JPS6178066A - Method for manufacturing electrolytic tiles of fused carbonate fuel cell - Google Patents

Method for manufacturing electrolytic tiles of fused carbonate fuel cell

Info

Publication number
JPS6178066A
JPS6178066A JP59201291A JP20129184A JPS6178066A JP S6178066 A JPS6178066 A JP S6178066A JP 59201291 A JP59201291 A JP 59201291A JP 20129184 A JP20129184 A JP 20129184A JP S6178066 A JPS6178066 A JP S6178066A
Authority
JP
Japan
Prior art keywords
electrolyte
tile
electrolytic
tiles
matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59201291A
Other languages
Japanese (ja)
Other versions
JPH0350387B2 (en
Inventor
Junji Nakamura
中村 淳次
Ikumasa Nishimura
生眞 西村
Goro Saito
悟朗 斉藤
Hirozo Matsumoto
浩造 松本
Tomio Sugiyama
富夫 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Toppan Printing Co Ltd
Priority to JP59201291A priority Critical patent/JPS6178066A/en
Publication of JPS6178066A publication Critical patent/JPS6178066A/en
Publication of JPH0350387B2 publication Critical patent/JPH0350387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To facilitate assembling work and large-sized construction of fused carbonate fuel cell (MCFC) and to improve economization and cell output perfor mance by impregnating electrolytic matter in a sheet in a process of rising temperature of cell structure. CONSTITUTION:A cell structure is assembled with a predetermined sheet type matter. An alumina pot 21 containing electrolytic matter therein is placed in a hole made by machining on the peripheral portion of a holding plate. And alumina pipe 22 connected to the pot 21 is adjacent to the sheet type matter. The cell structure is inserted in an electric furnace 23 and heated up to an operating temperature of 650 deg.C. Near approx. 490 deg.C, the electrolytic compound becomes molten and impregnation into a thin hole portion from which wood pulp is pulled out starts. Around 500 deg.C, the electrolyte is completely impregnated in the thin hole portion of the sheet type matter and electrolytic tile is made and completed as MCFC.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、@融炭酸塩燃料′畦池の電解質タイルの製
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a method for producing electrolyte tiles for molten carbonate fuel ponds.

〔従来技術とその問題点〕[Prior art and its problems]

溶融炭酸塩燃料電池(以下、MCFCという)は、それ
ぞれの工程で製造した所要の形状と特性を有する電極板
、電解質タイルおよび各種の電池構成部品を用いて第3
図のよう1こ構成される。第3図において1は電解質タ
イル、2および3は多孔質のニッケルもしくはニッケル
合金からなる電極で。
Molten carbonate fuel cells (hereinafter referred to as MCFCs) are manufactured using electrode plates, electrolyte tiles, and various cell components having the required shapes and characteristics manufactured in each process.
It consists of one piece as shown in the figure. In Fig. 3, 1 is an electrolyte tile, and 2 and 3 are electrodes made of porous nickel or nickel alloy.

3のカソード電極は酸化ニッケルの多孔質板になってい
る。さらに第3図の・tはセル枠であり、これと押え板
5の間には絶縁板6が挿入され、これらと前記電解質タ
イル1および電極2,3をボルト7、ナツト8によって
締付ける構造になっている。そして、これを電気炉に装
入して650℃まで昇温したのち、燃料および酸化剤を
アノード側とカソード測電極に配設されたガス室10か
ら供給することにより、両1jL極には電気エネルギー
が発生する。この電気エネルギーはコレクター9を介し
てセル枠4に伝わり、これをilL流取り出し線11に
よって外枠にとり出すことができる。
The cathode electrode of No. 3 is a porous plate of nickel oxide. Further, t in FIG. 3 is a cell frame, and an insulating plate 6 is inserted between this and the holding plate 5, and the electrolyte tile 1 and the electrodes 2 and 3 are tightened with bolts 7 and nuts 8. It has become. Then, after charging this into an electric furnace and raising the temperature to 650°C, by supplying fuel and oxidizer from the gas chamber 10 arranged on the anode side and the cathode measuring electrode, electricity is applied to both 1jL electrodes. Energy is generated. This electrical energy is transmitted to the cell frame 4 via the collector 9, and can be taken out to the outer frame through the IL flow extraction line 11.

上記構成の電解質タイルの電解質としてアルカリ金属炭
酸塩を用い、高温(5000〜800℃)で作動するM
 CF Cでは、電気化学的反応は下記のfll 、 
<21式のように進行し、イオン伝導は炭酸イオン(C
OI )によって行なわれる。
An electrolyte tile with the above structure uses an alkali metal carbonate as the electrolyte and operates at high temperatures (5000-800°C).
In CFC, the electrochemical reaction is as follows:
The ionic conduction proceeds as shown in Equation 21, and the ionic conduction is carried out by carbonate ions (C
OI).

