JPH0719606B2 - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPH0719606B2
JPH0719606B2 JP61146394A JP14639486A JPH0719606B2 JP H0719606 B2 JPH0719606 B2 JP H0719606B2 JP 61146394 A JP61146394 A JP 61146394A JP 14639486 A JP14639486 A JP 14639486A JP H0719606 B2 JPH0719606 B2 JP H0719606B2
Authority
JP
Japan
Prior art keywords
hydrogen
anode
fuel cell
nickel
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61146394A
Other languages
Japanese (ja)
Other versions
JPS632255A (en
Inventor
一仁 羽藤
久朗 行天
順二 新倉
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61146394A priority Critical patent/JPH0719606B2/en
Publication of JPS632255A publication Critical patent/JPS632255A/en
Publication of JPH0719606B2 publication Critical patent/JPH0719606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素などを燃料とし、空気、酸素などを酸化
剤として作動する溶融炭酸塩燃料電池に関し、特にアノ
ードの材料を改良することによって電池性能及び電池寿
命を向上させるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell which operates by using hydrogen or the like as a fuel and operates by using air, oxygen or the like as an oxidant, and particularly by improving the material of the anode, the cell performance is improved. And to improve the battery life.

従来の技術 溶融炭酸塩燃料電池は、一般にアノード(陰極)及びカ
ソード(陽極)の二つの電極と、両方の電極に接触する
電解質タイルと、集電体または構造によっては集電体を
兼ねるタイプのバイポーラ板、さらに電池構成体を物理
的に保持する電池ハウジング及び活物質ガス分配器、活
物質ガス供給管などより構成されている。燃料電池が作
動している状態においては、温度は約500〜700℃の間に
あり全電解質タイル、すなわち炭酸塩及び不活性保持体
がペーストを形成し、これによってアノードとカソード
を隔離している。この電解質は電極と直接に接し、電解
質と電池ハウジングとの間に気体密閉性を有し、また電
池のアノード側とカソード側を電気的に絶縁する働きを
している。
2. Description of the Related Art A molten carbonate fuel cell generally has two electrodes, an anode (cathode) and a cathode (anode), an electrolyte tile in contact with both electrodes, and a current collector or a type that also serves as a current collector depending on the structure. It is composed of a bipolar plate, a battery housing for physically holding the battery structure, an active material gas distributor, an active material gas supply pipe, and the like. When the fuel cell is operating, the temperature is between about 500 and 700 ° C and the entire electrolyte tile, ie carbonate and inert carrier, forms a paste, which separates the anode and cathode. . This electrolyte is in direct contact with the electrode, has gas tightness between the electrolyte and the battery housing, and also serves to electrically insulate the anode side and the cathode side of the battery.

これらの電池構成体の内のアノードは従来、コスト、水
素の酸化触媒能、電子伝導度、溶融炭酸塩中での安定生
などを考慮して、ニッケルまたはニッケル/クロム合金
粉末を焼結またはテープキャスティング法により成形す
ることにより作られてきた。一方、カソードはリチウム
ドープの酸化ニッケル粉末を同様の方法で成形すること
によって、またはアノードと同様のニッケル焼結板を酸
化することにより作られてきた。
The anode of these battery components has conventionally been sintered or taped with nickel or nickel / chromium alloy powder in consideration of cost, hydrogen oxidation catalytic ability, electronic conductivity, stability in molten carbonate and the like. It has been made by molding by the casting method. On the other hand, cathodes have been made by molding lithium-doped nickel oxide powder in a similar manner or by oxidizing a nickel sintered plate similar to the anode.

発明が解決しようとする問題点 溶融炭酸塩燃料電池の性能を長期間保持するためのアノ
ードに関する大きな問題は、高温で電池を運転中、時間
と共に主な構成材料であるニッケルの過焼結により、多
孔質アノードの多孔度や比表面積が減少することであ
る。このアノードはガス拡散電極であるため電極反応に
寄与する部分の面積は、電極の多孔度や比表面積と密接
な関係を持つ。そのため多孔質アノードの過焼結は溶融
炭酸塩燃料電池の性能の低下を招来し、結局寿命の低下
にも結びつくため、深刻な問題となっている。
Problems to be Solved by the Invention A major problem regarding the anode for maintaining the performance of the molten carbonate fuel cell for a long period of time is that, during operation of the cell at high temperature, oversintering of nickel, which is a main constituent material, with time, That is, the porosity and specific surface area of the porous anode are reduced. Since this anode is a gas diffusion electrode, the area of the part that contributes to the electrode reaction is closely related to the porosity and specific surface area of the electrode. Therefore, the over-sintering of the porous anode causes a decrease in the performance of the molten carbonate fuel cell, which eventually leads to a decrease in the life, which is a serious problem.

