JP3852177B2 - Method for treating cathode for molten carbonate fuel cell - Google Patents

Method for treating cathode for molten carbonate fuel cell Download PDF

Info

Publication number
JP3852177B2
JP3852177B2 JP26517897A JP26517897A JP3852177B2 JP 3852177 B2 JP3852177 B2 JP 3852177B2 JP 26517897 A JP26517897 A JP 26517897A JP 26517897 A JP26517897 A JP 26517897A JP 3852177 B2 JP3852177 B2 JP 3852177B2
Authority
JP
Japan
Prior art keywords
cathode
carbonate
fuel cell
mol
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26517897A
Other languages
Japanese (ja)
Other versions
JPH1186883A (en
Inventor
稔智 太田
彰 鈴木
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP26517897A priority Critical patent/JP3852177B2/en
Publication of JPH1186883A publication Critical patent/JPH1186883A/en
Application granted granted Critical
Publication of JP3852177B2 publication Critical patent/JP3852177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は溶融炭酸塩型燃料電池で用いるカソードの炭酸塩含浸量を制御して電池性能を向上させるためのカソードの処理方法に関するものである。
【0002】
【従来の技術】
溶融炭酸塩型燃料電池は、電解質として溶融炭酸塩を多孔質のマトリックス板にしみ込ませてなる電解質板(タイル)をカソード(酸素極)とアノード(燃料極)の両電極で両面から挟み、カソード側に酸化ガスを供給すると共に、アノード側に燃料ガスを供給することによりカソード側とアノード側で反応が行われるようにしたものを1セルとし、各セルをセパレータを介し積層してスタックとするようにしてある。
【0003】
上記溶融炭酸塩型燃料電池の電極のうち、酸化ニッケル(NiO)を主成分とするカソードは、従来、原料粉としてNi粉を粉末冶金的手法により、Ni粉に対して1〜5重量%の結合剤、同じく1〜5重量%の分散材、同じく1〜5重量%の空孔形成剤、水と混合してスラリーとした後、板状に成形し、乾燥後に還元雰囲気で750℃の温度で焼成して、Ni金属多孔質体とするようにしてある。
【0004】
上記溶融炭酸塩型燃料電池を組み立てる場合は、電解質板を構成するマトリックス板の上に炭酸塩の粉末を均一な厚さに分散して乗せ、これをカソードとアノードの両電極間に挾持させるようにし、運転開始前に不活性ガスを流すことにより炭酸塩の融点以上の温度、一般には500℃以上の温度に加熱し、これらの積層体を接触させるような荷重のもとでこの初期昇温時に炭酸塩をマトリックス板にしみ込ませる含浸工程を経た後、カソード側に空気を流してカソードの酸化を行わせるようにしている。
【0005】
【発明が解決しようとする課題】
ところが、上記カソードは電池内で酸化させると、酸化ガスの濃度や加熱温度の状況によっては、ミクロ構造としての空孔構造が大きく変化して空隙率の低下と空孔直径の0.1〜5μm 部分の増加をもたらすことになるので、カソード内の炭酸塩量、つまり、カソードの空隙内に存在する炭酸塩の体積百分率としての含浸率が初期設定値と一致しなくなってしまい、電池性能が劣化してしまう問題が惹起される。すなわち、カソード内空隙内に炭酸塩が小さい空孔から占めるとしたカソード内炭酸塩占有最大径とネルンストロスを含む過電圧(以下、過電圧と記す)との関係は、一般に図8に示す如くであり、炭酸塩が空孔直径4.5μm 以上の大きい径まで占有されていると急激に過電圧が上昇することが分かる。但し、ここでの過電圧とは、「電池の無負荷時の電圧」−「無限に近い量のガスを流したときの電流負荷時の電池電圧」−「電池内部抵抗による電圧ロス」を言うが、この値が小さいほど電池性能(電極性能)がよいとされている。なお、ネルンストロスはガス条件と運転条件(負荷電流、温度など)が一定の時は一定とみなせる。
【0006】
又、上述したようなNiOを主成分とするカソードは、比表面積(単位重量当たり表面積)が大きく、酸化ガス中の炭酸ガスとの反応により溶融炭酸塩中にNiOが溶解する表面積が大きいので、溶融炭酸塩中に溶出して行く量が多く、電池の寿命に係る大きな問題がある。すなわち、NiOをを主成分とするカソードは、酸化ガス中の炭酸ガス(CO2 )との反応により
NiO+CO2 →Ni2++CO3 2-
の溶解反応を起し、表面から溶解して溶融炭酸塩中に溶出して行く性質があるが、上記した従来のカソードの場合は、溶解される表面積が大きいため、溶解反応による溶出量が多い。
【0007】
溶出したNi2+は、アノード側から拡散して来た水素により電解質板の溶融炭酸塩中で還元されて金属Niとなって析出し、この析出した金属Niによりカソードとアノード間に短絡が生じ、電池の電流が電池内部で消費されることになって電池の発電効率を低下させるという問題があり、又、上記電解質板中での還元反応によりNiに形を変えるため、炭酸塩中のNi2+イオンは、炭酸塩中で飽和することはなく、継続的にカソードの表面から炭酸塩中へのNiの溶出が続くので、電池運転中にカソードが減肉し、空孔構造を粗にして脆弱化し、電池運転中の圧縮による力で破壊に至り、電池の寿命が短かくなる問題がある。
【0008】
因に、特許第2514748号の特許公報に、溶融炭酸塩型燃料電池の始動法として、電池の始動時に、アノード側にH2 を含むガスを導入するまでの手順が示されており、その中で、カソードには低温で水素を導入し、窒素で水素をパージした後、酸化ガスを導入する旨の記載があるが、カソードの酸化処理については示されていない。