7/−ド: H!+CO,−+H,0+COx +2e
・・・(f)カソード: l/20x +CO* +2
 e  −+ COs  −f2)この電池は作動温度
が500℃以上と高いため反応速度が速く、常温型燃料
電池のように高価な白金属の触媒を必要とせず、また常
温では反応しにくい安価な燃料でも高電流密度が得られ
るなどの特長がある。
7/-do: H! +CO, -+H, 0+COx +2e
...(f) Cathode: l/20x +CO* +2
e −+ COs −f2) This cell has a high operating temperature of 500°C or higher, so the reaction rate is fast, and unlike room-temperature fuel cells, it does not require an expensive platinum metal catalyst. Features include the ability to obtain high current density even with fuel.

しかしながら、動作温度が高く腐食性の強いアルカリ金
属炭酸塩を使用していることによって。
However, due to the high operating temperature and the use of highly corrosive alkali metal carbonates.

■電極では、を極を構成するニッケル粒子の成長と腐食
による電気化学的特性の劣化、■電解質タイルでは、組
み立て中の破損および保持材であるリチウムアルミネー
トの電解質保持能力低下とヒートサイクルによる破損、
■セル枠、コレクターなどの電池構成材料では腐食の進
行、などが問題になってくる。
■For electrodes, the electrochemical properties deteriorate due to the growth and corrosion of the nickel particles that make up the electrodes. ■For electrolyte tiles, damage occurs during assembly, and the electrolyte retention ability of the lithium aluminate holding material decreases, resulting in damage due to heat cycles. ,
■Progressing corrosion is a problem for battery constituent materials such as cell frames and collectors.

ところで、MCFCの構成においては、電解質タイルが
とくに重要な役割を担っており、電池の運転中に電解質
タイルに穴やクラックなどの欠陥が発生すると燃料と空
気の混合すなわちクロスオーバが起こり、電池出力性能
を喪失させる致命的な原因となる。このためI’vl 
CF Cの電解質タイルには以下の性能を具備すること
が要求される。
By the way, in the configuration of an MCFC, the electrolyte tile plays a particularly important role, and if defects such as holes or cracks occur in the electrolyte tile during battery operation, mixing of fuel and air, or crossover, will occur, which will reduce the battery output. This can be a fatal cause of loss of performance. For this reason I'vl
CFC electrolyte tiles are required to have the following properties.

(1)  機械的強度が高いこと (2)  ヒートサイクルをうけてもクラッタなどの欠
陥が発生しないこと (3)  耐熱性にすぐれていること (4)電解質が安定に保持できること (5)  イオン導電性を有すること また、M CF Cの製造コストの中で電解質タイルは
大きな比重を占めているので、経済性にすぐれた材質と
簡便な製造工程の開発も要精されている。
(1) High mechanical strength (2) No defects such as clutter even after heat cycling (3) Excellent heat resistance (4) Stable retention of electrolyte (5) Ionic conductivity In addition, since electrolyte tiles account for a large proportion of the manufacturing cost of M CF C, efforts are being made to develop materials with excellent economic efficiency and simple manufacturing processes.

MCFCの電解質タイルは、電解質融体を保持するため
の保持材と電解質であるアルカリ金属炭酸塩とからなっ
ている。保持材としては、これまでの研究経過からアル
ミナと炭酸リチウムを原料として炭酸塩混合法などで合
成されたりチウムアルミネートが最適とされ、最も多く
用いられている。
An MCFC electrolyte tile consists of a holding material for holding an electrolyte melt and an alkali metal carbonate as an electrolyte. As a retaining material, lithium aluminate, which is synthesized by a carbonate mixing method using alumina and lithium carbonate as raw materials, has been found to be optimal and is most commonly used.

リチウムアルミネートにはγ−1α−およびβの3つの
同素体があるが、融体保持と機械的強度の観点からγも
しくはαが使用される。電解質としては、アルカリ金属
炭酸塩の中で共晶組成を有する炭酸リチウムと炭酸カリ
ウムの混合物が用いられる。両者の共晶組成は47.5
 %炭酸リチウムー52.5%炭酸カリウム(重量比)
であり、その共晶温度は約491℃である。また、リチ
ウムアルミネート保持材と共晶組成電解質の割合(重量
比)は、通常5対5から4対6の範囲が一般的である。
Lithium aluminate has three allotropes: γ-1α- and β, and γ or α is used from the viewpoint of melt retention and mechanical strength. As the electrolyte, a mixture of lithium carbonate and potassium carbonate having a eutectic composition among alkali metal carbonates is used. The eutectic composition of both is 47.5
% lithium carbonate - 52.5% potassium carbonate (weight ratio)
and its eutectic temperature is about 491°C. Further, the ratio (weight ratio) of the lithium aluminate holding material to the eutectic electrolyte is generally in the range of 5:5 to 4:6.

