JPS62154464A - Electrode catalyst layer for fuel cell - Google Patents

Electrode catalyst layer for fuel cell

Info

Publication number
JPS62154464A
JPS62154464A JP60292115A JP29211585A JPS62154464A JP S62154464 A JPS62154464 A JP S62154464A JP 60292115 A JP60292115 A JP 60292115A JP 29211585 A JP29211585 A JP 29211585A JP S62154464 A JPS62154464 A JP S62154464A
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
noble metal
catalyst
electrode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60292115A
Other languages
Japanese (ja)
Inventor
Noboru Segawa
昇 瀬川
Sanji Ueno
上野 三司
Yasushi Abe
阿部 寧
Tadanori Maoka
忠則 真岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60292115A priority Critical patent/JPS62154464A/en
Publication of JPS62154464A publication Critical patent/JPS62154464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To advance electrochemical corrosion reaction of carbon and to prevent decrease in the surface area caused by aggregation of noble metal catalyst to retain stable three phase interface over a long period of time by adding noble metal non-supporting carbon powder to an electrode catalyst layer. CONSTITUTION:Electrodes comprising porous carbon paper 2, 4 supported with electrode catalysts 1, 3 are arranged on both sides of an electrolyte layer 5, and a bipolar separating plate 6 having fuel gas and oxidizing agent gas supply grooves 7, 8 is arranged in the outside of each electrode. They are stacked to form a phosphric acid electrolyte fuel cell. In the cell, noble metal non- supporting carbon powder is added to the electrode catalyst layers 1, 3. Thereby, decrease in cell voltage of the fuel cell does not appear and high voltage is retained even after long continuous operation.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、貴金属触媒を担持したカーボン粉末と結着剤
から成る燃料電池用電極触媒層に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell electrode catalyst layer comprising carbon powder supporting a noble metal catalyst and a binder.

[発明の技術的背景とその問題点] 燃料電池は、燃料の持つ化学エネルギーを電気化学プロ
セスで酸化させることにより、酸化反応に伴って放出さ
れるエネルギーを直接電気エネルギーに変換する装置で
ある。この燃料電池を用いた発電システムは、比較的小
さな規模でも発電の熱効率が40〜50%にも達し、新
鋭火力発電をはるかにし−9ぐと期待されている。また
、近年大きな社会問題となっている公害要因であるSO
x。
[Technical background of the invention and its problems] A fuel cell is a device that directly converts the energy released in the oxidation reaction into electrical energy by oxidizing the chemical energy of fuel through an electrochemical process. A power generation system using this fuel cell has a thermal efficiency of 40 to 50% even on a relatively small scale, and is expected to far surpass new thermal power generation. In addition, SO, which is a pollution factor that has become a major social problem in recent years,
x.

NOxの排出が極めて少ない、発電装置内に燃焼セイク
ルを含まないので大量の冷却水を必要としない、振iI
l音が小さい等、原理的に高いエネルギー変換効率が期
待できるとともに、騒音・排ガス等の環境l111題が
少なく、さらに、負荷変動に対して応答性が良い等の特
徴があることから、その開発、実用化の研究に期待と関
心が寄せられている。
It emits extremely low NOx and does not require a large amount of cooling water as it does not contain a combustion cycle within the power generation device.
In principle, high energy conversion efficiency can be expected, such as low noise, and there are few environmental problems such as noise and exhaust gas, as well as good responsiveness to load fluctuations. There are high expectations and interest in research into practical application.

ところで、上述の様な燃料電池は、通常電解質を挟んで
一対の多孔質電極を配置し、一方のN極の背面に水素等
の燃料ガスを接触させて燃料極を構成するとともに、他
方の電極の背面に酸素等の酸化剤を接触させて酸化剤極
を構成して、このときに起こる電気化学的反応により発
生する電気エネルギーを、上記一対の電極間から取出す
ようにしたものである。この場合、電解質として一般に
用いられているのは、リン酸等の酸性溶液である。
By the way, the above-mentioned fuel cell usually has a pair of porous electrodes arranged with an electrolyte in between, and a fuel electrode such as hydrogen is brought into contact with the back surface of one N electrode, and the other electrode is An oxidizing agent such as oxygen is brought into contact with the back surface of the electrode to form an oxidizing agent electrode, and the electrical energy generated by the electrochemical reaction occurring at this time is extracted from between the pair of electrodes. In this case, an acidic solution such as phosphoric acid is generally used as the electrolyte.