【0009】
そこで、本発明は、酸化処理してもミクロ構造の変化が少なく、空隙率の低下も少なくすることができるような溶融炭酸塩型燃料電池用カソードの処理方法を提供し、以て、電池性能を向上させることができるようにしようとするものである。
【0010】
【課題を解決するための手段】
本発明は、上記課題を解決するために、電解質板を構成するマトリックス板の上にLi成分が62 mol %以上のLi/K・CO 二元系炭酸塩、又は、Li成分が52 mol %以上のLi/Na・CO 二元系炭酸塩よりLi成分の多い組成で且つ燃料電池の運転温度で固相LiCOが共存しない組成とした炭酸塩の粉末を分散させて乗せ、これをNi金属多孔質体としたカソードとアノードの両電極間に挾持させた状態として燃料電池を組み立て、運転開始前に、不活性ガス雰囲気下で炭酸塩を570〜650℃まで加熱して溶融させて上記カソードに含浸させ、しかる後、O濃度が20%以下の酸化ガス雰囲気下で上記カソードを570〜650℃に維持して運転開始前に酸化させるようにする溶融炭酸塩型燃料電池用カソードの処理方法とする。
【0011】
Li成分の多い組成の炭酸塩を用いて 濃度が20%以下の酸化ガス雰囲気下でカソードを570〜650℃に維持して運転開始前に酸化させるので、ミクロ構造の変化が少なくて空隙率の低下も少ないカソードが得られる。
【0012】
上記炭酸塩としては、Li成分が62mol%超、且つ上限は燃料電池の運転温度で固相Li CO が共存しない組成のLi/K・CO二元系炭酸塩、又は、Li成分が52mol %超、且つ上限は燃料電池の運転温度で固相Li CO が共存しない組成のLi/Na・CO二元系炭酸塩を用いるのがよい。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0014】
図1は本発明の溶融炭酸塩型燃料電池用カソードの処理方法の手順を示すものである。
【0015】
カソードを電池内で酸化処理する場合には、先ず、電解質板を構成するマトリックス板の上に炭酸塩の粉末を均一な厚さに分散して乗せ、これをカソードとアノードの両電極間に挾持させるようにした状態とする(電池組立工程I)。
【0016】
上記カソードは、Ni金属多孔質体、又は、MgO添加型Ni金属多孔質体、あるいは、Fe 添加型Ni金属多孔質体としてある。又、炭酸塩としては、Li成分の多い組成として、Li/K・CO 二元系炭酸塩の場合は、Li成分が62 mol %以上とし、Li/Na・CO 二元系炭酸塩の場合は、Li成分が52 mol %以上とした炭酸塩を用い、上限は燃料電池の運転温度で固相Li CO が共存しない組成とする。なお、Li/K・CO 二元系炭酸塩の場合、上限は、700℃で90mol %、650℃で83mol %、600℃で77mol %、550℃で69mol %であり、Li/Na・CO 二元系炭酸塩の場合、上限は、700℃で90mol %、650℃で80mol %、600℃で70mol %、550℃で60mol %である。
【0017】
上記の状態において、燃料電池の運転を行う前に、予め、O2 濃度が20%以下の酸化ガスとして、空気、又は、空気+N2 をカソード側に流すようにし、酸化ガス雰囲気下で炭酸塩が溶融しない温度である400〜450℃まで昇温させて、電解質板を構成するマトリックス板中に含むバインダーを除去させるようにする(バインダー除去工程II) 。
【0018】
次に、上記酸化ガスを不活性ガスとしてのN2 でパージし、不活性ガス雰囲気下で、炭酸塩の融点以上の温度である570〜650℃まで加熱して炭酸塩を溶融させることにより、溶融炭酸塩を、電解質板を構成するマトリックス板と、カソードの空孔に含浸させるようにする(炭酸塩含浸工程III )。
【0019】
しかる後、O2 濃度が20%以下の酸化ガスとして、空気、又は、空気+N2 、あるいは、空気+N2 +CO2 をカソード側に流して不活性ガスをパージし、酸化ガス雰囲気下で上記加熱温度としての570〜650℃を維持してカソードを全体的に酸化させる(酸化工程IV)。
【0020】
本発明では、Li成分の多い組成の炭酸塩を用いて、O2 濃度が20%以下の酸化ガス雰囲気下において570〜650℃と高温でカソードを酸化させるようにするので、後述する実験結果から明らかな如く、カソードのミクロ構造の変化が少なくなり、空隙率の低下も少なくなる。そのため、設定値に近い炭酸塩含浸率を有するカソードを得ることができ、カソードの劣化速度を遅くすることができて、電池性能を向上させることができる。
【0021】
又、カソードへの炭酸塩の含浸率を減少させることができる結果、Niの溶出量が低下することにより、運転中のカソードの減肉が少なく、且つカソードの電池外への溶出量が低下するので、電池の寿命を延ばすことができる。
【0022】
なお、上記の場合、炭酸塩含浸工程III の前に、酸化ガス雰囲気下にてバインダー除去工程IIを行うため、カソードは酸化されるが、O2 濃度は20%以下でしかも400〜450℃と低温であることから表面が数%酸化されるだけであり、全体的に支障はない。
【0023】
上記において、Li成分が多くなるほど炭酸塩の融点が高くなるので、酸化温度を高くでき、酸化温度が高いと、炭酸塩をすべて溶かすことができて、くまなく分布させることができる。
【0024】
【実施例】
次に、本発明者が行った実験結果について説明する。
大気雰囲気における炭酸塩共存下での酸化試験を実施した。多孔質Ni−MgOサンプルをアルミナるつぼ内に炭酸塩とともに置き、あらかじめ所定の温度にした炉の中に入れ、所定時間保持した後、るつぼごとサンプルを取り出し空冷した。酸化条件は保持温度と保持時間を変化させた。保持温度は520℃から620℃まで50℃ごととした。炭酸塩は、LiCO/KCO系での62/38のmol比又は70/30のmol比について調査した。多孔質サンプルの評価として、厚さ変化、空隙率変化、多孔質空孔径分布変化、多孔質比表面積変化を測定し、X線回折による相の同定をした。
【0025】
図2は大気中で100%酸化したサンプルの厚さ変化率(%)を示すもので、初期厚さからの厚さ変化率を縦軸に、酸化保持温度を横軸にとっている。図中、○印は炭酸塩 mol 組成が70/30、●印は炭酸塩 mol 組成が62/38をサンプルと共存させたときである。
【0026】
