JPH04215257A - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPH04215257A
JPH04215257A JP2401860A JP40186090A JPH04215257A JP H04215257 A JPH04215257 A JP H04215257A JP 2401860 A JP2401860 A JP 2401860A JP 40186090 A JP40186090 A JP 40186090A JP H04215257 A JPH04215257 A JP H04215257A
Authority
JP
Japan
Prior art keywords
battery
cathode
anode
carbonate
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2401860A
Other languages
Japanese (ja)
Inventor
Koji Yasuo
安 尾  耕 司
Kimihiko Okudo
尾 久 土  公 彦
Yasuhiko Ito
伊 藤  靖 彦
Masato Nishioka
西 岡  正 人
Toshihiko Saito
齋 藤  俊 彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2401860A priority Critical patent/JPH04215257A/en
Publication of JPH04215257A publication Critical patent/JPH04215257A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To suppress a catalyst from being poisoned by molten carbonate and extend the life of a battery by arranging a cathode impregnated with all the carbonate required for a unit cell and an anode containing no carbonate via an electrolyte plate. CONSTITUTION:A porous anode 2 made of Ni powder containing Cr and a serrate type corrugated plate 3 made of inconel and having fuel gas passages are provided on one face of an electrolyte plate 1 mainly made of gamma-lithium aluminate, and columnar catalysts 4 carried with Ni on alumina are filled in recesses. A porous cathode 5 made of Ni powder and containing carbonate and a serrate type corrugated plate 6 are provided on the other face of the plate 1, and bipolar plates 7 made of stainless steel are arranged on back faces of the corrugated plates 3, 6. The infiltration of the required quantity or above of molten carbonate into the anode 2 is prevented while the gas permeability into the cathode 5 is maintained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は溶融炭酸塩燃料電池に関
し、特に直接内部改質型溶融炭酸塩燃料電池に関する。
FIELD OF THE INVENTION This invention relates to molten carbonate fuel cells, and more particularly to direct internal reforming molten carbonate fuel cells.

【0002】0002

【従来の技術】上記溶融炭酸塩燃料電池の電解質は、炭
酸リチウムと炭酸カリウムとの共晶塩等、炭酸塩の溶融
塩が用いられ、リチウムアルミネート等の多孔質セラミ
ック体から成る電解質板に保持される。この電解質板の
両面にそれぞれアノードとカソードとを接触させ、規定
の温度(例えば、650℃)で、アノード側に燃料ガス
を、カソード側に酸化剤ガスをそれぞれ供給することに
より発電を行う。上記燃料ガスとしては、例えば炭化水
素と水蒸気とから成り、主に水素及び一酸化炭素に改質
して電池反応に供せられる。
[Prior Art] The electrolyte of the above-mentioned molten carbonate fuel cell is a molten carbonate salt such as a eutectic salt of lithium carbonate and potassium carbonate, and an electrolyte plate made of a porous ceramic body such as lithium aluminate is used. Retained. An anode and a cathode are brought into contact with both sides of this electrolyte plate, respectively, and power is generated by supplying fuel gas to the anode side and oxidizing gas to the cathode side at a specified temperature (for example, 650° C.). The above-mentioned fuel gas is composed of, for example, hydrocarbons and water vapor, and is mainly reformed into hydrogen and carbon monoxide for use in the cell reaction.

【0003】ここで、上記溶融炭酸塩燃料電池は、改質
方式により、スタック外で改質する外部改質型と、スタ
ック内で改質する内部改質型とに区分される。後者は、
電池の反応熱を利用して、燃料ガスを改質してアノード
に供給する構造であるため、電池の冷却効果が良く、且
つ高いシステム効率が期待される。また、後者には、供
給される燃料ガスがアノードと触媒との両方に触れる直
接内部改質型と、供給される燃料ガスが先ず触媒のみに
触れその後アノードに供給される間接内部改質型とがあ
る。
[0003] The above-mentioned molten carbonate fuel cells are classified according to the reforming method into an external reforming type in which the fuel cell is reformed outside the stack, and an internal reforming type in which the fuel cell is reformed within the stack. The latter is
Since the structure uses the reaction heat of the battery to reform the fuel gas and supply it to the anode, it is expected that the battery will have a good cooling effect and high system efficiency. The latter type includes a direct internal reforming type in which the supplied fuel gas contacts both the anode and the catalyst, and an indirect internal reforming type in which the supplied fuel gas first contacts only the catalyst and is then supplied to the anode. There is.

