せられて
いる。アノード電極に対する要求特性をまとめる
と以下のようになる。 (1) ガス雰囲気に対して安定であること。 (2) 耐熱性とくにクリーブ強度が高いこと。 (3) 急激な電解質流入がなく、ガスと反応できる
こと。 (4) 電気伝導性が高いこと。 (5) 安価であること。 従来、MCFCのアノードには多孔質のNi電極
板が広く使用されている。これはNiが耐食生と
導電性をバランスよく具備し、かつ良好の粉末が
入手しやすく、多孔質電極板の製造も比較的容易
なためである。 通常、多孔質Ni電極板は粒径が3〜7μmのカ
ーボニルニツケル粉末を用い、これを所望の寸
法、形状を有する黒鉛型などに充填し、還元性雰
囲気中で約650゜〜1000℃の温度範囲で焼結するこ
とによつて製造される。MCFCのアノード電極
として望しい細孔容積(空孔率)、平均空孔径ま
たは空孔径分布などは実験的に決定されるが、こ
れらは主に電解質板の多孔度および電池の動作条
件に依存する。良好な電池特性を得るためには、
反応を行うのに十分なだけの電解質が電解質板か
ら電極に流入し、かつ反応ガスの電極内の迅速な
拡散を妨げるほどには電解質が電極に流入しない
ような空孔率、空孔径などをもつことが電極には
要求される。一般的に言えば、前記条件を満たす
ための多孔質電極板の空孔率は60〜80%、平均空
孔径は1〜10μm(望ましきは4〜7μm)とさ
れ、多孔質Ni電極板はこれら要求をほぼ満足し
ている。しかし、多孔質Ni電極板はクリープ強
度が小さいため、電池の運転下において焼結が経
時的に進行して空孔率および表面積などが減少し
てMCFCの電池特能を低下させるという欠点を
もつている。 〔発明の目的〕 本発明の目的は、耐焼結性に富みかつ電極大型
化の容易なMCFC用アノード電極の製造方法を
提供することである。 〔発明の要点〕 この目的は本発明によれば、Ni粉末と木材パ
ルプを水中で混合して抄造に適する水性スラリー
とし、これに凝集剤を添加して粉末をパルプに吸
着凝集させ、抄造することで得た板状の成形物に
金属メツシユをプレス成型によつて圧着せしめた
後、酸化性雰囲気で加熱して木材パルプを焼失飛
散するし、続いて前記加熱で生じた金属酸化物の
還元と、Ni粉末の焼結を行うために高温の還元
性雰囲気で加熱することにより達成される。 〔発明の実施例〕 本発明で用いるNi粉末は一般に市販されてい
る電解粉やカーボニルニツケル粉末などのいずれ
でも良いが、電極としたときの電気化学的性質を
向上させるにはより微細な粉末(粒径1〜10μ
m)の方が好ましい。また、粉末を吸着凝集させ
るために用いるパルプには種々のものがあるが、
本発明では繊維径が細く、繊維同志の絡みも多く
かつ安価であるという観点から木材パルプを選定
した。この木材パルプの添加量は所望するアノー
ドの空孔率に応じて任意に選択可能であるが、本
発明で意図するアノードの製造に当つては焼結前
の成形物の全重量に対して3〜15%が好ましい範
囲であつた。 板状の成形物に圧着させ、かつ焼結後に電極の
補強材としての役割を発揮する金属メツシユの材
質は、強度、耐熱性および耐食性を兼備したニツ
ケル、ステンレス、カンタルなどが適しており、
メツシユ形状としては10〜80メツシユでその線径
が0.1〜0.3mm〓の範囲が本発明の目的に合致してい
た。 一方、板状の成形物に金属メツシユを圧着する
には、両者を積層した後にプレス機で徐々に圧を
上げる方法を用いる。圧力は50〜200Kg/cm2の範
囲で行なうと良い。この際、必要ならば、プレス
成型時にプレス機を加温する。例えば、60〜150
℃の温度範囲で徐々に温度を上昇させるとか、
30゜、60°、90゜、120℃という具合に段階的に温度
を上昇させても良好な結果が得られる。なお、プ
レス成型工程は金属メツシユを成形物に圧着させ
るとともに、抄造した成形物は水分が非常に多い
ので、それを脱水して表面性状をフラツトで均一
に保てる乾燥法としての効果も有している。 以上のプレス成型工程を経た後、金属メツシユ
付き成形物を電気炉に入れて酸化性雰囲気中で、
必要ならば空気を流しながら常温から100℃/H
前後の速度で加熱すると、400℃近辺から成形物
に含まれる木材パルプ、凝集剤は焼失気化を開始
し、これらはほぼ500℃で完全に焼失してしまう。
したがつて、酸化性雰囲気での加熱温度は450゜〜
600℃で、その保持時間は1〜3時間が好ましい
範囲であるが、最も望ましいのは500℃で1〜2
時間保持する条件である。これは温度が600℃前
後になると、粉末、メツシユの酸化物生成が多く
なつて、電極の導電性に悪影響をもたらす恐れが
あるためである。 木材パルプ、凝集剤を焼失、気化させた際に生
じた酸化物の還元、Ni粉末の焼結およびNi粉末
と金属メツシユの拡散結合を目的として実し施す
る還元性雰囲気中での加熱処理条件は次の通りで
ある。(1)温度:650゜〜1000℃(2)保持時間:0.5〜
3時間(3)雰囲気:水素、窒素、アルゴン、真空
(10-4torr以下)。 この加熱処理条件の範囲であるならば、本発明
で所望するアノード電極の空孔率、空孔径、空孔
径分布および比表面積などを任意に設定すること
が可能であつた。 実施例 1 この実施例では電極の製造方法について述べ
る。 (A) 試料の調整 カーボニルニツケル粉末(平均粒径4.7μm) 45部 木材パルプ 5部 水 1000部 (B) 凝集剤 ポリアクリルアミド系アニオン凝集剤 0.1%水溶液{三洋化成(株)製、商品名 「サンフロツクAH200P」} 30部 ポリアクリルアミド系カチオン凝集剤 0.1%水溶液{三洋化成(株)製、商品名 「サンフロツクC−009P」} 20部 2程度の容器に水1000部と木材パルプ5部を