図3は大気中で100%酸化したサンプルの空隙率(%)を示すもので、サンプルの空隙率を縦軸に、酸化保持温度を横軸にとっている。図中、○印は炭酸塩 mol 組成が70/30、●印は炭酸塩 mol 組成が62/38をサンプルと共存させたときである。
【0027】
図4は大気中で100%酸化したサンプルのメジアン空孔径(μ m )を示すもので、サンプルのメジアン空孔径を縦軸に、酸化保持時間を横軸にとっている。図中、○印は炭酸塩 mol 組成が70/30、●印は炭酸塩 mol 組成が62/38をサンプルと共存させたときである。
【0028】
図5は大気中で100%酸化したサンプルの単位重量当りの表面積(比表面積)(m / g)を示すもので、サンプルの比表面積を縦軸に、酸化保持温度を横軸にとっている。炭酸塩 mol 組成が70/30をサンプルと共存させたときであり、図中、×印は520℃、□印は570℃、△印は620℃の場合である。
【0029】
図6は大気中で100%酸化したサンプルの空孔径(μ m が2μm 以下の空孔存在率(空孔体積存在率)(%)を示すもので、サンプルの空孔存在率を縦軸に、酸化保持温度を横軸にとっている。図中、○印は炭酸塩 mol 組成が70/30、●は炭酸塩 mol 組成が62/38をサンプルと共存させたときである。又、図7は同じく大気中で100%酸化したサンプルの空孔径(μ m )が4μm 以下の空孔存在率(空孔体積存在率)(%)を示すもので、サンプルの空孔存在率を縦軸内に、酸化保持温度を横軸にとっている。図中、○印は炭酸塩 mol 組成が70/30、●印は、炭酸塩 mol 組成が62/38をサンプルと共存させたときである。
【0030】
以上の図2乃至図7の各実験結果から、カソードを570℃以上の高温で酸化させることにより、厚さ変化は厚く変化し、空隙率の変化が少なく、空孔径が大きくなり、比表面積が小さくなり、空孔存在率が少なく、電池性能の面で総合的に優れているという結果が得られた。
【0031】
【発明の効果】
以上述べた如く、本発明の溶融炭酸塩型燃料電池用カソードの処理方法によれば、電解質板を構成するマトリックス板の上にLi成分が62 mol %以上のLi/K・CO 二元系炭酸塩、又は、Li成分が52 mol %以上のLi/Na・CO 二元系炭酸塩よりLi成分の多い組成で且つ燃料電池の運転温度で固相LiCOが共存しない組成とした炭酸塩の粉末を分散させて乗せ、これをNi金属多孔質体としたカソードとアノードの両電極間に挾持させた状態として燃料電池を組み立て、運転開始前に、不活性ガス雰囲気下で炭酸塩を570〜650℃まで加熱して溶融させて上記カソードに含浸させ、しかる後、O濃度が20%以下の酸化ガス雰囲気下で上記カソードを570〜650℃に維持して運転開始前に酸化させることを特徴とするようにするので、ミクロ構造の変化が少なく、空隙率の低下も少なくて設定値に近い炭酸塩含浸率を有するカソードを得ることができることにより、電池性能を向上させることができ、又、カソードへの炭酸塩の含浸率を減少させることができることから、Niの溶出量を低下させることができて電池の寿命を延ばすことができる、という優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の溶融炭酸塩型燃料電池用カソードの処理方法を示す作業手順のブロック図である。
【図2】カソードの厚さ変化率と酸化温度との関係を示す実験結果の図である。
【図3】カソードの空隙率と酸化温度との関係を示す実験結果の図である。
【図4】カソードのメジアン空孔径と酸化温度との関係を示す実験結果の図である。
【図5】カソードの比表面積と酸化温度との関係を示す実験結果の図である。
【図6】カソードの空孔径が2μm 以下の空孔存在率と酸化温度との関係を示す実験結果の図である。
【図7】カソードの空孔径が4μm 以下の空孔存在率と酸化温度との関係を示す実験結果の図である。
【図8】カソード内炭酸塩占有最大径と過電圧との関係を示す図である。
【符号の説明】
I 電池組立工程
II バインダー除去工程
III 炭酸塩含浸工程
IV 酸化工程
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating a cathode for controlling the amount of carbonate impregnated in a cathode used in a molten carbonate fuel cell to improve cell performance.
[0002]
[Prior art]
In molten carbonate fuel cells, an electrolyte plate (tile) in which molten carbonate is impregnated into a porous matrix plate as an electrolyte is sandwiched between both cathode (oxygen electrode) and anode (fuel electrode) electrodes. A cell in which a reaction is performed on the cathode side and the anode side by supplying an oxidizing gas to the anode side and a fuel gas to the anode side is made into one cell, and each cell is stacked through a separator to form a stack. It is like that.
[0003]
Among the electrodes of the molten carbonate fuel cell, a cathode mainly composed of nickel oxide (NiO) is conventionally made of 1 to 5% by weight of Ni powder as a raw material powder by a powder metallurgy technique. A binder, also 1 to 5% by weight of a dispersing agent, 1 to 5% by weight of a pore-forming agent, mixed with water to form a slurry, molded into a plate shape, dried, and then reduced to a temperature of 750 ° C. in a reducing atmosphere. It is made to calcinate by making it a Ni metal porous body.