【0004】次に、上記溶融炭酸塩燃料電池の製造方法
について説明する。先ず、上記電池では、予め、炭酸塩
を電解質板に混合する。即ち、リチウムアルミネート等
のセラミック材料に、有機系可塑剤と結着剤とを混合し
たスラリーに炭酸塩を添加し、これを電解質板の大面積
化やシート化が容易なテープキャスティング法によりシ
ート状に形成する。このシートは、有機系可塑剤や結着
剤を含むので柔軟性を有するので、これと一対の電極と
で単位電池を構成する。このスタックの昇温過程で可塑
剤や結着剤を飛散させ、溶融炭酸塩を保持する多孔質セ
ラミック体から成る電解質板が作製される。ところが、
このような製造方法では、可塑剤や結着剤を飛散させた
後に、飛散部分が空孔となり、この結果ガスのクロスオ
ーバが生じるという課題を有していた。
Next, a method for manufacturing the above molten carbonate fuel cell will be explained. First, in the above-mentioned battery, carbonate is mixed in the electrolyte plate in advance. In other words, carbonate is added to a slurry of a ceramic material such as lithium aluminate mixed with an organic plasticizer and a binder, and this is formed into a sheet by tape casting, which makes it easy to make a large area electrolyte plate and form it into a sheet. form into a shape. Since this sheet contains an organic plasticizer and a binder and has flexibility, this sheet and a pair of electrodes constitute a unit battery. As the stack heats up, the plasticizer and binder are dispersed, creating an electrolyte plate consisting of a porous ceramic body that holds the molten carbonate. However,
Such a manufacturing method has a problem in that after the plasticizer or binder is scattered, the scattered portion becomes pores, resulting in gas crossover.

【0005】そこで、炭酸塩を含まない電解質板のシー
トと、予め所定量の炭酸塩を含浸したアノード及びカソ
ードとで単位電池を構成する。この電池の昇温過程では
上記と同様空孔が生じるが、アノードやカソードに含浸
された溶融炭酸塩がこれら空孔に浸透する。したがって
、ガスのクロスオーバが生じるのを抑制することができ
る。
[0005] Therefore, a unit cell is constructed of an electrolyte plate sheet containing no carbonate, and an anode and a cathode impregnated with a predetermined amount of carbonate. During the heating process of this battery, pores are generated as described above, and the molten carbonate impregnated in the anode and cathode penetrates into these pores. Therefore, it is possible to suppress the occurrence of gas crossover.

【0006】[0006]

【発明が解決しようとする課題】ところで、前記直接内
部改質型溶融炭酸塩燃料電池では、改質反応とアノード
極反応とが近接して起こるので、改質反応で生じた水素
は逐次消費され、改質反応が促進される。しかし、前記
の如く予めアノードに炭酸塩を含浸すると、アノードに
必要量以上の溶融炭酸塩が含浸されるため、アノードと
触媒とが近接して配置された直接内部改質型溶融炭酸塩
燃料電池では、昇温過程や運転初期に、触媒がアノード
の炭酸溶融塩によって被毒する。このため、電池寿命が
短くなるという課題を有していた。
[Problems to be Solved by the Invention] However, in the direct internal reforming type molten carbonate fuel cell, since the reforming reaction and the anode electrode reaction occur close to each other, the hydrogen produced in the reforming reaction is consumed sequentially. , the modification reaction is promoted. However, if the anode is impregnated with carbonate in advance as described above, the anode will be impregnated with more than the necessary amount of molten carbonate, so a direct internal reforming type molten carbonate fuel cell in which the anode and catalyst are arranged close to each other, In this case, the catalyst is poisoned by the molten carbonate at the anode during the temperature rising process or at the beginning of operation. Therefore, there was a problem that the battery life was shortened.

【0007】本発明はかかる現状に鑑みてなされたもの
であり、触媒が溶融炭酸塩によって被毒されるのを抑制
して、電池寿命を長くすることができる溶融炭酸塩燃料
電池を提供することを目的とする。
The present invention has been made in view of the current situation, and it is an object of the present invention to provide a molten carbonate fuel cell that can suppress poisoning of the catalyst by molten carbonate and extend the battery life. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、単位電池に必要な全ての炭酸塩が含浸され
たカソードと、炭酸塩を含まないアノードとが、電解質
板を介して配置されていることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method in which a cathode impregnated with all the carbonates necessary for a unit battery and an anode containing no carbonates are connected to each other through an electrolyte plate. It is characterized by being located.