また、前記多孔質電極は、通常カーボンペーパーのJ:
うな多孔性炭素基材に貴金属触媒を担持させたものであ
る。
Further, the porous electrode is usually made of carbon paper J:
A noble metal catalyst is supported on a porous carbon substrate.

この様にリン酸等の酸性電解質を用いる燃料電池におい
ては、電極反応は、例えば上記の様に、員金凪触媒を担
持させた炭素基材からなる固相、リン酸溶液のような電
解質からなる液相、及び燃料ガス及び酸化剤ガスのよう
な反応ガスからなる気相の三つの相が共存する場所で起
こる。この様な三つの相が共存する場所は、一般に三相
帯と呼ばれるが、この三相帯の面積によって、燃料電池
の電極反応及び電池特性が影響を受ける。即ち、その面
積が小さいほど電池特性は低下し、反対に、面積が大ぎ
いほど電池特性は向上し、高性能燃料電池を得ることが
できる。
In a fuel cell that uses an acidic electrolyte such as phosphoric acid, the electrode reaction is performed, for example, as described above, using a solid phase consisting of a carbon base material supporting a member Kinnagi catalyst, or an electrolyte such as a phosphoric acid solution. This occurs where three phases coexist: a liquid phase consisting of a fuel gas and a gas phase consisting of a reactant gas such as a fuel gas and an oxidant gas. A place where these three phases coexist is generally called a three-phase zone, and the electrode reaction and cell characteristics of the fuel cell are affected by the area of this three-phase zone. That is, the smaller the area, the lower the battery characteristics, and conversely, the larger the area, the better the battery characteristics, making it possible to obtain a high-performance fuel cell.

上述した様に、燃料電池特性に影響を及ぼす三相帯の面
積を考える上において、多孔質電極に配設される5金屈
触媒の表面積の維持は不可欠である。しかしながら、こ
の様な電極触媒は、燃r4電池の運転に伴いその表面積
の減少が進み、その結果、三相界面の面積の減少を引き
起こすので、電極反応が充分に行なわれず、電池特性の
低下につながるものであった。
As mentioned above, when considering the area of the three-phase zone that affects the fuel cell characteristics, it is essential to maintain the surface area of the 5-metal catalyst disposed in the porous electrode. However, the surface area of such an electrode catalyst decreases as the fuel R4 battery operates, and as a result, the area of the three-phase interface decreases, so the electrode reaction does not take place sufficiently, leading to a decline in battery characteristics. It was something that connected us.

この様な電極触媒の表面積の減少を引き起こす要因とし
て、貴金属触媒の電解貝溶液への溶解、貴金属触媒の凝
集による造粒、カーボン担体の腐蝕による担持触媒の凝
集等が考えられている。そのため、従来から、これらの
対策として、貴金属触媒の合金化による溶解防止、結晶
化カーボン担体の使用による担体カーボンの腐蝕防止等
が行われていた。
Possible factors that cause such a decrease in the surface area of the electrode catalyst include dissolution of the noble metal catalyst in the electrolytic shell solution, granulation due to aggregation of the noble metal catalyst, and aggregation of the supported catalyst due to corrosion of the carbon support. Therefore, conventional countermeasures have been taken such as preventing dissolution by alloying noble metal catalysts and preventing corrosion of carrier carbon by using crystallized carbon carriers.