[0004]
When assembling the molten carbonate fuel cell, a carbonate powder is dispersed and placed on a matrix plate constituting an electrolyte plate, and is sandwiched between both cathode and anode electrodes. In this case, the temperature is raised to a temperature higher than the melting point of the carbonate, generally 500 ° C. or higher by flowing an inert gas before the start of operation, and this initial temperature rise is performed under a load that brings these laminates into contact with each other. Occasionally, an impregnation step in which carbonate is impregnated into the matrix plate is performed, and then the cathode is oxidized by flowing air to the cathode side.
[0005]
[Problems to be solved by the invention]
However, when the cathode is oxidized in the battery, depending on the concentration of the oxidizing gas and the heating temperature, the pore structure as the microstructure changes greatly, the porosity decreases, and the pore diameter decreases from 0.1 to 5 μm. As the amount of carbonate in the cathode, that is, the impregnation rate as a volume percentage of the carbonate present in the gap of the cathode, does not match the initial setting value, the battery performance deteriorates. Cause problems. That is, the relationship between the maximum occupied carbonate diameter in the cathode and the overvoltage including Nernstross (hereinafter referred to as overvoltage) in which the carbonate occupies from the small holes in the cathode is generally as shown in FIG. It can be seen that the overvoltage rises sharply when the carbonate is occupied to a large diameter of 4.5 μm or more in pore diameter. However, the overvoltage here means “battery no-load voltage” − “battery voltage under current load when a nearly infinite amount of gas flows” − “voltage loss due to battery internal resistance”. The smaller the value, the better the battery performance (electrode performance). Nernstross can be considered constant when gas conditions and operating conditions (load current, temperature, etc.) are constant.
[0006]
Further, the cathode mainly composed of NiO as described above has a large specific surface area (surface area per unit weight) and a large surface area for dissolving NiO in the molten carbonate by reaction with carbon dioxide in the oxidizing gas. There is a large amount of elution into the molten carbonate, and there is a big problem related to the battery life. In other words, the cathode mainly composed of NiO has NiO + CO 2 → Ni 2+ + CO 3 2− due to reaction with carbon dioxide (CO 2 ) in the oxidizing gas.