【0009】[0009]

【作用】上記スタックの昇温過程において、可塑剤と結
着剤とが飛散することにより生じた電解質板の空孔やア
ノードの空孔には、カソードに含浸された溶融炭酸塩が
浸透するが、このような方法でアノードに溶融炭酸塩を
含浸させると、アノードに必要量以上の溶融炭酸塩が含
浸されるのを防止することができる。したがって、電池
の昇温過程や運転初期に触媒が被毒されるのを抑制する
ことが可能となる。
[Operation] During the heating process of the stack, the molten carbonate impregnated in the cathode penetrates into the pores in the electrolyte plate and the pores in the anode, which are created by the scattering of the plasticizer and binder. When the anode is impregnated with molten carbonate by such a method, it is possible to prevent the anode from being impregnated with more than the required amount of molten carbonate. Therefore, it is possible to suppress the catalyst from being poisoned during the temperature rising process of the battery or during the initial stage of operation.

【0010】0010

【実施例】〔実施例1〕 本発明の一実施例を、図1及び図2に基づいて、以下に
説明する。図1は本発明の燃料電池の要部概略斜視図で
あって、γ−リチウムアルミネートを主体とする電解質
板1(空孔率:60%,厚み:0.6mm)の一方の面
には、クロム含有ニッケル粉末の多孔質体から成るアノ
ード2(空孔率:60%,厚み:1mm)と、インコネ
ルから成り燃料ガス通路を構成するセレート型コルゲー
ト3とが順に設けられている。上記コルゲート3の凹部
には、アルミナにニッケルを担持させた円柱状の触媒4
が充填されている。
[Embodiment] [Embodiment 1] An embodiment of the present invention will be described below based on FIGS. 1 and 2. FIG. 1 is a schematic perspective view of the main parts of the fuel cell of the present invention, in which one side of an electrolyte plate 1 (porosity: 60%, thickness: 0.6 mm) mainly composed of , an anode 2 (porosity: 60%, thickness: 1 mm) made of a porous body of chromium-containing nickel powder, and a serrated corrugate 3 made of Inconel and forming a fuel gas passage are provided in this order. In the recess of the corrugate 3, there is a cylindrical catalyst 4 in which nickel is supported on alumina.
is filled.

【0011】一方、上記電解質板1の他方の面には、ニ
ッケル粉末の多孔質体から成り炭酸塩を含むカソード5
(空孔率:65%)と、インコネルから成り空気通路を
構成するセレート型コルゲート6が順に設けられている
。尚、両コルゲート3・6の背面には、SUS316L
から成るバイポーラプレート7・7がそれぞれ配置され
ている。
On the other hand, on the other side of the electrolyte plate 1, there is a cathode 5 made of a porous body of nickel powder and containing carbonate.
(Porosity: 65%) and a serrated corrugate 6 made of Inconel and forming an air passage are provided in this order. In addition, the back of both corrugates 3 and 6 is made of SUS316L.
Bipolar plates 7, 7 consisting of are arranged respectively.

【0012】ここで、上記電解質板1とカソード5とを
以下のようにして作製した。電解質板1は、先ず、下記
に示す電解質板用材料をボールミルにて十分混合して、
スラリーを作製する。   γ−リチウムアルミネート           
     100重量部  結着剤(ポリビニルブチラ
ール樹脂)        30重量部  可塑剤(フ
タル酸ジオクチル)              20
重量部  溶媒(エタノール)           
           300重量部次に、このように
して得られたスラリーをテープキャスティング法により
シート状とした後、有機物を飛散させることにより、空
孔率50%,厚み0.6mmの電解質板1を作製した。
[0012] Here, the electrolyte plate 1 and cathode 5 were manufactured as follows. The electrolyte plate 1 is made by first thoroughly mixing the following electrolyte plate materials in a ball mill.
Prepare slurry. γ-lithium aluminate
100 parts by weight Binder (polyvinyl butyral resin) 30 parts by weight Plasticizer (dioctyl phthalate) 20
Parts by weight Solvent (ethanol)
300 parts by weight Next, the thus obtained slurry was formed into a sheet by tape casting, and the organic matter was scattered to produce an electrolyte plate 1 having a porosity of 50% and a thickness of 0.6 mm.