これまで知られているMCFCの電解質タイルの製造方
法は以下の通りである。
The methods of manufacturing electrolyte tiles for MCFC known so far are as follows.

fil  γ−リチウムアルミネートと共晶組成電解質
の混合粉末を常温で加圧成形し5000前後で焼結する
いわゆるペースト法。
fil A so-called paste method in which a mixed powder of γ-lithium aluminate and a eutectic electrolyte is pressure-molded at room temperature and sintered at around 5,000 ℃.

(2)  γ−リチウムアルミネートと共晶組成電解質
の混合粉末を4600〜490℃の温度範囲で06〜1
. Oton/cjの圧力で加圧し、この加圧状態を1
5〜150分間保持するいわゆるホットプレス法。
(2) Mixed powder of γ-lithium aluminate and eutectic composition electrolyte was heated in the temperature range of 4600 to 490°C.
.. Pressurize at a pressure of Oton/cj, and keep this pressurized state at 1
The so-called hot press method is held for 5 to 150 minutes.

(3)  γ−リチウムアルミネート(こバインダーを
添加して1〜3.5 tonAの圧力で成形し、焼結し
て保持材のみでマ) IJソックス作成した後に電解質
融体を含浸するいわゆるマドIJノクス法。
(3) γ-lithium aluminate (adding a binder, molding at a pressure of 1 to 3.5 tonA, sintering, and using only a retaining material) A so-called mud that is impregnated with electrolyte melt after making IJ socks. IJ Knox method.

前記のペースト法では、成形圧力を高くすると成形体に
クランクが発生しやすく、また焼結時のクラック発生を
防止するためその昇温・降温速度には細心の注意が必要
である、このように昇降温1こ時間がかかるため生産性
1こ劣るという問題がある。さらに、この方法で傅らね
、る電解質タイルのかさ密度は、その理論値の高々85
%前後で、るるため機械的強度が弱く、燃料′基油のヒ
ートサイクル中に欠陥を発生しやすいという欠点を有す
る。
In the above-mentioned paste method, cranks are likely to occur in the molded product when the molding pressure is increased, and careful attention must be paid to the rate of temperature rise and fall to prevent cracks during sintering. There is a problem in that productivity is reduced by one hour because it takes one hour to raise and cool the temperature. Furthermore, the bulk density of the electrolyte tiles produced using this method is at most 85% of its theoretical value.
%, it has a weak mechanical strength and is prone to defects during the heat cycle of the fuel base oil.

ホットプレス法はペースト法に比べて電解質タイルのか
さ密度を同上させることは容易であり。
The hot press method makes it easier to increase the bulk density of the electrolyte tile compared to the paste method.

機械的強度もすぐれたものが得られるという利点がある
。ただ、電解質タイルのかさ密度を^めるためにはその
加圧力を高めることが必要であり。
It has the advantage of providing excellent mechanical strength. However, in order to increase the bulk density of the electrolyte tile, it is necessary to increase the pressing force.

このためには大型プレス装置が不可欠で設備費が高価に
なるという欠点がある。ホットプレス法においても、電
解質タイルの欠陥発生をさけるためには昇降温速度をで
きる限り低下させることが必要なので、ペースト法と同
様(こ生産性に難点がある。
For this purpose, a large press device is essential, which has the drawback of increasing equipment costs. In the hot press method as well, it is necessary to reduce the rate of temperature rise and fall as much as possible in order to avoid defects in the electrolyte tiles, so it is similar to the paste method (this has a drawback in terms of productivity).

マトリックス法といわゆる中にはドクターブレード法、
カレンダー法および電気泳動法などがある。これらの方
法は、ペースト法およびホットプレス法に比べて電解質
タイルの大面積化は容易であるが、製造工程が複雑で高
温情緒が必要なため、製造コストが高くなるという傾向
をもち、かつ成形時の強度が極めて低く、取扱い中に破
損しやすいという欠点がある。また、バインダーには人
体に対して有害な有機系材料を多量に使用するので安全
衛生上の対策も必要とする。
The so-called matrix method includes the doctor blade method,
Examples include calendar method and electrophoresis method. These methods make it easier to produce large-area electrolyte tiles compared to the paste method and hot press method, but the manufacturing process is complicated and requires high temperature, which tends to increase manufacturing costs. It has the disadvantage of having extremely low mechanical strength and being easily damaged during handling. Furthermore, since the binder uses a large amount of organic materials that are harmful to the human body, safety and health measures are also required.