In the case of the above-described conventional cathode, since the surface area to be dissolved is large, the amount of dissolution due to the dissolution reaction is large. .
[0007]
The eluted Ni 2+ is reduced in the molten carbonate of the electrolyte plate by hydrogen diffused from the anode side and deposited as metal Ni, and the deposited metal Ni causes a short circuit between the cathode and the anode. The battery current is consumed inside the battery, resulting in a problem that the power generation efficiency of the battery is lowered. Also, since the shape is changed to Ni by the reduction reaction in the electrolyte plate, Ni in the carbonate 2+ ions do not saturate in the carbonate, and the elution of Ni from the surface of the cathode into the carbonate continues, so the cathode is thinned during battery operation and the pore structure is roughened. There is a problem that the battery life is shortened because it is weakened and is destroyed by the force of compression during battery operation.
[0008]
Incidentally, in the patent publication of Japanese Patent No. 2514748, as a method for starting a molten carbonate fuel cell, a procedure for introducing a gas containing H 2 to the anode side at the time of starting the cell is shown. However, there is a description that the cathode is introduced with hydrogen at a low temperature, purged with nitrogen and then the oxidizing gas is introduced, but the oxidation treatment of the cathode is not shown.
[0009]
Therefore, the present invention provides a method for treating a molten carbonate fuel cell cathode, which is capable of reducing a change in microstructure and reducing a decrease in porosity even when an oxidation treatment is performed. Is to be able to improve.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a Li / K · CO 3 binary carbonate having an Li component of 62 mol % or more on the matrix plate constituting the electrolyte plate , or an Li component of 52 mol %. A carbonate powder having a composition with more Li component than the above Li / Na · CO 3 binary carbonate and a composition in which solid phase Li 2 CO 3 does not coexist at the operating temperature of the fuel cell is dispersed and placed. Assemble the fuel cell in a state where Ni is held between the cathode and the anode made of a porous Ni metal, and heat the carbonate to 570 to 650 ° C. in an inert gas atmosphere and melt it before starting operation. For the molten carbonate fuel cell, the cathode is impregnated, and then the cathode is maintained at 570 to 650 ° C. in an oxidizing gas atmosphere having an O 2 concentration of 20% or less to oxidize before starting operation. Cathode The processing method.
[0011]
Since the cathode is maintained at 570 to 650 ° C. in an oxidizing gas atmosphere with an O 2 concentration of 20% or less using a carbonate having a composition with a large amount of Li component, the structure is oxidized before the start of operation. A cathode with little reduction in rate is obtained.
[0012]
As the carbonate, the Li component exceeds 62 mol% , and the upper limit is Li / K · CO 3 binary carbonate having a composition in which the solid phase Li 2 CO 3 does not coexist at the operating temperature of the fuel cell , or the Li component is It is preferable to use Li / Na · CO 3 binary carbonate having a composition exceeding 52 mol % and having an upper limit of the composition at which the solid phase Li 2 CO 3 does not coexist at the operating temperature of the fuel cell .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 shows a procedure of a method for treating a cathode for a molten carbonate fuel cell according to the present invention.
[0015]
When the cathode is oxidized in the battery, first, a carbonate powder is dispersed and placed on the matrix plate constituting the electrolyte plate, and this is sandwiched between the cathode and anode electrodes. (Battery assembly process I).
[0016]
The cathode is an Ni metal porous body, an MgO-added Ni metal porous body, or an Fe 2 O 3 -added Ni metal porous body. As the carbonate, as many compositions of Li component, in the case of L i / K · CO 3 binary carbonate, Li component and 62 mol% or more, Li / Na · CO 3 binary carbonate In this case, a carbonate having a Li component of 52 mol % or more is used, and the upper limit is a composition in which solid phase Li 2 CO 3 does not coexist at the operating temperature of the fuel cell. In the case of Li / K · CO 3 binary carbonate, the upper limit is 90 mol% at 700 ° C., 83 mol% at 650 ° C., 77 mol% at 600 ° C., 69 mol% at 550 ° C., and Li / Na · CO In the case of ternary carbonates, the upper limit is 90 mol% at 700 ° C., 80 mol% at 650 ° C., 70 mol% at 600 ° C., and 60 mol% at 550 ° C.
[0017]
In the above state, before operating the fuel cell, air or air + N 2 is flowed to the cathode side in advance as an oxidizing gas having an O 2 concentration of 20% or less, and carbonate in an oxidizing gas atmosphere. The temperature is raised to 400 to 450 ° C., which is a temperature at which the electrolyte does not melt, so that the binder contained in the matrix plate constituting the electrolyte plate is removed (binder removal step II).