入れ、10〜20分ほど撹拌して水に十分分散させ
て、そこへカーボニルニツケル粉末を45部を加え
て5〜10分ほど撹拌して水性スラリーを作る。そ
の中へあらかじめ作つておいたポリアクリルアミ
ド系アニオン凝集剤(0.1%水溶液)を30部添加
し、1分ほど撹拌し、さらにあらかじめ作つてお
いたポリアクリルアミド系カチオン凝集剤(0.1
%水溶液)を20部添加し、1分ほど撹拌して凝集
フロツクを作る。前記工程で凝集した試料を抄造
機で抄造して300mm角で厚み1.2mmの成形物を得
た。次に線径0.1mmで20メツシユのNiメツシユを
成形物に積層し、プレス機で85Kg/cm2の圧力にて
Niメツシユ成形物に圧着せしめた。これを電気
炉に装入し、大気中において常温より150℃/H
の速度で500℃まで加熱し、この温度で2時間保
持して成形物に含まれる木材パルプ、凝集剤を焼
失飛散させた後、室温まで冷却した。その後、水
素炉にて水素を流しながら常温より300℃/Hの
速度で600℃まで昇温し、これ以降は150℃/Hの
速度で800℃まで昇温させ、800℃で1時間保持す
ることでNiメツシユを補強材とした多孔質Ni電
極板を得た。本条件で得られた多孔質Ni電極板
の厚さは0.83mm、空孔率は67%、平均空孔半径は
5.5μmそして比表面積は0.15m2/gであつた。 実施例 2 この実施例では、実施例1で得た多孔質Ni電
極板のクリープ強度を検討した。クリープ強度
は、温度:650℃、雰囲気:真空、荷重:2.5Kg/
cm2の条件で圧縮クリープ試験を行い、その時の圧
縮クリープひずみの大小によつて判断した。 比較品としては、平均粒径4.7μmのカーボニル
ニツケル粉末を深さ1.0mmの黒鉛鋳型に充填し、
これを水素雰囲気中780℃×1Hの焼結を行つて製
造したNi電極板を用いた。この比較品の空孔率
は73.3%、平均空孔半径は6.1μmおよび比表面積
は0.18m2/gであつた。第1図に圧縮クリープ試
験で得られたクリープひずみと試験時間の関係を
示す。実線1で示す本発明品のクリープひずみは
1000時間でも5%前後であるのに対し、実線2の
比較品は短時間でも大きなクリープひずみを呈
し、1000時間では55%にもなつている。また、ク
リープ試験前と1000時間クリープ後の空孔率、平
均空孔半径および比表面積の変化は第1表のよう
になる。
[Technical Field to Which the Invention Pertains] The present invention relates to a fuel cell that operates using molten carbonate as an electrolyte, and particularly to a method for manufacturing a fuel electrode (anode) incorporated in this fuel cell. [Prior art and its problems] Molten carbonate fuel cells (MCFC in the following section)
(hereinafter referred to as "anode") has a high operating temperature and uses highly corrosive molten carbonate, so the electrode materials used for the fuel electrode (hereinafter referred to as anode) and oxidation electrode (hereinafter referred to as cathode) also have various performance requirements. It is imposed. The characteristics required for the anode electrode are summarized as follows. (1) Stable in gas atmosphere. (2) High heat resistance, especially high cleave strength. (3) Ability to react with gas without sudden electrolyte inflow. (4) High electrical conductivity. (5) It must be inexpensive. Conventionally, porous Ni electrode plates have been widely used for MCFC anodes. This is because Ni has a good balance of corrosion resistance and conductivity, and good powder is easily available, and porous electrode plates are relatively easy to manufacture. Normally, porous Ni electrode plates use carbonyl nickel powder with a particle size of 3 to 7 μm, which is filled into a graphite