したがって、以上の方法で製造された電解質タイルを用
いて構成したkicPcは、電池出力性能が不十分、寛
解質タイルの機械的強度が劣るため大面積化が困難およ
び製造工程が複雑で、コストが高いという問題を有する
。また、以上の方法の電解質タイルを用いて構成したM
CFCでは、650℃の運転温度まで昇温する際は1時
間当り60’C以下でないと電解質タイルが破損する場
合も多い。
Therefore, kicPc constructed using the electrolyte tiles manufactured by the above method has insufficient battery output performance, the mechanical strength of the electrolyte tiles is poor, making it difficult to increase the area, and the manufacturing process is complicated, resulting in high costs. It has the problem of being expensive. In addition, M constructed using the electrolyte tiles of the above method
In CFC, when raising the temperature to an operating temperature of 650°C, the electrolyte tile is often damaged unless the temperature is 60'C or less per hour.

かつこれら電解質タイルはヒートサイクルに対しても弱
いという欠点もある。
Another disadvantage of these electrolyte tiles is that they are susceptible to heat cycles.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、新規な方法で製造したシート状物を
電解質保持材に用いて電池構造物にした後、該構造物を
昇温する過程でシート状物に′電解質を含浸することで
、MCFCの組み立て作業と大型化が容易でかつ経済性
と電池出力性能にすぐれたMCFCを提供することにあ
る。
The object of this invention is to use a sheet-like material produced by a novel method as an electrolyte holding material to form a battery structure, and then impregnate the sheet-like material with an electrolyte during the process of heating the structure. The object of the present invention is to provide an MCFC that is easy to assemble and enlarge, and has excellent economic efficiency and battery output performance.

〔発明の要点〕[Key points of the invention]

発明者らが本発明を知見し、それを完結させるに至った
経緯をまず説明する。
First, the circumstances that led the inventors to discover and complete the present invention will be explained.

セラミック多孔質体としては、従来から素焼き陶器ある
いは一定の粗さをもつセラミック粒子を焼結したような
連続した気孔をもつ多孔質体あるいは発泡ガラスのよう
に独立した気泡をもつ多孔質体が知られている。また、
近年セラミックフオームのよう1こ軟質ウレタン7オー
ムの発泡を利用した連続気孔型のセラミック多孔質体で
セラミック部と気孔部との体積比が全く逆転したような
海綿状のセラミック多孔質体がある。このようなセラミ
ック多孔質の作り方を電解質タイル保持材のマトリ・ク
スの製造lこ応用しようと意図した。しかし、前記の作
り方では以下の欠点があるため電解質タイル保持材マト
リックスの製造は困難であることがわかった。
Porous ceramic materials have traditionally been known as porous materials with continuous pores, such as unglazed pottery or sintered ceramic particles with a certain roughness, or porous materials with independent cells, such as foamed glass. It is being Also,
In recent years, there has been a spongy ceramic porous body such as Ceramic Foam, which is an open-pore type ceramic porous body that utilizes foaming of 7-ohm soft urethane and has a completely reversed volume ratio between the ceramic part and the pore part. It was intended to apply this method of making porous ceramics to the production of a matrix for holding electrolyte tiles. However, it has been found that it is difficult to manufacture the electrolyte tile holding material matrix using the method described above due to the following drawbacks.

[1セラミック多孔質体としての硬さく!:微密性が不
十分。
[1. Hardness as a ceramic porous body! : Insufficient micro-density.

(2)  気孔部1こ各種の無機物質やば解質を充てん
して使用する場合はイオン通過性や1イ子伝導性に欠け
ろものがある。
(2) When the pores are filled with various inorganic substances or solutes, there may be defects in ion permeability and single ion conductivity.

(3)  イオン通過性や電子伝導性は満足しても気孔
部の仝孔径が大きいため、各種の無機物質や電解質が気
孔部から流出しやすい。
(3) Even if the ion permeability and electron conductivity are satisfied, the pore diameter of the pores is large, so various inorganic substances and electrolytes tend to flow out from the pores.

一方、セラミックの7−トを作る場合の方法としては、
射出成形法、押出成形法、静水圧プレス法および抄紙法
以外の方法では30ctp(以上の大面積以上の大面積
のセラミック・/−トを作ると表面が割れたり1反った
りして均一な性状のものを得にくいという賭点がある。
On the other hand, the method for making a ceramic 7-piece is as follows:
Methods other than injection molding, extrusion molding, isostatic pressing, and paper-making methods may cause the surface to crack or warp, resulting in uniform properties when making large-area ceramic plates of 30 ctp or more. There is a risk that it is difficult to obtain something.