上記問題点を解決するための方法の一つとして、過焼結
防止のためアノード構成材料にニッケルルークロム合金
を用いる方法がある。しかしこの方法では、確かにある
程度粒子が大きいと過焼結を防げるが、粒子が小さいと
過焼結の速度が早いため、大きな多孔度や比表面積を長
時間保つことは困難である。
As one of the methods for solving the above-mentioned problems, there is a method of using a nickel-chromium alloy as an anode constituent material for preventing oversintering. However, in this method, if the particles are large to some extent, oversintering can be prevented, but if the particles are small, the rate of oversintering is high, so it is difficult to maintain a large porosity and a specific surface area for a long time.

また、過焼結防止のためにニッケル粒子をアルミナの微
粒子で覆い、アノードとする方法もあるが、アルミナが
絶縁体であるため多量に加えるとアノード自信の抵抗や
アノードと集電体の間の接触抵抗が増大し、かえって電
池性能に悪影響を及ぼす。
There is also a method of covering the nickel particles with fine particles of alumina to form an anode to prevent oversintering, but if alumina is an insulator, adding a large amount will increase the resistance of the anode and the resistance between the anode and the current collector. Contact resistance increases, which adversely affects battery performance.

従って、溶融炭酸塩燃料電池の運転当初の高性能を保つ
ことのできるアノードの過焼結防止対策が望まれてい
る。
Therefore, there is a demand for measures to prevent oversintering of the anode that can maintain the high performance of the molten carbonate fuel cell at the beginning of operation.

問題点を解決するための手段 そこで、本発明は、アノード用金属、好ましくはニッケ
ルに水素透過性の高電子導電性材料粉末を混合して用い
るものである。
[Means for Solving the Problems] Therefore, the present invention uses a metal for an anode, preferably nickel, mixed with a powder of a highly electron-conductive material having hydrogen permeability.

作用 水素透過性金属は、それ自身焼結の困難なものであり、
アノード材料であるニッケルあるいは、クロムまたはア
ルミニウムを含むニッケル主体の合金粉末などに混合し
て用いると、この様な焼結の困難さが逆に有効な過焼結
防止の効果をもたらすことを見出した。
Action Hydrogen-permeable metals are themselves difficult to sinter,
It has been found that such a difficulty of sintering brings about an effect of effective over-sintering conversely when it is mixed with nickel which is an anode material or alloy powder mainly containing nickel containing chromium or aluminum. .

ところで、溶融炭酸塩燃料電池における通常のニッケル
系アノード上での水素酸化反応は、一般に固相(電極)
と液相(電解質)と気相(燃料)の三相が接する三相帯
で起こると考えられている。しかしながら上記三相が接
する部分は厳密に考えると一次元であるはずであり、決
して面積を持つことはない。実際には三相帯近辺で水素
の酸化反応(電気化学反応)が起こっていると考えられ
るが、いずれにしてもこの電気化学反応に寄与している
部分の面積は限られている。従って溶融炭酸塩燃料電池
の性能を高く維持するためには、この電気化学反応に寄
与する部分の面積の少しでも大きく保つ、つまりアノー
ドの多孔度や比表面積を大きく保つ必要があると考えら
れる。
By the way, the hydrogen oxidation reaction on a normal nickel-based anode in a molten carbonate fuel cell is generally carried out in the solid phase (electrode).
It is thought to occur in a three-phase zone where the three phases of liquid phase (electrolyte) and gas phase (fuel) are in contact with each other. However, the portion where the above three phases are in contact should be strictly one-dimensional and never have an area. Actually, it is considered that the hydrogen oxidation reaction (electrochemical reaction) occurs near the three-phase zone, but in any case, the area of the part that contributes to this electrochemical reaction is limited. Therefore, in order to maintain the high performance of the molten carbonate fuel cell, it is considered necessary to keep the area of the portion contributing to the electrochemical reaction as large as possible, that is, the porosity and the specific surface area of the anode.