し発明の目的〕 本発明は、上述した従来の燃料電池用電極触媒層の問題
点をW8!lするために提案されたもので、その目的は
、貴金属触媒の表面積減少を防止し、三相界面の面積を
維持することにより、高い電池特性を維持することがで
きる燃料電池用電極触媒層を提供することにある。
[Object of the Invention] The present invention solves the problems of the conventional electrode catalyst layer for fuel cells described above. The purpose is to create an electrode catalyst layer for fuel cells that can maintain high cell characteristics by preventing the surface area of the precious metal catalyst from decreasing and maintaining the area of the three-phase interface. It is about providing.

[JIIi明の概要] 本発明の燃料電池m電極触媒台は、貴金属触媒を担持し
たカーボン粉末と結着剤からなる燃料電池m電極触媒台
において、電極触媒層の中に貴金属触媒非担持のカーボ
ン粉を添加することにより、電気化学的なカーボンの腐
蝕反応を、山金属担持のカーボン粉末において生ずるこ
とを防止し、その代りに、添加カーボンにおいて腐蝕反
応を進行させ、員金凪触媒の凝集による表面積減少を防
止して、安定した三相界面を長期にわたって維持するこ
とができるようにしたちのである。
[Summary of JIIi Akira] The fuel cell m-electrode catalyst base of the present invention is a fuel cell m-electrode catalyst base made of carbon powder supporting a noble metal catalyst and a binder, in which carbon not supported with a noble metal catalyst is contained in the electrode catalyst layer. By adding the powder, the electrochemical corrosion reaction of carbon is prevented from occurring in the carbon powder supported by the mountain metal, and instead, the corrosion reaction is allowed to proceed in the added carbon, and the corrosion reaction is caused by the agglomeration of the member Kinnagi catalyst. This prevents the surface area from decreasing and allows a stable three-phase interface to be maintained over a long period of time.

[発明の実m例] 以下、本発明の一実施例を第1図乃至第3図を参照して
具体的に説明する。
[Example of the Invention] An example of the present invention will be specifically described below with reference to FIGS. 1 to 3.

■第1実施例 *構成* 重大tM例において、第1図に示した様に、?1!解質
層5の両面に電極触媒1.3を保持した多孔質カーボン
ペーパー2.4より成る電極を配置し、さらに、これら
電極の両外側に燃料ガス及び酸化剤ガスを供給する供給
用溝7.8を有する双極性隔離板6を配設し、これを積
層して構成したリン酸電解質燃料電池において、電極触
媒層1.3に貴金属触媒非担持のカーボン勅を添加した
ものである。
■First Example *Structure* In the serious tM example, as shown in Fig. 1, ? 1! Electrodes made of porous carbon paper 2.4 holding an electrode catalyst 1.3 are arranged on both sides of the solute layer 5, and supply grooves 7 for supplying fuel gas and oxidizing gas to both outsides of these electrodes are arranged. In this phosphoric acid electrolyte fuel cell, a bipolar separator 6 having a polarity of .8 is disposed and laminated, and a carbon layer not carrying a noble metal catalyst is added to the electrode catalyst layer 1.3.

なお、本実施例において使用したカソード電極は、VX
C−72R(米国キャボット社製)のカーボンブラック
を2600℃、2時間熱処理したものに、白金を7%担
持させたものと、活性炭を貴金属触媒非担持のカーボン
粉として10%添加して製作したものである。
Note that the cathode electrode used in this example was VX
It was produced by heat-treating C-72R (manufactured by Cabot, USA) carbon black at 2600°C for 2 hours, supporting 7% platinum, and adding 10% activated carbon as carbon powder that does not support a noble metal catalyst. It is something.