これに対し、抄紙法は焼結性無機物質の粉体と木材パル
プ、天然は雄1合成Q雄のうちから選択きれた少なくと
も一種の有機質繊維材を湿式混合し、凝集されたのち抄
造してシート状物を得るものである。この方法は池のも
のに比べて薄板で大面積のシートが容易に製造でき、か
つ/−ト状物は可撓性を有し折曲げ等も自在で機械灼取
り扱いの面でも漬れている。抄紙法で得たノート状物を
焼成することで有機質繊維材は焼失し、薄くて大面2@
のセラミック多孔質体が容易に製造できる。
On the other hand, the paper-making method wet-mixes sinterable inorganic powder, wood pulp, and at least one type of organic fiber material selected from natural male and synthetic Q male, and after agglomeration, paper is made. A sheet-like product is obtained. This method can easily produce thin sheets with a large area compared to Ike's method, and/- The sheet is flexible and can be bent freely, making it easy to handle in a machine. . By baking the notebook-like material obtained by the papermaking method, the organic fiber material is burned out and a thin and large surface 2@
Porous ceramic bodies can be easily produced.

この多孔質体は、植苗で強度があり、気孔率が簡く細孔
が迷路のようになって連べしている。
This porous material is strong when used as a seedling, has a low porosity, and has pores arranged like a labyrinth.

本発明者らは、この抄7紙法の特徴と利点に着眼し1こ
れをMCFCの1′it解質タイルに1己用した発明を
、先に特願昭58−181485として出願した。
The present inventors focused on the characteristics and advantages of this paper method and previously applied for an invention in which it was applied to MCFC's 1'it solution tile as Japanese Patent Application No. 181485/1985.

本発明はこの発明を更に改良したものであり、抄紙法に
より形成したシート状物を電解質タイルの保持材として
電池に組み込んだ後、運転温度まで昇温する過程で有機
質繊維材を焼失飛散させ、この有機質繊維材がぬけた細
孔部分に電解質融体を含浸して電解質タイルとすること
により、作業性。
The present invention is a further improvement of this invention, in which a sheet material formed by a papermaking method is incorporated into a battery as a holding material for an electrolyte tile, and then the organic fiber material is burned and scattered during the process of raising the temperature to the operating temperature. Workability is improved by impregnating the pores of this organic fiber material with an electrolyte melt to form an electrolyte tile.

経陽性をより向上しようとしたものである。This was an attempt to further improve positive outcomes.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の詳細な説明する。電解質タイル保持材に
は粒径が20μm以下のγ−リチウムアルミネート粉末
を使用し、補強材としての機能と気孔率を上げるため、
各種の有機繊維質の中から木材パルプを選択し、木材パ
ルプの添加量は乾燥時のシート全重量に対して3〜15
%(重量比)とした。この添加量にしたのは、木材ノく
ルグが焼失飛散したのちのシート状物の気孔率を40〜
80チの範凹に設定するためである。製造方法は、まず
3〜15チの繊維質とT−リチウムアルミネート粉末か
らなる固形分に対して5〜30倍程度の真量の水を加え
て湿式混合し、抄造に適する水性スラリー1こ調整し、
凝集剤を添加し凝集させ抄造機1こて抄造し、厚さ数園
の厚さのシート状物に成形する。
The present invention will be explained in detail below. γ-lithium aluminate powder with a particle size of 20 μm or less is used as the electrolyte tile holding material, and in order to function as a reinforcing material and increase porosity,
Wood pulp is selected from various organic fibers, and the amount of wood pulp added is 3 to 15% based on the total weight of the sheet when dry.
% (weight ratio). This amount of addition was chosen to increase the porosity of the sheet material after the wood nokrug has been burned and scattered.
This is to set the concavity to 80 inches. The manufacturing method is as follows: First, 5 to 30 times the amount of water is added to the solid content of 3 to 15 inches of fiber and T-lithium aluminate powder, and the mixture is wet-mixed to create one aqueous slurry suitable for papermaking. Adjust,
A coagulant is added to agglomerate the product, which is then machined using a single trowel to form a sheet with a thickness of several inches.