【0013】一方、カソード5は、先ず、ドクターブレ
ード法により平均粒径5μmのニッケル粉末を作成した
後、これを焼結し、更にこの焼結したニッケル粉末によ
り多孔質体(空孔率65%)を作製する。次に、単位電
池に必要な量の炭酸リチウムと炭酸カリウムとの共晶塩
(Li:K=62:38mol%)を上記多孔質体に含
浸させることにより、含浸率が85%となる厚みのカソ
ード5を作製した。
On the other hand, for the cathode 5, first, nickel powder with an average particle size of 5 μm is prepared by the doctor blade method, and then this is sintered.The sintered nickel powder is then used to form a porous body (porosity: 65%). ). Next, by impregnating the above porous body with the amount of eutectic salt of lithium carbonate and potassium carbonate (Li:K=62:38 mol%) required for the unit battery, a thickness such that the impregnation rate is 85% is obtained. Cathode 5 was produced.

【0014】このようにして作製した電池を、以下(A
1 )電池と称する。 〔実施例2〕 共晶塩の含浸率が62%となる厚みのカソード5を用い
る他は、上記実施例1と同様にして電池を作製した。こ
のようにして作製した電池を、以下(A2 )電池と称
する。
[0014] The battery thus produced is shown below (A
1) It is called a battery. [Example 2] A battery was produced in the same manner as in Example 1 above, except that the cathode 5 had a thickness such that the eutectic salt impregnation rate was 62%. The battery thus produced is hereinafter referred to as the (A2) battery.

【0015】〔比較例〕 カソード5のみならずアノード2にも共晶塩を含浸させ
る他は、上記実施例1と同様にして電池を作製した。こ
のようにして作製した電池を、以下(X)電池と称する
。 〔実験〕 上記本発明の(A1 )電池,(A2 )電池及び比較
例の(X)電池を発電させ、このときの電池電圧の経時
変化を調べたので、その結果を図2に示す。尚、実験条
件は、電流密度150mA/cm2 、電池の運転温度
650℃、燃料ガス内の水蒸気とメタンとの比を3:1
で行った。
[Comparative Example] A battery was produced in the same manner as in Example 1, except that not only the cathode 5 but also the anode 2 was impregnated with the eutectic salt. The battery thus produced is hereinafter referred to as the (X) battery. [Experiment] The (A1) battery of the present invention, the (A2) battery, and the (X) battery of the comparative example were used to generate electricity, and the changes in battery voltage over time were investigated. The results are shown in FIG. 2. The experimental conditions were a current density of 150 mA/cm2, a battery operating temperature of 650°C, and a ratio of water vapor to methane in the fuel gas of 3:1.
I went there.

【0016】図2から明らかなように、本発明の(A1
 )電池,(A2 )電池では初期の電圧が約1300
時間まで維持されるのに対して、比較例の(X)電池で
は約700時間しか維持されないことが認められた。 これは、本発明の(A1 )電池,(A2 )電池では
運転初期に被毒する触媒の割合が少ないので、その後の
運転において活性な触媒の割合が増加する。これに対し
て、比較例の(X)電池では運転初期に被毒する触媒の
割合が多いので、その後の運転において活性な触媒の割
合が減少するという理由によるものと考えられる。
As is clear from FIG. 2, (A1
) battery, (A2) battery, the initial voltage is approximately 1300
It was observed that the battery (X) of Comparative Example was maintained for only about 700 hours. This is because in the (A1) battery and (A2) battery of the present invention, the proportion of catalyst that is poisoned at the beginning of operation is small, so the proportion of active catalyst increases in subsequent operation. On the other hand, in the battery (X) of Comparative Example, the proportion of the catalyst that is poisoned is high in the initial stage of operation, so it is thought that this is because the proportion of active catalyst decreases in the subsequent operation.

【0017】〔その他の事項〕 ■上記図2には示さないが、共晶塩の含浸率が54%と
なる厚みのカソードと、94%となる厚みのカソードと
を用いて、上記と同様の実験を行った。その結果、含浸
率が54%の場合には、上記(A1 )電池,(A2 
)電池よりも電圧が0.1V低くなっていることが認め
られた。これは、カソードの厚みが大きくなって、ガス
の拡散が悪くなったことによるものと考えられる。
[Other matters] ■Although not shown in FIG. 2 above, the same method as above was performed using a cathode with a thickness such that the eutectic salt impregnation rate is 54% and a cathode with a thickness such that the impregnation rate of the eutectic salt is 94%. We conducted an experiment. As a result, when the impregnation rate was 54%, the above (A1) battery, (A2)
) It was observed that the voltage was 0.1 V lower than that of the battery. This is thought to be due to the increased thickness of the cathode, which resulted in poor gas diffusion.