一方、水素透過性金属粉末をアノードに混合して用いた
場合、第1図に示した様にアノードを構成する水素透過
性金属粒子1中を原子状の水素または分子状水素が拡散
し、電解質2に接した面まで到達するとただちに炭酸イ
オンと電気化学的に反応する。すなわち、従来電気化学
反応が起こると考えられていた三相帯3に加えて、固相
と気相が一体となり、これと液相(電解質)の接する部
分(つまり二相帯のような部分)4においても電気化学
反応が起こるため、この反応が起こるために必要な活性
な部分の面積が、同じ多孔度や同じ比表面積を持つニッ
ケルアノードに比べて大きく、電池性能の向上に寄与す
る。従って、従来のクロムやアルミナと異なり、本発明
では水素透過性金属を加えることによってニッケルの過
焼結の防止と共に性能の向上も可能になるのである。な
お、第1図において、4はニッケル、5は気相を示す。
On the other hand, when the hydrogen-permeable metal powder is mixed and used in the anode, atomic hydrogen or molecular hydrogen diffuses in the hydrogen-permeable metal particles 1 constituting the anode as shown in FIG. As soon as it reaches the surface in contact with 2, it reacts electrochemically with carbonate ions. That is, in addition to the three-phase zone 3 which was conventionally thought to cause an electrochemical reaction, the solid phase and the gas phase are integrated, and the portion where this and the liquid phase (electrolyte) are in contact (that is, the portion like the two-phase zone) Since the electrochemical reaction also occurs in No. 4, the area of the active portion necessary for this reaction to occur is larger than that of the nickel anode having the same porosity and the same specific surface area, which contributes to the improvement of the battery performance. Therefore, unlike the conventional chromium and alumina, in the present invention, addition of a hydrogen permeable metal makes it possible to prevent oversintering of nickel and improve the performance. In FIG. 1, 4 indicates nickel and 5 indicates a vapor phase.

実施例 まず、水素透過性金属としてチタン−マンガン系を用い
た。これは常温付近では水素吸蔵合金として知られてい
るが、本発明では水素は吸蔵せずその透過性に注目して
いる。これを直接用いても良いが本実施例では、この粉
末に耐食性向上のためニッケルの無電解メッキをほどこ
し、これのニッケル粉末とを重量比1:1の割合に混合し
たものを、800℃の水素雰囲気炉中で焼結しアノードと
して用いた。この常温において水素吸蔵合金として知ら
れる合金類は、水素の吸蔵及び水素のイオン化触媒とし
て燃料電池のアノードに用いられた例が知られている。
しかしこれら水素吸蔵合金には、その系によってそれぞ
れ水素を吸蔵するための適切な温度があり、一般的にそ
れは常温付近である。これを高温領域で使用すると水素
の吸蔵は起こらず、水素を原子状または分子状で透過す
るのみである。従って、上記水素の吸蔵またはイオン化
触媒として用いる場合と本実施例とでは、用途、目的共
に異なる。実際この電池において、運転温度である650
℃ではアノードに用いた水素透過性金属は水素の吸蔵を
しない条件である。
Example First, a titanium-manganese system was used as a hydrogen permeable metal. This is known as a hydrogen storage alloy near room temperature, but in the present invention, hydrogen is not stored and attention is paid to its permeability. Although this may be used directly, in this example, electroless plating of nickel is applied to this powder to improve corrosion resistance, and a mixture of this nickel powder and the nickel powder in a weight ratio of 1: 1 is used at 800 ° C. It was sintered in a hydrogen atmosphere furnace and used as an anode. The alloys known as hydrogen storage alloys at room temperature are known to be used as anodes of fuel cells as hydrogen storage and hydrogen ionization catalysts.
However, each of these hydrogen storage alloys has an appropriate temperature for storing hydrogen depending on its system, which is generally around room temperature. When this is used in a high temperature region, hydrogen is not occluded and hydrogen is only permeated in the form of atoms or molecules. Therefore, the use and purpose of the hydrogen storage or ionization catalyst are different from those of this embodiment. In fact, the operating temperature of this battery is 650
At ° C, the hydrogen permeable metal used for the anode is under the condition that hydrogen is not absorbed.