このシート状物を第3図に示した電解質タイル1の保持
材として用いて第1図の電池構造物に組み立てる。第1
図において、21は電解質粉末を入れたアルミナルツボ
であり、このアルミナルツボは押え板の周辺部に穴を加
工し、その部分に設置されている。そして、アルミナル
ツボに連結しているアルミナ製パイプ22はシート状物
に接している。この電池構造物は第1図の電気炉23に
装入され、650℃運転温度まで昇温する。木材パルプ
は450℃付近から焼失を開始し、4800〜490℃
では完全に焼失飛散する。そして約490℃付近で電解
質成分が融液となり、木材パルプが抜けた細孔部分に電
解質が含浸を開始する。
This sheet-like material is used as a holding material for the electrolyte tile 1 shown in FIG. 3, and assembled into the battery structure shown in FIG. 1. 1st
In the figure, numeral 21 is an aluminium crucible containing electrolyte powder, and this aluminium crucible is installed in a hole drilled in the periphery of the holding plate. The alumina pipe 22 connected to the alumina crucible is in contact with the sheet-like material. This battery structure is charged into the electric furnace 23 shown in FIG. 1 and heated to an operating temperature of 650°C. Wood pulp starts to burn out around 450℃, and reaches 4800-490℃.
It will be completely burnt down and scattered. Then, at around 490° C., the electrolyte component becomes a melt, and the electrolyte begins to impregnate the pores through which the wood pulp has passed.

500℃位の温度になると、シート状物の細孔部分tこ
は電解質が完全に含浸して電解質タイルとなり、MCF
Cとして完成する。
When the temperature reaches about 500°C, the pores of the sheet are completely impregnated with electrolyte, forming an electrolyte tile, and the MCF
Completed as C.

なお、シート状物へ含浸するために必要な見解質成分は
前記ではアルミナルツボに用意する例を説明したが、こ
れ以外にセル枠に溝を加工し、この部分に所要量の電解
質成分を充填しておく方法も可能である。
In addition, the electrolyte components necessary for impregnating the sheet material are prepared in an alumina crucible in the above example, but in addition to this, it is also possible to prepare a groove in the cell frame and fill this part with the required amount of electrolyte component. It is also possible to leave it as is.

次に本発明の具体的な実施例を述べる。なお、組成は全
て重量比である。
Next, specific examples of the present invention will be described. In addition, all compositions are weight ratios.

〈実施例1〉 囚 試料の調整 T−リチウムアツベネート(平均粒径15μm)  3
0部木材パルプ             5部水  
                       10
00部+Bl  凝集剤 に酸バンド15チ水溶液       30部ポリアク
リルアミド系嵩高子凝集剤0.2チ水溶液  20部三
洋化成■製 商品名[サンポリN−500J2を程度の
容器に水1000部と木材パルプ5部を入れ、20分は
ど攪拌して水に十分分散させて、そこへγ−リチウムア
ルミネート30部を加えて1分はど撹拌し水性スラリー
を作る。その中へあらかじめ作っておいた硫酸バンド(
15チ水溶液)を30部加えて2分はど攪拌し、PHが
4以下になったことをPH試験紙で確認して、これもあ
らかじめ作っておいたポリアクリルアミド高分子凝集剤
(サンポリN−500の0.2%水溶液)を20部添加
し、1分はど攪拌して凝集させる。
<Example 1> Preparation of sample T-lithium atsubenate (average particle size 15 μm) 3
0 parts wood pulp 5 parts water
10
00 parts + Bl 15 parts of acid band aqueous solution as flocculant 30 parts Polyacrylamide-based bulky coagulant 0.2 parts aqueous solution 20 parts Manufactured by Sanyo Chemical Product name 30 parts of γ-lithium aluminate was added thereto and stirred for 1 minute to form an aqueous slurry. A sulfuric acid band (
Add 30 parts of a polyacrylamide polymer coagulant (Sunpoly N- Add 20 parts of 0.2% aqueous solution of 500) and stir for 1 minute to coagulate.

以上のようにして凝集した試料を抄造機で抄造して30
Crn角で庫み2.Omのシート状物にする。
The sample agglomerated in the above manner was made into a paper using a paper making machine.
Store with crn corner 2. Make into a sheet of Om.

これから直径50m++のらのを切り出して電解質タイ
ル用保持材とし、さらに直径35■の多孔質ニッケル電
極板として第1図のように′電池構造物に組み立てる。
A 50 m++ diameter piece was cut out from this material to be used as a holding material for an electrolyte tile, and then a porous nickel electrode plate with a diameter of 35 square meters was assembled into a battery structure as shown in FIG.

第1図のアルミナルツボには共晶組成電解質(47,5
%炭酸リチウム−52,5%炭酸カリウム)粉末を入れ
て、これを電気炉に装填する。
The alumina crucible in Figure 1 has a eutectic composition electrolyte (47,5
% lithium carbonate-52.5% potassium carbonate) powder and load this into an electric furnace.