mold with the desired size and shape, and heated at a temperature of about 650° to 1000°C in a reducing atmosphere. Manufactured by sintering in a range. The desired pore volume (porosity), average pore diameter, or pore size distribution for the anode electrode of MCFC are determined experimentally, but these mainly depend on the porosity of the electrolyte plate and the operating conditions of the battery. . In order to obtain good battery characteristics,
The porosity, pore size, etc. should be such that enough electrolyte flows from the electrolyte plate into the electrode to carry out the reaction, but not so much that it prevents rapid diffusion of the reaction gas within the electrode. The electrode is required to have the following properties. Generally speaking, to satisfy the above conditions, the porosity of the porous electrode plate is 60 to 80%, the average pore diameter is 1 to 10 μm (preferably 4 to 7 μm), and the porous Ni electrode plate is almost satisfies these requirements. However, the creep strength of porous Ni electrode plates is low, so sintering progresses over time during battery operation, resulting in a decrease in porosity and surface area, which deteriorates MCFC battery performance. ing. [Object of the Invention] An object of the present invention is to provide a method for manufacturing an anode electrode for MCFC that has excellent sintering resistance and allows easy enlargement of the electrode. [Summary of the Invention] According to the present invention, this purpose is to mix Ni powder and wood pulp in water to form an aqueous slurry suitable for papermaking, add a coagulant to this, and make the powder adsorbed and aggregated by the pulp, thereby producing papermaking. After the metal mesh is pressed onto the plate-shaped molded product obtained by this process, it is heated in an oxidizing atmosphere to burn off and scatter the wood pulp, and then the metal oxide produced by the heating is reduced. This is accomplished by heating the Ni powder in a high-temperature reducing atmosphere to sinter it. [Embodiments of the Invention] The Ni powder used in the present invention may be any commercially available electrolytic powder or carbonyl nickel powder, but in order to improve the electrochemical properties when used as an electrode, finer powder ( Particle size 1~10μ
m) is preferred. In addition, there are various types of pulp used to adsorb and agglomerate powder.