またカソードには多孔質リチウムドープ酸化ニッケルを
用い、電解質には炭酸リチウム:炭酸カリウムのモル比
が62:38のものを電解質保持体であるアルミン酸リチウ
ムと共にテープキャスティング法にて作製し使用した。
燃料ガスには水素:炭酸ガス:水蒸気の比が80:14:6の
割合のものを、酸化剤として空気:炭酸ガスの比が70:3
0の割合のものを適用し、650℃の温度、150mA/cm2の電
流密度で試験を行なった。
Further, porous lithium-doped nickel oxide was used for the cathode, and an electrolyte having a lithium carbonate: potassium carbonate molar ratio of 62:38 was prepared by tape casting together with lithium aluminate, which is an electrolyte holder, and used.
The fuel gas has a hydrogen: carbon dioxide gas: water vapor ratio of 80: 14: 6, and the oxidant has an air: carbon dioxide gas ratio of 70: 3.
Tests were conducted at a temperature of 650 ° C. and a current density of 150 mA / cm 2 by applying the one having a ratio of 0.

第2図に上記水素透過性金属をアノードに混合した電池
Aと、通常のニッケル系アノードを用いた電池Bの時間
と性能の関係を、同じ条件で比較した。第2図から明ら
かに水素透過性金属を混合した方が、長期間高性能を維
持しており、過焼結防止の効果が大きいことがわかる。
In FIG. 2, the relationship between time and performance of the battery A in which the hydrogen permeable metal was mixed in the anode and the battery B using a normal nickel-based anode were compared under the same conditions. It can be seen from FIG. 2 that, when the hydrogen permeable metal is mixed, the high performance is maintained for a long time and the effect of preventing oversintering is great.

次に、この電池のI−V特性と通常のニッケル多孔体を
用いた同条件の電池のI−V特性を比較し、第3図に示
した。明らかに水素透過性金属アノードを用いた場合に
性能の向上が見られた。また同様に水素透過性金属に
銅、アルミニウム、銀、白金、パラジウムなどを被覆し
て用いた場合も、ニッケルアノードを用いた場合に比べ
ていずれも溶融炭酸塩燃料電池の性能は向上した。
Next, the IV characteristics of this battery and the IV characteristics of a battery under the same conditions using a normal nickel porous body were compared and shown in FIG. Clearly an improvement in performance was seen when using a hydrogen permeable metal anode. Similarly, when the hydrogen permeable metal was coated with copper, aluminum, silver, platinum, palladium or the like, the performance of the molten carbonate fuel cell was improved as compared with the case where the nickel anode was used.

発明の効果 以上のように、本発明によれば、従来大きな問題であっ
たアノードの過焼結を防止すると共に、電池の性能も向
上させることができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to prevent oversintering of the anode, which has been a big problem in the past, and to improve the performance of the battery.

【図面の簡単な説明】[Brief description of drawings]