その後、1時間当り120℃の昇温速度で昇温し、65
0℃まで昇温する過程で木材パルプを焼失飛散させると
きもに電解質を含浸させた。この場合のタイル保持材と
電解質の割合は45:55であった。前記工程で構成し
た〜ICFCの燃料CklこはAir+30%CO2,
空気極;こはH2+CO,のガスソ供給して単セル試験
を行った。この際に得られた電流−電圧曲線を嬉2図f
こ示す。この特性は従来方法で製造した電解質タイルに
よって構成したMCFCのそれと同等かそれ以上であり
、本発明の有効性が実証された。また、この単セル試験
および別に行ったヒートサイクル試験でも電解質タイル
1こ欠陥の発生は認められず、本発明のMCFCは耐久
性、寿命特性の面でも優れていることが裏付けられた。
After that, the temperature was increased at a rate of 120°C per hour, and the temperature was increased to 65°C.
The wood pulp was also impregnated with electrolyte when it was burnt and scattered during the process of raising the temperature to 0°C. The ratio of tile holding material and electrolyte in this case was 45:55. ~ ICFC fuel Ckl configured in the above process is Air + 30% CO2,
A single cell test was conducted by supplying a gas of H2+CO to the air electrode. The current-voltage curve obtained at this time is shown in Figure 2 f.
This is shown. This characteristic was equal to or better than that of an MCFC constructed from electrolyte tiles manufactured by a conventional method, demonstrating the effectiveness of the present invention. In addition, no defects were observed in the electrolyte tile in this single cell test or a separate heat cycle test, confirming that the MCFC of the present invention is excellent in terms of durability and life characteristics.

く実施例2〉 囚 試料の調整 γ−リチウムアルミネート(平均粒径)      3
0部木材パルプ               1部水
                         
 1000部(均 凝集剤 硫酸バンド 15%水溶液       20部高分子
殻果剤0.2多水溶液       30部三洋化成@
製商品名「サンプ’JN−500」以上のような組成(
8)、(均を用いて、以下は実施例1と全く同様にして
N CF Cを構成した。この場合も、その電池性能は
実施例1と同等であることが確認された。
Example 2 Sample preparation γ-lithium aluminate (average particle size) 3
0 parts wood pulp 1 part water
1000 parts (uniform flocculant sulfate band 15% aqueous solution 20 parts polymer shell agent 0.2 polyhydric solution 30 parts Sanyo Chemical @
Product name: ``Sump'JN-500'' Composition as above (
8), (Using the equation, N CF C was constructed in the same manner as in Example 1. In this case as well, it was confirmed that the battery performance was equivalent to that in Example 1.

なお、本笑施例ではんfCF’Cの運転温度である65
0℃までの昇温速度を1時間当り120℃としたが、こ
の昇温速度は1時間当り200℃までの範囲であるなら
ば、電解質タイルに欠陥は発生しないという結果も得ら
れている。
In addition, in this example, the operating temperature of the solder fCF'C is 65
Although the heating rate up to 0° C. was set at 120° C. per hour, results have also been obtained that as long as the heating rate is within the range of 200° C. per hour, no defects will occur in the electrolyte tile.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明1ζよれば抄紙法で製造した
γ−リチウムアルミネートと木材パルプからなるシート
状物を電解質タイル保持材として電池を組み立てたのち
、MCF’Cの運転温度に昇温する過程でシート状物に
連続した細孔を形成するとともIこ、この細孔に′電解
質融体を含浸させて電解質タイルとするこきでタイルの
破損を防止するとともに1組立作業の簡略化を図ること
ができ、経済性、耐久性および電池性能にすぐれたMC
FCを提供できる。また、この発明によればMCPCの
大型化も容易であるので高温型燃料電池の開発促進に寄
与するところ大である。
As described above, according to the present invention 1ζ, after assembling a battery using a sheet made of γ-lithium aluminate produced by a papermaking method and wood pulp as an electrolyte tile holding material, the temperature is raised to the operating temperature of MCF'C. In the process of forming continuous pores in the sheet material, these pores are impregnated with electrolyte melt to form electrolyte tiles, which prevents damage to the tiles and simplifies the assembly process. MC with excellent economy, durability, and battery performance.
Can provide FC. Further, according to the present invention, it is easy to increase the size of the MCPC, which greatly contributes to promoting the development of high-temperature fuel cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す燃料電池の側断面図、第
2図は本発明jこよる単セル試験の電流−区圧を示すグ
ラフ、第3図は従来の燃料電池を示す側面図である。 1:i!電解質タイル2ニアノード寛極、3:カソード
電極、4:セル枠、5:押え板、6:絶縁板、7:ボル
ト、8;ナツト、9:電流コレクター、lO:ガス室、
11:1流取り出し線、21ニアルミナルツボ、22ニ
アルミナノζイブ、23:111気炉。 23’t*炉 才1の
Fig. 1 is a side sectional view of a fuel cell showing an embodiment of the present invention, Fig. 2 is a graph showing current-section pressure of a single cell test according to the present invention, and Fig. 3 is a side view showing a conventional fuel cell. It is a diagram. 1:i! Electrolyte tile 2 near node electrode, 3: cathode electrode, 4: cell frame, 5: holding plate, 6: insulating plate, 7: bolt, 8: nut, 9: current collector, lO: gas chamber,
11: 1 flow extraction line, 21 Ni aluminum crucible, 22 Ni aluminum nano ζ Eve, 23: 111 air furnace. 23't*Konazai 1's