*作用* 以上の様な8I成を有する本実施例においては、第2図
に示した様な電池特性を示した。即ち、図中、実線Aで
示した曲線は、本実施例の燃料電池用電極触媒層をカソ
ード電極に使用した場合の電池特性を示し、点IBで示
した曲線は、員金属触媒非担持のカーボン粉を添加して
いない従来型の燃料電池触9!1.層をカソード電極に
使用した場合のtS池特↑り図である。なお、ここで使
用した電池は、第1図に示した燃Fl電池で、放電電流
220mA、、/Cm2,205°C1常圧の条件下で
連続運転を行ったものである。
*Function* In this example having the 8I structure as described above, the battery characteristics as shown in FIG. 2 were exhibited. That is, in the figure, the curve shown by solid line A shows the cell characteristics when the fuel cell electrode catalyst layer of this example is used for the cathode electrode, and the curve shown by point IB shows the cell characteristics when the fuel cell electrode catalyst layer of this example is used as the cathode electrode. Conventional fuel cell without added carbon powder 9!1. This is a diagram showing the characteristics of a tS pond when the layer is used as a cathode electrode. The battery used here was the fuel-flour battery shown in FIG. 1, and was operated continuously under conditions of a discharge current of 220 mA, /Cm2, 205° C1, and normal pressure.

第2図に示した様に、本実施例の燃料電池用電極触媒層
を用いた燃料電池においては、長時間連続運転をした後
でも、燃料電池のセル電圧の低下は見られず、高い電池
特性を維持することができる。
As shown in Fig. 2, in the fuel cell using the fuel cell electrode catalyst layer of this example, no decrease in the cell voltage of the fuel cell was observed even after continuous operation for a long time, and the cell voltage was high. Characteristics can be maintained.

また、8000時間の連続運転をした後、これらの燃料
電池に使用したカソード触媒のX−ray回折を行なっ
たところ、従来型の貴金属触媒粒時間後)と凝東による
増大が認められたが、本実施例による触媒層の貴金属触
媒粒子径は60Aと変化は認められなかった。
In addition, after 8,000 hours of continuous operation, X-ray diffraction of the cathode catalysts used in these fuel cells revealed an increase in particle size (after the conventional noble metal catalyst particle time) and due to solidification. The noble metal catalyst particle diameter of the catalyst layer according to this example was 60A, and no change was observed.

以上の様に、燃料電池用Xfi極触媒層に貴金属触媒担
持のカーボン粉を添加覆ることにより、貴金属触媒の粒
子径の増大が抑$11され、電池14性が向上する結果
が得られた。
As described above, by adding and covering the Xfi electrode catalyst layer for a fuel cell with carbon powder supporting a noble metal catalyst, the increase in the particle size of the noble metal catalyst was suppressed and the cell properties were improved.

*他の実瘉例:ト イTお、本発明は上述の実施例に限定されるものではな
く、アノード電極でも同様の効果が17られる。
*Other practical examples: Toy T The present invention is not limited to the above-described embodiments, and similar effects can be obtained with an anode electrode.

■第2実施例 ところで、7ノード電極触媒には、H2S、NH3、C
oなど、電極触媒の触ts毒となる不純物が混入してい
る燃料ガスが送り込まれる為に、燃料電池の性能を長期
間維持できないという問題点があった。
■Second Example By the way, the 7-node electrode catalyst contains H2S, NH3, C
There is a problem in that the performance of the fuel cell cannot be maintained for a long period of time because the fuel gas is mixed with impurities that poison the electrode catalyst, such as carbon dioxide.

そこで、これらの不純物の内、除去が難しいCOに対す
る耐性のあるカーボン担持の白金−ルテニウム及び金、
レニウム、タンタル、タングステン、モリブデン、銀、
ロジウム、オスミウム、イリジアムなどの内から選ばれ
た一種からなる3元合金(USP  No、35064
94>を用いる方法や、また、別の方法として、白金と
アルミニウムの合金を電1t[体上に塗着した後、アル
ミニウムを溶出除去する方法(USP  342849
0)などが考えられているが、これらの方法も充分なも
のとはいえず、燃料電池を長期にわたり運転した場合、
その性能が劣化することがあった。
Therefore, among these impurities, platinum-ruthenium and gold supported on carbon are resistant to CO, which is difficult to remove.
Rhenium, tantalum, tungsten, molybdenum, silver,
A ternary alloy consisting of one selected from rhodium, osmium, iridium, etc. (USP No. 35064)
94>, or as another method, a method in which an alloy of platinum and aluminum is applied on the body and then the aluminum is eluted and removed (USP 342849)
0), etc., but these methods are not sufficient, and when a fuel cell is operated for a long period of time,
Its performance sometimes deteriorated.