【0018】一方、共晶塩の含浸率が94%の場合には
、電圧が更に低下していた。これは、以下に示す何れか
の理由によるものと考えられる。 (1)この電池は共晶塩の含浸率が高いため、カソード
のニッケルの酸化時にガスが十分に拡散せず、ニッケル
のまま焼結した後酸化することになる。このため、空孔
径や空孔率が減少するという理由。
On the other hand, when the impregnation rate of the eutectic salt was 94%, the voltage was further reduced. This is considered to be due to one of the following reasons. (1) Since this battery has a high impregnation rate of eutectic salt, gas does not diffuse sufficiently during oxidation of the nickel in the cathode, and the nickel is sintered as it is and then oxidized. This is why the pore diameter and porosity decrease.

【0019】(2)カソード側のガス拡散が十分でない
ため、電解質板中の有機物の飛散が円滑に行われず、炭
化して残留するという理由。但し、この電池及び上記(
X)電池の発電を300時間で終了させて触媒の被毒量
を調べたところ、本電池は(X)電池に比べ被毒量が1
/2に低下していることが認められた。したがって、本
発明の効果である被毒量の低減という効果は達成されて
いることが窺える。
(2) Due to insufficient gas diffusion on the cathode side, the organic matter in the electrolyte plate is not dispersed smoothly and is carbonized and remains. However, this battery and the above (
When the power generation of the X) battery was completed after 300 hours and the amount of poisoning of the catalyst was investigated, the amount of poisoning of this battery was 11 compared to the (X) battery.
It was observed that the value had decreased to /2. Therefore, it can be seen that the effect of the present invention of reducing the amount of poisoning has been achieved.

【0020】上記結果より、カソードへの共晶塩の含浸
率は、60%以上90%以下であることが好ましい。即
ち、カソードへの共晶塩の含浸率を60%以上に設定す
ればカソードの厚みが増加するのを抑制でき、運転時の
ガス拡散抵抗の増加を最小限にできる一方、90%以下
とすることで、運転温度まで昇温する間に行うカソード
のニッケルの酸化工程と電解質板内の有機物の飛散させ
る工程とに必要なガスのカソード内への透過性を損なう
ことなく、電池の昇温過程及び運転初期の触媒の被毒を
防止できる。
From the above results, the impregnation rate of the eutectic salt into the cathode is preferably 60% or more and 90% or less. That is, if the impregnation rate of the eutectic salt into the cathode is set to 60% or more, it is possible to suppress the increase in the thickness of the cathode and to minimize the increase in gas diffusion resistance during operation, while it is set to 90% or less. This allows the heating process of the battery to be carried out without impairing the gas permeability into the cathode, which is necessary for the oxidation process of nickel in the cathode and the process of scattering organic matter in the electrolyte plate, which are carried out during heating up to operating temperature. Also, poisoning of the catalyst at the initial stage of operation can be prevented.

【0021】■可塑剤としては上記フタル酸ジオクチル
に限定するものではなく、例えばポリエチレングリコー
ルであってもよく、また、溶媒としてはエタノールに限
定するものではなく、例えばP−キシレンであってもよ
い。■カソード材料としては上記ニッケルに限定するも
のではなく、例えばニッケル酸化物であってもよく、ま
た、アノード材料としては上記クロム含有ニッケルに限
定するものではなく、例えばアルミニウム,コバルト含
有ニッケルであってもよい。
[0021] The plasticizer is not limited to the above-mentioned dioctyl phthalate, but may also be polyethylene glycol, and the solvent is not limited to ethanol, but may be, for example, P-xylene. . ■The cathode material is not limited to the above-mentioned nickel, and may be, for example, nickel oxide, and the anode material is not limited to the above-mentioned chromium-containing nickel, but may be, for example, aluminum or cobalt-containing nickel. Good too.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、カ
ソード内へのガス浸透性を維持しつつ、アノードに必要
量以上の溶融炭酸塩が含浸されるのを防止することがで
きる。この結果、電池の昇温過程や運転初期に触媒が被
毒されるのを防止することができるので、溶融炭酸塩燃
料電池の電池寿命が飛躍的に長くなるというた効果を奏
する。
As explained above, according to the present invention, it is possible to prevent the anode from being impregnated with more than the required amount of molten carbonate while maintaining gas permeability into the cathode. As a result, it is possible to prevent the catalyst from being poisoned during the temperature rising process of the battery or in the early stages of operation, resulting in the effect that the battery life of the molten carbonate fuel cell is dramatically extended.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の溶融炭酸塩燃料電池の要部概略斜視図
である。
FIG. 1 is a schematic perspective view of the main parts of a molten carbonate fuel cell according to the present invention.