Claims (1)

【特許請求の範囲】[Claims] 空気極、燃料極、電解質タイルおよびセル枠より構成さ
れる溶融炭酸塩燃料電池において、γ−リチウムアルミ
ネートの粉体と木材パルプ、天然繊維、合成繊維のうち
から選択された少なくとも1種の有機繊維材を湿式混合
して水性スラリーとなし、凝集し抄造して得たシート状
物を電解質タイル保持材として電池構造物に組み立てた
後、該構造物を650℃まで昇温する過程で前記有機繊
維材を焼失飛散させるとともに、炭酸リチウムと炭酸カ
リウムからなる電解質成分をシート状物に含浸して電解
質タイルとすることを特徴とする溶融炭酸塩燃料電池の
電解質タイルの製法。
In a molten carbonate fuel cell consisting of an air electrode, a fuel electrode, an electrolyte tile, and a cell frame, γ-lithium aluminate powder and at least one organic fiber selected from wood pulp, natural fiber, and synthetic fiber are used. After wet-mixing the fibrous materials to form an aqueous slurry, agglomerating the resulting sheet material, and assembling the obtained sheet into a battery structure as an electrolyte tile holding material, the above-mentioned organic A method for manufacturing an electrolyte tile for a molten carbonate fuel cell, which comprises burning and scattering fiber material and impregnating a sheet material with an electrolyte component consisting of lithium carbonate and potassium carbonate to form an electrolyte tile.
JP59201291A 1984-09-26 1984-09-26 Method for manufacturing electrolytic tiles of fused carbonate fuel cell Granted JPS6178066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201291A JPS6178066A (en) 1984-09-26 1984-09-26 Method for manufacturing electrolytic tiles of fused carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201291A JPS6178066A (en) 1984-09-26 1984-09-26 Method for manufacturing electrolytic tiles of fused carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS6178066A true JPS6178066A (en) 1986-04-21
JPH0350387B2 JPH0350387B2 (en) 1991-08-01

Family

ID=16438541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201291A Granted JPS6178066A (en) 1984-09-26 1984-09-26 Method for manufacturing electrolytic tiles of fused carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS6178066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019454A1 (en) * 2000-08-30 2002-03-07 Sanyo Electric Co., Ltd. Fuel cell unit and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019454A1 (en) * 2000-08-30 2002-03-07 Sanyo Electric Co., Ltd. Fuel cell unit and its manufacturing method

Also Published As

Publication number Publication date
JPH0350387B2 (en) 1991-08-01

Similar Documents

Publication Publication Date Title
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
KR101395770B1 (en) Anode for direct carbon fuel cell, and direct carbon fuel cell comprising the same
CN104282868B (en) Electrolyte ceramics barrier film that modified perforated membrane supports and preparation method thereof
US4710436A (en) Molten carbonate fuel cell and method of manufacturing electrolyte plate thereof
CN107611461A (en) A kind of preparation method of SOFC
CA1174271A (en) Fuel cell provided with electrolyte plate made of electrical insulating long fibers
JPS6178066A (en) Method for manufacturing electrolytic tiles of fused carbonate fuel cell
US4721513A (en) Cathode preparation method for molten carbonate fuel cell
JPS62176063A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
JPS63138662A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell
JPH01120774A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
JP3592839B2 (en) Method for producing electrolyte plate, ceramic reinforcing material and ceramic sintered body
JPS63289772A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell
JPS62145663A (en) Manufacture of electrolyte plate for molten carbonate fuel cell
JPH0548581B2 (en)
JPH0520872B2 (en)
JPH0261095B2 (en)
JPS62133676A (en) Manufacture of electrolytic tile for molten carbonate type fuel cell
JPH0520870B2 (en)
JPH10112329A (en) Molten carbonate fuel cell and manufacture of holding material for molten carbonate fuel cell electrolyte plate
KR100368561B1 (en) Method for Manufacturing Electrolyte Plate of Molten Carbonate Fuel Cells
JP2944097B2 (en) Molten carbonate fuel cell
JPH0222505B2 (en)
JPH0259592B2 (en)
JPS62154575A (en) Manufacture of fuel electrode for molten carbonate fuel cell