In the present invention, wood pulp was selected from the viewpoints that the fiber diameter is small, the fibers are often entwined with each other, and it is inexpensive. The amount of wood pulp added can be arbitrarily selected depending on the desired porosity of the anode, but in producing the anode contemplated by the present invention, the amount of wood pulp added is 30% based on the total weight of the molded product before sintering. ~15% was the preferred range. Suitable materials for the metal mesh, which is crimped onto the plate-shaped molding and serves as a reinforcing material for the electrode after sintering, are nickel, stainless steel, Kanthal, etc., which have strength, heat resistance, and corrosion resistance.
As for the mesh shape, a range of 10 to 80 meshes and a wire diameter of 0.1 to 0.3 mm met the purpose of the present invention. On the other hand, in order to pressure-bond a metal mesh to a plate-shaped molded product, a method is used in which the two are laminated and then the pressure is gradually increased using a press. The pressure is preferably in the range of 50 to 200 kg/cm 2 . At this time, if necessary, the press machine is heated during press molding. For example, 60-150
Gradually increasing the temperature within a temperature range of ℃,
Good results can also be obtained by increasing the temperature in steps such as 30°, 60°, 90°, and 120°C. In addition, the press molding process not only presses the metal mesh onto the molded product, but also has the effect of drying the molded product, which has a large amount of moisture, by dehydrating it and keeping the surface texture flat and uniform. There is. After the above press molding process, the molded product with metal mesh is placed in an electric furnace and heated in an oxidizing atmosphere.
If necessary, heat from room temperature to 100℃/H with air flowing.
When heated at different speeds, the wood pulp and flocculant contained in the molded product begin to burn out and vaporize around 400°C, and are completely burned out at approximately 500°C.
Therefore, the heating temperature in an oxidizing atmosphere is 450°~
The holding time is preferably 1 to 3 hours at 600℃, but the most desirable is 1 to 2 hours at 500℃.
This is a condition for holding time. This is because when the temperature reaches around 600°C, more oxides are produced in the powder and mesh, which may have an adverse effect on the conductivity of the electrode. Heat treatment conditions in a reducing atmosphere for the purpose of reducing oxides generated when wood pulp and flocculant are burnt out and vaporized, sintering Ni powder, and diffusion bonding of Ni powder and metal mesh. is as follows. (1) Temperature: 650° ~ 1000°C (2) Holding time: 0.5 ~
3 hours (3) Atmosphere: hydrogen, nitrogen, argon, vacuum (10 -4 torr or less). Within this range of heat treatment conditions, it was possible to arbitrarily set the porosity, pore diameter, pore diameter distribution, specific surface area, etc. of the anode electrode desired in the present invention. Example 1 This example describes a method of manufacturing an electrode. (A) Sample preparation Carbonyl nickel powder (average particle size 4.7 μm) 45 parts Wood pulp 5 parts Water 1000 parts (B) Flocculant Polyacrylamide-based anionic flocculant 0.1% aqueous solution {manufactured by Sanyo Kasei Co., Ltd., product name: Sunfrotsuku AH200P''} 30 parts Polyacrylamide cationic flocculant 0.1% aqueous solution {manufactured by Sanyo Chemical Co., Ltd., trade name "Sunfrotsuku C-009P"} 20 parts Pour 1000 parts of water and 5 parts of wood pulp into a 2-sized container, Stir for about 10 to 20 minutes to fully disperse it in water, then add 45 parts of carbonyl nickel powder and stir for about 5 to 10 minutes to make an aqueous slurry. Add 30 parts of a pre-made polyacrylamide-based anionic flocculant (0.1% aqueous solution) into the mixture, stir for about 1 minute, and then add the pre-made polyacrylamide-based cationic flocculant (0.1%
% aqueous solution) and stirred for about 1 minute to form a coagulated floc. The sample agglomerated in the above step was made into a paper using a paper making machine to obtain a molded product having a square size of 300 mm and a thickness of 1.2 mm. Next, 20 meshes of Ni mesh with a wire diameter of 0.1 mm were laminated on the molded product, and a press machine was used to apply a pressure of 85 kg/cm 2.