【図2】本発明の(A1 )電池,(A2 )電池及び
比較例の(X)電池における電池電圧の経時変化を示す
グラフである。
FIG. 2 is a graph showing changes in battery voltage over time in the (A1) battery of the present invention, the (A2) battery, and the (X) battery of the comparative example.

【符号の説明】[Explanation of symbols]

1      電解質板 2      アノード 4      触媒 5      カソード 1 Electrolyte plate 2 Anode 4 Catalyst 5 Cathode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  単位電池に必要な全ての炭酸塩が含浸
されたカソードと、炭酸塩を含まないアノードとが、電
解質板を介して配置されていることを特徴とする溶融炭
酸塩燃料電池。
1. A molten carbonate fuel cell characterized in that a cathode impregnated with all the carbonates necessary for a unit cell and an anode containing no carbonate are arranged with an electrolyte plate interposed therebetween.
JP2401860A 1990-12-13 1990-12-13 Molten carbonate fuel cell Pending JPH04215257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2401860A JPH04215257A (en) 1990-12-13 1990-12-13 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2401860A JPH04215257A (en) 1990-12-13 1990-12-13 Molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH04215257A true JPH04215257A (en) 1992-08-06

Family

ID=18511683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2401860A Pending JPH04215257A (en) 1990-12-13 1990-12-13 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH04215257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277389A (en) * 2008-05-12 2009-11-26 Central Res Inst Of Electric Power Ind Fuel cell
JP2010527122A (en) * 2007-05-10 2010-08-05 フュエルセル エナジー, インコーポレイテッド Fuel cell assembly and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527122A (en) * 2007-05-10 2010-08-05 フュエルセル エナジー, インコーポレイテッド Fuel cell assembly and manufacturing method thereof
US8802332B2 (en) 2007-05-10 2014-08-12 Fuelcell Energy, Inc. Fuel cell current collector with loading material deposited thereon and method of making same
JP2009277389A (en) * 2008-05-12 2009-11-26 Central Res Inst Of Electric Power Ind Fuel cell

Similar Documents

Publication Publication Date Title
JP4879460B2 (en) Solid oxide fuel cell
EP1732157B1 (en) Method and apparatus for forming electrode interconnect contacts for a solid-oxide fuel cell stack
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
JP5608813B2 (en) Method for producing solid oxide fuel cell unit cell
EP1708299A1 (en) Cathode for fuel cell and solid polymer fuel cell having same
JP2009026546A (en) Electrode for fuel cell, electrolyte dispersion solution for forming electrode, its manufacturing method, and solid polymer fuel cell
JP4432384B2 (en) Solid oxide fuel cell
JP2004172107A (en) Electrocatalyst for fuel cells and manufacturing method thereof
JP2793523B2 (en) Polymer electrolyte fuel cell and method of operating the same
WO2022180982A1 (en) Fuel electrode and electrochemical cell
JPH04215257A (en) Molten carbonate fuel cell
JP4832982B2 (en) Anode reduction method for solid oxide fuel cells
JP2005174663A (en) Single chamber fuel cell
JPS63236262A (en) Fuel cell
JP2004200022A (en) Solid oxide fuel cell
JP4240285B2 (en) Method for producing gas diffusion layer of polymer electrolyte fuel cell
JP2005174664A (en) Solid electrolyte fuel cell
JP3058012B2 (en) Single cell of internal reforming high temperature solid oxide fuel cell
JPH06150944A (en) Fuel cell electrode
JPH02822B2 (en)
JP2005158355A (en) Porous electrode for sofc, its manufacturing method and sofc, and pore-forming material for carrying catalyst
JPS6010566A (en) Operation of fuel cell
JPH1074529A (en) Fused carbonate type fuel cell and its manufacture
JP4427929B2 (en) Solid oxide fuel cell with sealless structure
JPH06163056A (en) Polymer electrolytic fuel cell