[0018]
Next, the oxidizing gas is purged with N 2 as an inert gas, and heated to 570 to 650 ° C. which is a temperature equal to or higher than the melting point of the carbonate in an inert gas atmosphere to melt the carbonate, The molten carbonate is impregnated into the matrix plate constituting the electrolyte plate and the pores of the cathode (carbonate impregnation step III).
[0019]
Thereafter, as an oxidizing gas having an O 2 concentration of 20% or less, air, air + N 2 , or air + N 2 + CO 2 is flowed to the cathode side to purge the inert gas, and the above heating is performed in an oxidizing gas atmosphere. The cathode is totally oxidized while maintaining a temperature of 570 to 650 ° C. (oxidation step IV).
[0020]
In the present invention, a carbonate having a composition with a large amount of Li component is used to oxidize the cathode at a high temperature of 570 to 650 ° C. in an oxidizing gas atmosphere having an O 2 concentration of 20% or less. As can be seen, the change in the cathode microstructure is reduced and the porosity is also reduced. Therefore, a cathode having a carbonate impregnation rate close to a set value can be obtained, the deterioration rate of the cathode can be slowed, and battery performance can be improved.
[0021]
In addition, as a result of the reduction of the carbonate impregnation rate to the cathode, the Ni elution amount is reduced, so that the cathode is not thinned during operation, and the elution amount of the cathode to the outside of the battery is reduced. Therefore, the life of the battery can be extended.
[0022]
In the above case, since the binder removal step II is performed in an oxidizing gas atmosphere before the carbonate impregnation step III, the cathode is oxidized, but the O 2 concentration is 20% or less and 400 to 450 ° C. Since the temperature is low, the surface is only oxidized by a few percent, and there is no problem as a whole.
[0023]
In the above, since the melting point of the carbonate increases as the Li component increases, the oxidation temperature can be increased. When the oxidation temperature is high, all the carbonate can be dissolved and distributed throughout.
[0024]
【Example】
Next, the results of experiments conducted by the inventor will be described.
An oxidation test was conducted in the presence of carbonate in the atmosphere. The porous Ni—MgO sample was placed in an alumina crucible together with carbonate, placed in a furnace previously set at a predetermined temperature, held for a predetermined time, and then the sample with the crucible was taken out and air-cooled. Oxidation conditions varied holding temperature and holding time. The holding temperature was from 520 ° C. to 620 ° C. every 50 ° C. The carbonate was investigated for a 62/38 mol ratio or a 70/30 mol ratio in the Li 2 CO 3 / K 2 CO 3 system. As the evaluation of the porous sample, thickness change, porosity change, porous pore size distribution change, and porous specific surface area change were measured, and the phase was identified by X-ray diffraction.
[0025]
FIG. 2 shows the thickness change rate (%) of a sample oxidized 100% in the atmosphere . The vertical axis represents the rate of change in thickness from the initial thickness, and the horizontal axis represents the oxidation holding temperature. In the figure, ○ mark carbonate mol composition 70/30, ● mark is when the carbonate mol composition was allowed to coexist with the sample 62/38.
[0026]
FIG. 3 shows the porosity (%) of a sample that is 100% oxidized in the atmosphere, with the porosity of the sample on the vertical axis and the oxidation holding temperature on the horizontal axis. In the figure, ○ mark carbonate mol composition 70/30, ● mark is when the carbonate mol composition was allowed to coexist with the sample 62/38.
[0027]
Figure 4 shows the median pore diameter (mu m) of the sample oxidized 100% in the air, the median pore diameter of the sample on the vertical axis, taking the oxidation retention time on the horizontal axis. In the figure, ○ mark carbonate mol composition 70/30, ● mark is when the carbonate mol composition was allowed to coexist with the sample 62/38.
[0028]
FIG. 5 shows the surface area per unit weight (specific surface area) (m 2 / g) of a sample oxidized 100% in the atmosphere, with the specific surface area of the sample on the vertical axis and the oxidation retention temperature on the horizontal axis. This is a case where the carbonate mol composition is 70/30 coexisting with the sample. In the figure, the x mark is 520 ° C., the □ mark is 570 ° C., and the Δ mark is 620 ° C.
[0029]
Figure 6 shows the pore diameter (mu m) is 2μm or less of the pore existence rate of the samples oxidized 100% in air (pore volume existence ratio) (%) and the ordinate the pore existence rate of the sample In addition, the oxidation retention temperature is plotted on the horizontal axis. In the figure, ○ mark carbonate mol composition 70/30, ● is when carbonates mol composition was allowed to coexist with the sample 62/38. Further, FIG. 7 is a similarly shows the pore diameter (mu m) is 4μm or less of pore existence rate of the samples oxidized 100% in air (pore volume existence ratio) (%), pore existence rate of the sample Is on the vertical axis, and the oxidation retention temperature is on the horizontal axis. In the figure, ○ mark carbonate mol composition 70/30, ● mark is when the carbonate mol composition was allowed to coexist with the sample 62/38.