It was crimped onto a Ni mesh molded product. This is charged into an electric furnace and heated to 150°C/H from room temperature in the atmosphere.
The molded product was heated to 500° C. at a rate of 100° C., held at this temperature for 2 hours to burn off and scatter the wood pulp and flocculant contained in the molded product, and then cooled to room temperature. Then, while flowing hydrogen in a hydrogen furnace, raise the temperature from room temperature to 600°C at a rate of 300°C/H, then increase the temperature to 800°C at a rate of 150°C/H, and hold at 800°C for 1 hour. As a result, a porous Ni electrode plate with Ni mesh as a reinforcing material was obtained. The thickness of the porous Ni electrode plate obtained under these conditions was 0.83 mm, the porosity was 67%, and the average pore radius was
5.5 μm and specific surface area was 0.15 m 2 /g. Example 2 In this example, the creep strength of the porous Ni electrode plate obtained in Example 1 was investigated. Creep strength: Temperature: 650℃, Atmosphere: Vacuum, Load: 2.5Kg/
A compression creep test was conducted under the condition of cm2 , and judgment was made based on the magnitude of the compression creep strain at that time. As a comparative product, carbonyl nickel powder with an average particle size of 4.7 μm was filled into a graphite mold with a depth of 1.0 mm.
A Ni electrode plate manufactured by sintering this in a hydrogen atmosphere at 780°C for 1 hour was used. This comparative product had a porosity of 73.3%, an average pore radius of 6.1 μm, and a specific surface area of 0.18 m 2 /g. Figure 1 shows the relationship between creep strain and test time obtained in the compression creep test. The creep strain of the inventive product shown by solid line 1 is
The creep strain is around 5% even after 1000 hours, whereas the comparative product shown by solid line 2 exhibits a large creep strain even in a short period of time, reaching 55% after 1000 hours. Table 1 shows the changes in porosity, average pore radius, and specific surface area before the creep test and after 1000 hours of creep.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれ
ば、Ni粉末と木材パルプを水中で混合して水性
スラリーとし、これに凝集剤を加えて粉末をパル
プに吸着凝集せしめ、抄造によつて板状の成形物
を得、この成形物と金属メツシユをプレス成型で
複合化した後、酸化性雰囲気と還元性雰囲気の二
つの工程で加熱処理を行うことによつて多孔質電
極板を形成しているため、金属メツシユが補強効
果を発揮して耐焼結性に優れた電極となる。そし
てこれをMCFCのアノードに組み込むことによ
り、MCFCの長期にわたる電池性能を維持する
ことが可能となる。
As is clear from the above description, according to the present invention, Ni powder and wood pulp are mixed in water to form an aqueous slurry, a coagulant is added to this, the powder is adsorbed and agglomerated by the pulp, and the powder is formed into a plate shape by papermaking. A porous electrode plate is formed by obtaining a molded product, combining this molded product with a metal mesh by press molding, and then performing heat treatment in two steps, one in an oxidizing atmosphere and the other in a reducing atmosphere. Therefore, the metal mesh exhibits a reinforcing effect, resulting in an electrode with excellent sintering resistance. By incorporating this into the MCFC anode, it becomes possible to maintain the long-term battery performance of the MCFC.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電極板の圧縮クリープ試験におけるク
リープひずみと試験時間の関係を示すグラフ、第
2図はMCFCの単電池でクリープ試験前と1000
時間クリープ試験後の電極板について測定したア
ノード分極値の結果を示すグラフである。
Figure 1 is a graph showing the relationship between creep strain and test time in a compression creep test of an electrode plate, and Figure 2 is a graph showing the relationship between creep strain and test time in a compression creep test of an electrode plate.