第2実流例は、前記第1実施例の員金屈触媒非1t″l
持のカーボン粉を添加する手段に加え、貴金属触媒担持
の方−ボン粉末として、白金−パラジウム(Pt/Pd
)合金微粒子を担持する黒鉛化カーボンを用いることで
、燃料電池を長期にわたって運転した場合においても、
高い性能を維持することができる様にしたものである。
The second actual flow example is a non-membered metal bending catalyst of the first embodiment.
In addition to the method of adding carbon powder, platinum-palladium (Pt/Pd
) By using graphitized carbon that supports fine alloy particles, even when the fuel cell is operated for a long time,
This makes it possible to maintain high performance.

*構成* 本実施例において、黒鉛化カーボンとしては、キャボツ
1へ社VVa l canXC−72Rを900℃で水
蒸気賦活して1qたものを用いる。また、白金−パラジ
ウム合金はUSP3510355に従って、白金及びパ
ラジウムの塩化物の混合物を黒鉛化カーボンに含浸した
後、水素気流で還元することにより得たものを用いる。
*Structure* In this example, as the graphitized carbon, 1 q of VVal canXC-72R manufactured by Kabotsu 1 was activated with steam at 900° C. and used. Further, the platinum-palladium alloy used is one obtained by impregnating graphitized carbon with a mixture of platinum and palladium chlorides and then reducing the mixture with a hydrogen stream according to US Pat. No. 3,510,355.

触媒中の負金属含量は2〜10wt%とし、白金対パラ
ジウムの原子比は5conehart (USP440
7906)の太股で最適な特性を示した50 : 50
の比率とした。そして、この様にして得られた黒鉛化カ
ーボン担持合金触媒を、C○雰囲気中350℃において
20分、引き続いてN2雰囲気中900’Cで1時間、
さらにCO雰囲気中350℃で20分間熱処理したもの
を用いた。
The negative metal content in the catalyst is 2 to 10 wt%, and the atomic ratio of platinum to palladium is 5 conehart (USP440
7906) showed optimal characteristics in the thighs of 50:50
The ratio of The graphitized carbon-supported alloy catalyst thus obtained was heated at 350°C in a C atmosphere for 20 minutes, and then at 900°C in a N2 atmosphere for 1 hour.
Further, the material was heat-treated at 350° C. for 20 minutes in a CO atmosphere.

また、電極としては、前記の触媒にテフロンディスパー
ジョン(三井フロロケミカル社製、TCflon30−
J)を全触媒合剤中のテフロン量が40wt%となるよ
うに加え、この懸濁液を多孔性基体上に塗着した後、N
2雰囲気中330℃で20分間焼成したものを用いた。
In addition, as an electrode, Teflon dispersion (manufactured by Mitsui Fluorochemical Co., Ltd., TCflon30-
J) was added so that the amount of Teflon in the total catalyst mixture was 40 wt%, and this suspension was applied on a porous substrate.
The sample was fired at 330° C. for 20 minutes in 2 atmospheres.

ニド作用* この様に溝成された本実施例にJ3いては、上記の電極
を半電池用電極として切り出し、100%リン酸、18
0℃において、70%H2+30%COのバブリングガ
ス中において、200mA/時変化を調べたところ、第
3図に示した様な結果が得られた。なお、第3図におい
ては、比較のために、CO雰囲気中において熱処理を施
していない同一の電極触媒を用いた場合の、分極特性の
経時変化ら示した。
Nido effect* In this example J3 with grooves formed in this way, the above electrode was cut out as an electrode for a half cell, and 100% phosphoric acid, 18
When the change in 200 mA/hour was investigated in a bubbling gas of 70% H2 + 30% CO at 0°C, the results shown in Figure 3 were obtained. For comparison, FIG. 3 shows the change in polarization characteristics over time when the same electrode catalyst without heat treatment was used in a CO atmosphere.

即ち、第3図より明らかなように、CO雰囲気中におい
て熱処理した触媒を用いた電極においては、実線Cで示
した様に、水素の酸化反応の過電圧の大きさは、長期に
わたってほぼ一定の値を示すが、CO雰囲気中において
熱処理していない触媒を用いた゛電極の水素過電圧は、
点線りで示した様に、約i ooo時間を越えたころよ
り急激に増大する。
That is, as is clear from Fig. 3, in an electrode using a catalyst heat-treated in a CO atmosphere, the magnitude of the overvoltage of the hydrogen oxidation reaction remains almost constant over a long period of time, as shown by solid line C. However, the hydrogen overvoltage of the electrode using an unheated catalyst in a CO atmosphere is
As shown by the dotted line, it increases rapidly after about i ooo time.

この様に本実施例の触媒を用いた電極においては、燃料
ガス中のCOW度が30%という高濃度においても分極
が小さく、長期間にわたって電池を運転した場合でも、
高い性能を維持することができる。
In this way, in the electrode using the catalyst of this example, the polarization is small even at a high COW concentration of 30% in the fuel gas, and even when the battery is operated for a long period of time,
Able to maintain high performance.

〔発明の効果] 以上の通り、本発明によれば、貴金属触媒の表面積減少
を防止し、三相界面の面積を維持することにより、高い
電池特性を維持することができる燃料電池用電極触!I
I+を層を提供することができる。
[Effects of the Invention] As described above, the present invention provides an electrode contact for fuel cells that can maintain high cell characteristics by preventing a decrease in the surface area of the noble metal catalyst and maintaining the area of the three-phase interface! I
The I+ layer can be provided.

【図面の簡単な説明】 第1図は、本発明の燃料電池用電極触媒層X層を用いた
燃料電池の構成を示す斜視図、第2図は、本発明の燃料
電池用電極触媒層を用いて起電試験を行った場合の電池
特性を示す図、第3図は、本発明の燃料電池用電極触媒
層を用いた燃料電池におけるi!極の分極特性の経時変
化を示したちのである。 1.3・・・触媒層、2,4・・・カーボンペーパー、
5・・・電解質層、6・・・双極性隔離板、7.8・・
・供給用溝。 第1図 運転時FJ’1(hrs) 112  図 2に 第3図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a perspective view showing the structure of a fuel cell using the fuel cell electrode catalyst layer X layer of the present invention, and FIG. 2 is a perspective view showing the structure of a fuel cell using the fuel cell electrode catalyst layer X layer of the present invention. FIG. 3 shows the i! in a fuel cell using the fuel cell electrode catalyst layer of the present invention. This shows how the polarization characteristics of the poles change over time. 1.3... Catalyst layer, 2,4... Carbon paper,
5... Electrolyte layer, 6... Bipolar separator, 7.8...
- Supply groove. Figure 1 FJ'1 (hrs) during operation 112 Figure 2 and Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)多孔質導電性基体上に、貴金属触媒担持のカーボ
ン粉末と結着剤を付与して成る燃料電池用電極触媒層に
おいて、 前記触媒層に貴金属触媒非担持のカーボン粉を添加した
ことを特徴とする燃料電池用電極触媒層。
(1) In a fuel cell electrode catalyst layer formed by applying carbon powder supporting a noble metal catalyst and a binder on a porous conductive substrate, carbon powder not supporting a noble metal catalyst is added to the catalyst layer. Characteristic electrode catalyst layer for fuel cells.
(2)前記貴金属触媒担持のカーボン粉末が、結晶化の
進んだカーボン粉末であり、貴金属触媒非担持のカーボ
ン粉が非晶質カーボンからなる特許請求の範囲第1項記
載の燃料電池用電極触媒層。
(2) The electrode catalyst for a fuel cell according to claim 1, wherein the carbon powder supporting a noble metal catalyst is a highly crystallized carbon powder, and the carbon powder not supporting a noble metal catalyst is amorphous carbon. layer.
(3)前記貴金属担持のカーボン粉末が、黒鉛化したカ
ーボンに白金−パラジウム合金を担持し、さらに、CO
雰囲気中及びN_2雰囲気中において熱処理したもので
ある特許請求の範囲第1項記載の燃料電池用電極触媒層
(3) The noble metal supported carbon powder supports a platinum-palladium alloy on graphitized carbon, and furthermore, CO
The electrode catalyst layer for a fuel cell according to claim 1, which is heat-treated in an atmosphere and an N_2 atmosphere.
JP60292115A 1985-12-26 1985-12-26 Electrode catalyst layer for fuel cell Pending JPS62154464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60292115A JPS62154464A (en) 1985-12-26 1985-12-26 Electrode catalyst layer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292115A JPS62154464A (en) 1985-12-26 1985-12-26 Electrode catalyst layer for fuel cell

Publications (1)

Publication Number Publication Date
JPS62154464A true JPS62154464A (en) 1987-07-09

Family

ID=17777738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292115A Pending JPS62154464A (en) 1985-12-26 1985-12-26 Electrode catalyst layer for fuel cell

Country Status (1)

Country Link
JP (1) JPS62154464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184769A (en) * 1986-02-06 1987-08-13 Toshiba Battery Co Ltd Gas diffusion electrode
US20090162721A1 (en) * 2006-04-14 2009-06-25 Hideo Naohara Fuel cell membrane-electrode assembly and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184769A (en) * 1986-02-06 1987-08-13 Toshiba Battery Co Ltd Gas diffusion electrode
US20090162721A1 (en) * 2006-04-14 2009-06-25 Hideo Naohara Fuel cell membrane-electrode assembly and production method therefor
US8906574B2 (en) * 2006-04-14 2014-12-09 Toyota Jidosha Kabushiki Kaisha Fuel cell membrane-electrode assembly and production method therefor
US10115991B2 (en) 2006-04-14 2018-10-30 Toyota Jidosha Kabushiki Kaisha Fuel cell membrane-electrode assembly and production method therefor

Similar Documents

Publication Publication Date Title
Pinheiro et al. Electrocatalysis on noble metal and noble metal alloys dispersed on high surface area carbon
US6670301B2 (en) Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
JPH0510978B2 (en)
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JP4776240B2 (en) Electrode catalyst, method for producing the same, and fuel cell
JPH06196171A (en) Solid high polymer type fuel cell
JPH09167622A (en) Electrode catalyst and solid polymer type fuel cell using same
US7931998B2 (en) Catalyst for fuel cell and fuel cell comprising the same
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
JPH11126616A (en) Co-tolerant platinum-zinc electrode for fuel cell
JP2004172107A (en) Electrocatalyst for fuel cells and manufacturing method thereof
JP2005005257A (en) Air electrode catalyst for fuel cell, and manufacturing method therefor
KR101955666B1 (en) Catalyst electrode of three-phase sepatation and manufacturing method for the same
JPS62154464A (en) Electrode catalyst layer for fuel cell
JP2006092957A (en) Cathode catalyst for solid polymer fuel cell, cathode electrode equipped with catalyst, solid polymer fuel cell equipped with electrode, and manufacturing method of catalyst
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
JP2006302822A (en) Electrode catalyst for polymer electrolyte fuel cell
JP2001015120A (en) Catalyst for polymer solid electrolyte type fuel cell and polymer solid electrolyte type fuel cell
JP2009001846A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2009001845A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JPH04274167A (en) Electrode catalyst layer for fuel cell
JPS6343260A (en) Manufacture of fuel cell
JPH03252058A (en) Electrode catalyst layer for fuel cell
KR960000020B1 (en) High active platinum alloy catalyst and method of making same