[0030]
From the results of the experiments shown in FIGS. 2 to 7 , when the cathode is oxidized at a high temperature of 570 ° C. or higher, the thickness change changes thickly, the porosity does not change much, the pore diameter increases, and the specific surface area increases. As a result, the vacancy rate was small and the battery performance was excellent overall.
[0031]
【The invention's effect】
As described above, according to the method for treating a cathode for a molten carbonate fuel cell of the present invention, a Li / K · CO 3 binary system having a Li component of 62 mol % or more on a matrix plate constituting an electrolyte plate. Carbonate or a composition with more Li component than Li / Na · CO 3 binary carbonate having a Li component of 52 mol % or more and a composition in which solid phase Li 2 CO 3 does not coexist at the operating temperature of the fuel cell A fuel cell is assembled in a state where a carbonate powder is dispersed and placed, and this is sandwiched between both cathode and anode electrodes made of a Ni metal porous body, and carbonate is introduced in an inert gas atmosphere before starting operation. Is heated to 570 to 650 ° C. and melted to impregnate the cathode. After that, the cathode is maintained at 570 to 650 ° C. in an oxidizing gas atmosphere with an O 2 concentration of 20% or less, and oxidized before starting operation. Letting Since it is possible to obtain a cathode having a carbonate impregnation rate close to a set value with little change in the microstructure and little decrease in the porosity, battery performance can be improved, Further, since the rate of impregnation of the carbonate into the cathode can be reduced, an excellent effect that the elution amount of Ni can be reduced and the life of the battery can be extended is exhibited.
[Brief description of the drawings]
FIG. 1 is a block diagram of a work procedure showing a method for treating a cathode for a molten carbonate fuel cell according to the present invention.
FIG. 2 is a diagram of an experimental result showing a relationship between a cathode thickness change rate and an oxidation temperature.
FIG. 3 is a diagram of experimental results showing the relationship between the porosity of the cathode and the oxidation temperature.
FIG. 4 is a diagram of experimental results showing the relationship between the median pore diameter of the cathode and the oxidation temperature.
FIG. 5 is a diagram of experimental results showing the relationship between the specific surface area of the cathode and the oxidation temperature.
FIG. 6 is a diagram of experimental results showing the relationship between the presence rate of pores having a cathode pore size of 2 μm or less and the oxidation temperature.
FIG. 7 is a diagram of experimental results showing the relationship between the presence rate of pores having a cathode pore size of 4 μm or less and the oxidation temperature.
FIG. 8 is a diagram showing the relationship between the maximum occupied carbonate diameter in the cathode and the overvoltage.
[Explanation of symbols]
I Battery assembly process
II Binder removal process
III Carbonate impregnation process
IV Oxidation process

Claims (3)

電解質板を構成するマトリックス板の上にLi成分が62 mol %以上のLi/K・CO 二元系炭酸塩、又は、Li成分が52 mol %以上のLi/Na・CO 二元系炭酸塩よりLi成分の多い組成で且つ燃料電池の運転温度で固相LiCOが共存しない組成とした炭酸塩の粉末を分散させて乗せ、これをNi金属多孔質体としたカソードとアノードの両電極間に挾持させた状態として燃料電池を組み立て、運転開始前に、不活性ガス雰囲気下で炭酸塩を570〜650℃まで加熱して溶融させて上記カソードに含浸させ、しかる後、O濃度が20%以下の酸化ガス雰囲気下で上記カソードを570〜650℃に維持して運転開始前に酸化させることを特徴とする溶融炭酸塩型燃料電池用カソードの処理方法。On the matrix plate constituting the electrolyte plate, Li / K · CO 3 binary carbonate having an Li component of 62 mol % or more , or Li / Na · CO 3 binary carbonate having an Li component of 52 mol % or more Carbonate powder having a composition with more Li component than salt and a composition in which solid phase Li 2 CO 3 does not coexist at the operating temperature of the fuel cell is dispersed and placed, and this is made into a Ni metal porous body for the cathode and anode. The fuel cell is assembled in a state of being held between both electrodes, and before starting operation, carbonate is heated to 570 to 650 ° C. in an inert gas atmosphere to melt and impregnate the cathode, and then O 2. A method of treating a cathode for a molten carbonate fuel cell, characterized in that the cathode is maintained at 570 to 650 ° C. in an oxidizing gas atmosphere having a concentration of 20% or less and is oxidized before the start of operation. 