2 is a graph showing the results of anode polarization values measured for the electrode plate after a time creep test.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni粉末と木材パルプを水中で混合して抄造
に適する水性スラリーとなし、凝集剤を添加して
粉末をパルプに吸着凝集し抄造することで得た板
状の成形物に金属メツシユをプレス成型によつて
圧着せしめた後、該成形物を酸化性雰囲気で加熱
して木材パルプを焼失飛散し、続いて高温の還元
性雰囲気で加熱して前記酸化で生じた金属酸化物
を還元するとともにNi粉末を焼結することを特
徴とする溶融炭酸塩燃料電池用燃料極の製造方
法。
1. Mix Ni powder and wood pulp in water to make an aqueous slurry suitable for papermaking, add a coagulant, adsorb the powder to the pulp, coagulate it, and make paper. Press mold a metal mesh into a plate-shaped product. After the molded product is pressed in an oxidizing atmosphere to burn off and scatter the wood pulp, it is then heated in a high-temperature reducing atmosphere to reduce metal oxides produced by the oxidation and to remove Ni. A method for producing a fuel electrode for a molten carbonate fuel cell, the method comprising sintering a powder.
JP60295422A 1985-12-27 1985-12-27 Manufacture of fuel electrode for molten carbonate fuel cell Granted JPS62154575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60295422A JPS62154575A (en) 1985-12-27 1985-12-27 Manufacture of fuel electrode for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60295422A JPS62154575A (en) 1985-12-27 1985-12-27 Manufacture of fuel electrode for molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS62154575A JPS62154575A (en) 1987-07-09
JPH0520871B2 true JPH0520871B2 (en) 1993-03-22

Family

ID=17820400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60295422A Granted JPS62154575A (en) 1985-12-27 1985-12-27 Manufacture of fuel electrode for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS62154575A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063686A (en) 2003-08-11 2005-03-10 Shinko Electric Ind Co Ltd Solid electrolyte fuel cell

Also Published As

Publication number Publication date
JPS62154575A (en) 1987-07-09

Similar Documents

Publication Publication Date Title
US4654195A (en) Method for fabricating molten carbonate ribbed anodes
US4656735A (en) Process for producing an electrolyte retaining matrix of electrical insulating long fibers
JPH0520871B2 (en)
JPH0520872B2 (en)
JPS58129781A (en) Fused salt type fuel cell
JPH01186561A (en) Fuel cell
JPH0548581B2 (en)
JPS6074272A (en) Manufacture of fused carbonate type fuel cell
JPH0261095B2 (en)
JPS63138662A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell
JPH0548580B2 (en)
JPH0520870B2 (en)
JPS62287570A (en) Material for gas diffusion electrode
JPS58119161A (en) Manufacture of electrode for fused salt fuel battery
JPS6229069A (en) Bfe-type electrode for fuel cell or the like
JPS6178066A (en) Method for manufacturing electrolytic tiles of fused carbonate fuel cell
JPS63257182A (en) Manufacture of cathode for molten carbonate fuel cell
JPS63289772A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell
JPH01120774A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
KR100467347B1 (en) Manufacture method of oxide dispersed fuel electrode and fuel electrode
JPS62176063A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
KR100187430B1 (en) Method of manufacturing electrolyte matrix for phosphorus fuel cell made of sic whisker
CN116752171A (en) Titanium oxide diffusion layer and preparation method thereof
JPH01206568A (en) Manufacture of electrolyte plate for molten carbonate type fuel battery
JPS60101877A (en) Manufacturing method of electrolyte tile