第1図は通常のニッケル系アノードの場合の三相帯と、
電極に水素透過性金属を用いた場合の二相帯を示した模
式図、第2図は通常のニッケル多孔体と水素透過性金属
であるチタン/マンガン系合金をアノード材料に混合し
て用いた場合の溶融炭酸塩燃料電池の時間と性能の関係
を示した図、第3図は通常のニッケル多孔体と水素過性
金属であるチタン/マンガン系合金をアノード材料に混
合して用いた場合の溶融炭酸塩燃料電池のI−V特性を
示した図である。
Figure 1 shows the three-phase zone for a typical nickel-based anode,
A schematic diagram showing a two-phase zone when a hydrogen permeable metal is used for the electrode, and FIG. 2 shows an ordinary nickel porous body and a titanium / manganese alloy which is a hydrogen permeable metal mixed and used as an anode material. FIG. 3 is a diagram showing the relationship between time and performance of a molten carbonate fuel cell, and FIG. 3 shows a case where an ordinary nickel porous body and a titanium / manganese alloy, which is a hydrogen-pervious metal, are used as an anode material. It is a figure showing IV characteristics of a molten carbonate fuel cell.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】水素を含むガスを燃料として作動する溶融
炭酸塩燃料電池であって、アノード用金属に水素透過性
金属粉末を混合したことを特徴とする溶融炭酸塩燃料電
池。
1. A molten carbonate fuel cell which operates using a gas containing hydrogen as a fuel, wherein the anode metal is mixed with a hydrogen-permeable metal powder.
【請求項2】アノード用金属がニッケルまたはニッケル
主体の合金である特許請求の範囲第1項記載の溶融炭酸
塩燃料電池。
2. The molten carbonate fuel cell according to claim 1, wherein the metal for the anode is nickel or a nickel-based alloy.
【請求項3】水素透過性金属粉末が、常温においては水
素を吸蔵し、電池作動温度においては水素を吸蔵しない
金属からなる特許請求の範囲第1項記載の溶融炭酸塩燃
料電池。
3. The molten carbonate fuel cell according to claim 1, wherein the hydrogen-permeable metal powder is made of a metal that absorbs hydrogen at room temperature and does not absorb hydrogen at a battery operating temperature.
【請求項4】水素を含むガスを燃料として作動する溶融
炭酸塩燃料電池であって、アノード用金属に、銅、アル
ミニウム、ニッケル、銀、白金、またはパラジウムで被
覆されている水素透過性金属粉末を混合したことを特徴
とする溶融炭酸塩燃料電池。
4. A molten carbonate fuel cell which operates using a gas containing hydrogen as a fuel, wherein the anode metal is coated with hydrogen-permeable metal powder of copper, aluminum, nickel, silver, platinum, or palladium. A molten carbonate fuel cell, characterized in that:
【請求項5】アノード用金属がニッケルまたはニッケル
主体の合金である特許請求の範囲第4項記載の溶融炭酸
塩燃料電池。
5. The molten carbonate fuel cell according to claim 4, wherein the metal for the anode is nickel or a nickel-based alloy.
【請求項6】水素透過性金属粉末が、常温においては水
素を吸蔵し、電池作動温度においては水素を吸蔵しない
金属からなる特許請求の範囲第4項記載の溶融炭酸塩燃
料電池。
6. The molten carbonate fuel cell according to claim 4, wherein the hydrogen-permeable metal powder is made of a metal that absorbs hydrogen at room temperature and does not absorb hydrogen at a battery operating temperature.
JP61146394A 1986-06-23 1986-06-23 Molten carbonate fuel cell Expired - Lifetime JPH0719606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61146394A JPH0719606B2 (en) 1986-06-23 1986-06-23 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146394A JPH0719606B2 (en) 1986-06-23 1986-06-23 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS632255A JPS632255A (en) 1988-01-07
JPH0719606B2 true JPH0719606B2 (en) 1995-03-06

Family

ID=15406707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146394A Expired - Lifetime JPH0719606B2 (en) 1986-06-23 1986-06-23 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0719606B2 (en)

Also Published As

Publication number Publication date
JPS632255A (en) 1988-01-07

Similar Documents

Publication Publication Date Title
Kinoshita Electrochemical oxygen technology
EP0240662B1 (en) Reduction of electrode dissolution in electrochemical generators
Chu et al. The influence of methanol on O 2 electroreduction at a rotating Pt disk electrode in acid electrolyte
JP2909166B2 (en) Supported platinum quaternary alloy electrode catalyst
JPH0510979B2 (en)
JPH0510978B2 (en)
JPH07246336A (en) Anode electrode catalyst for fuel cell and production thereof
US4997729A (en) Anode for high temperature fuel cell
JP2005005257A (en) Air electrode catalyst for fuel cell, and manufacturing method therefor
EP0324479B1 (en) Method of producing a Fuel Cell
JPH0719606B2 (en) Molten carbonate fuel cell
Kronenberg Polarization Studies on High‐Temperature Fuel Cells
JPH0766813B2 (en) Molten carbonate fuel cell
JP2001015121A (en) Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell
JP2001015120A (en) Catalyst for polymer solid electrolyte type fuel cell and polymer solid electrolyte type fuel cell
JP2988673B2 (en) Molten carbonate fuel cell
JPS62154464A (en) Electrode catalyst layer for fuel cell
JP2957315B2 (en) Molten carbonate fuel cell
JP2548859B2 (en) Fuel cell electrode and method for manufacturing the same
JP2526284B2 (en) Method for operating molten carbonate fuel cell
JP2005038716A (en) Electrode for highly durable fuel cell and fuel cell using this electrode
WO1993003505A1 (en) High current acid fuel cell electrodes
JP3852177B2 (en) Method for treating cathode for molten carbonate fuel cell
JPH0624120B2 (en) Fuel cell electrode
JPH04215257A (en) Molten carbonate fuel cell