電解質板を構成するマトリックス板の上にLi成分が62mol%超、且つ上限は燃料電池の運転温度で固相Li CO が共存しない組成のLi/K・CO二元系炭酸塩の粉末を分散させて乗せ、これをNi金属多孔質体としたカソードとアノードの両電極間に挾持させた状態として燃料電池を組み立て、運転開始前に、不活性ガス雰囲気下で炭酸塩を570〜650℃まで加熱して溶融させて上記カソードに含浸させ、しかる後、O濃度が20%以下の酸化ガス雰囲気下で上記カソードを570〜650℃に維持して運転開始前に酸化させることを特徴とする溶融炭酸塩型燃料電池用カソードの処理方法。Li component on the matrix plate constituting the electrolyte plate 62 mol% greater, and the upper limit of the composition is solid Li 2 CO 3 at the operating temperature of the fuel cell does not coexist Li / K · CO 3 binary carbonate powder The fuel cell is assembled in a state in which it is placed between the cathode and anode electrodes made of Ni metal porous body, and before the start of operation, the carbonate is 570 to 650 in an inert gas atmosphere. The cathode is heated to melt at 5 ° C. and impregnated in the cathode, and then the cathode is maintained at 570 to 650 ° C. in an oxidizing gas atmosphere having an O 2 concentration of 20% or less to oxidize before starting operation. A method for treating a cathode for a molten carbonate fuel cell. 電解質板を構成するマトリックス板の上にLi成分が52mol%超、且つ上限は燃料電池の運転温度で固相Li CO が共存しない組成のLi/Na・CO二元系炭酸塩の粉末を分散させて乗せ、これをNi金属多孔質体としたカソードとアノードの両電極間に挾持させた状態として燃料電池を組み立て、運転開始前に、不活性ガス雰囲気下で炭酸塩を570〜650℃まで加熱して溶融させて上記カソードに含浸させ、しかる後、O濃度が20%以下の酸化ガス雰囲気下で上記カソードを570〜650℃に維持して運転開始前に酸化させることを特徴とする溶融炭酸塩型燃料電池用カソードの処理方法。Li component on the matrix plate constituting the electrolyte plate 52 mol% greater, and the upper limit of the composition is solid Li 2 CO 3 at the operating temperature of the fuel cell does not coexist Li / Na · CO 3 binary carbonate powder The fuel cell is assembled in a state in which it is placed between the cathode and anode electrodes made of Ni metal porous body, and before the start of operation, the carbonate is 570 to 650 in an inert gas atmosphere. The cathode is heated to melt at 5 ° C. and impregnated in the cathode, and then the cathode is maintained at 570 to 650 ° C. in an oxidizing gas atmosphere having an O 2 concentration of 20% or less to oxidize before starting operation. A method for treating a cathode for a molten carbonate fuel cell.
JP26517897A 1997-09-12 1997-09-12 Method for treating cathode for molten carbonate fuel cell Expired - Fee Related JP3852177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26517897A JP3852177B2 (en) 1997-09-12 1997-09-12 Method for treating cathode for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26517897A JP3852177B2 (en) 1997-09-12 1997-09-12 Method for treating cathode for molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH1186883A JPH1186883A (en) 1999-03-30
JP3852177B2 true JP3852177B2 (en) 2006-11-29

Family

ID=17413668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26517897A Expired - Fee Related JP3852177B2 (en) 1997-09-12 1997-09-12 Method for treating cathode for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP3852177B2 (en)

Also Published As

Publication number Publication date
JPH1186883A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
EP0240662B1 (en) Reduction of electrode dissolution in electrochemical generators
US8114551B2 (en) Porous structured body for a fuel cell anode
DK2619829T3 (en) Rechargeable energy storage device
KR20080083112A (en) Bifunctional air electrode
CA1164043A (en) Molten carbonate fuel cell
JPS62154465A (en) Anode of molten carbonate fuel battery and manufacture of the same
JP2999918B2 (en) Method for producing positive electrode for molten carbonate fuel cell
JP3852177B2 (en) Method for treating cathode for molten carbonate fuel cell
KR100681771B1 (en) Ni-Al alloy anode for molten carbonate fuel cell by in-situ sintering the Ni-Al alloy and Method for preparing the same
EP0433681B1 (en) Molten carbonate fuel cell start-up process
EP2064764B1 (en) Anode for use in fuel cell and method for making same
JPH0520872B2 (en)
JP3805841B2 (en) Molten carbonate fuel cell
JPH05335030A (en) Method for enhancing performance of fuel cell
KR100331082B1 (en) A method for making anode of molten carbonate fuel cell
JP2526284B2 (en) Method for operating molten carbonate fuel cell
JP2517750B2 (en) Method for producing molten salt fuel cell
KR100331083B1 (en) An anode of molten carbonate fuel cell
CN113753854A (en) Hydrogen storage fuel with straight hole structure and preparation method thereof
KR100514782B1 (en) Manufacturing method of pulley process non-oriented electrical steel sheet with low iron loss and high magnetic flux density
KR100236275B1 (en) Method manufacturing air electrode for molten carbon fuel cell
JPH04215257A (en) Molten carbonate fuel cell
JPH07105968A (en) Molten carbonate fuel cell and its manufacture and operating method
JPH0378747B2 (en)
JPH0719606B2 (en) Molten carbonate fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees