JPS6343260A - Manufacture of fuel cell - Google Patents

Manufacture of fuel cell

Info

Publication number
JPS6343260A
JPS6343260A JP61184223A JP18422386A JPS6343260A JP S6343260 A JPS6343260 A JP S6343260A JP 61184223 A JP61184223 A JP 61184223A JP 18422386 A JP18422386 A JP 18422386A JP S6343260 A JPS6343260 A JP S6343260A
Authority
JP
Japan
Prior art keywords
electrode
catalyst
fuel cell
electrodes
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61184223A
Other languages
Japanese (ja)
Inventor
Tadanori Maoka
忠則 真岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61184223A priority Critical patent/JPS6343260A/en
Publication of JPS6343260A publication Critical patent/JPS6343260A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To keep activity for a long time, by forming a electrode catalyst by holding and dispersing fine metal powder to carbon powder subjected to an oxidizing process, mixing it with Teflon dispersion, applying the mixture to a side of a porous base member and baking it. CONSTITUTION:Carbon powder is subjected to an oxidizing process by use of a catalyst chiefly composed of iron oxide and platinum fine powder held by and dispersed in the carbon powder oxidized to form an electrode catalyst. The electrode catalyst is mixed with Teflon dispersion as a binding agent and the mixed paste is applied to one side of a porous base member 1 and baked for forming a cathode 3 and an anode 4. The electrodes 3, 4 are disposed in such a manner that an electrolytic layer 5 is interposed between their catalyst layers and grooves defined on the back surfaces of the electrodes 3, 4 are orthogonal each other. Fuel gas 6 and oxidation agent gas 7 are supplied to the electrodes 3, 4, respectively. With the arrangement, excellent activity can be maintained for a long time.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は燃料電池に用いられるガス拡散電極に係り、特
に電極触媒に改良を施した燃料電池の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas diffusion electrode used in a fuel cell, and more particularly to a method for manufacturing a fuel cell in which an electrode catalyst is improved.

(従来の技術) 従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換する装置として燃料電池が知られてい
る。この燃料電池は、通常電解質を保持する電解質層(
マトリックス層)を挟んで、片面に触媒層が夫々形成さ
れた燃料極および酸化剤1へからなる一対のガス拡散電
極を対向配置するとともに燃料極の背面に水素等の燃料
ガスを接触させ、また酸化電極の背面に酸素等の酸化剤
ガスを接触させ、このときに起こる電気化学的反応を利
用して上記両電極間から電気エネルギーを取り出すよう
にしたものであり、燃料ガスと酸化剤ガスが供給されて
いる限り高い変換効率で電気エネルギーを取り出すこと
ができる。
(Prior Art) Fuel cells are conventionally known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell usually consists of an electrolyte layer (
A pair of gas diffusion electrodes consisting of a fuel electrode and an oxidizing agent 1 each having a catalyst layer formed on one side are placed facing each other with a matrix layer) in between, and a fuel gas such as hydrogen is brought into contact with the back surface of the fuel electrode. Oxidizing gas such as oxygen is brought into contact with the back side of the oxidizing electrode, and the electrochemical reaction that occurs is utilized to extract electrical energy from between the two electrodes. Electrical energy can be extracted with high conversion efficiency as long as it is supplied.

ところで、燃料電池の単位電池は、通常第2図に示した
如く一方の面にガス流路の溝の付いた多孔質基体1の他
方の面に電極触媒2を付着してなる一対の電極をなすア
ノード(燃料極)3とカソード(酸化電極)4の間に電
解質層5を挟み、プレスして一体に構成されている。
Incidentally, a unit cell of a fuel cell usually has a pair of electrodes, as shown in FIG. An electrolyte layer 5 is sandwiched between an anode (fuel electrode) 3 and a cathode (oxidation electrode) 4, which are pressed into one piece.

上記画電極3,4は、その背面に形成された溝が互いに
直交する方向になるよう配置されており、各々の側から
燃料ガス6及び酸化剤ガス7を供給して起電反応を開始
し、直流電気を得ている。これらの単位電池はセパレー
タ8を介して複数個積層して発電に供せられる。
The picture electrodes 3 and 4 are arranged so that grooves formed on their back surfaces are perpendicular to each other, and a fuel gas 6 and an oxidizing gas 7 are supplied from each side to start an electromotive reaction. , obtaining direct current electricity. A plurality of these unit batteries are stacked with separators 8 in between and used for power generation.

しかして、効率的な燃料電池を得るためには電池の画電
極3,4上で起こる電気化学反応の速度を高めなければ
ならず、このために電極触媒が用いられている。この電
極触媒としては白金等の白金属が使われるので少量でし
かも高性能なものを得る為に比表面積の比較的大きなカ
ーボン粉末に白金属の金属微粒子を分散担持させたもの
が用いられている。さらに良好な電極触媒を得るために
、電極反応の場である触媒表面積をできるだけ大ぎくす
るとともに金属微粒子自体の活性を高めるために触媒担
持法の検討、白金属の合金化等の方策がなされている。
Therefore, in order to obtain an efficient fuel cell, it is necessary to increase the speed of the electrochemical reaction occurring on the picture electrodes 3 and 4 of the cell, and an electrocatalyst is used for this purpose. As this electrode catalyst uses a white metal such as platinum, in order to obtain a high performance product in a small amount, carbon powder with a relatively large specific surface area is used to disperse and support fine particles of the platinum metal. . In order to obtain even better electrode catalysts, measures have been taken to maximize the surface area of the catalyst, which is the site of electrode reactions, and to increase the activity of the metal fine particles themselves, such as investigating methods of supporting catalysts and alloying platinum metals. There is.

一方、起電反応における電圧損はカソード反応(酸化還
元反応)において特に大きいので、カソード触媒の開発
には多くの努力がなされてきた。
On the other hand, voltage loss in electromotive reactions is particularly large in cathode reactions (oxidation-reduction reactions), so much effort has been made to develop cathode catalysts.

すなわち、近年シナ−(Giner)社のジャラン(J
a 1an)は酸化還元反応に対する触媒活性と合金触
媒(白金ベース)の金属原子間距離の間の相関性を調べ
、調べた合金触媒の中で白金との原子間距離の最も短い
合金を形成したPt−Cr合金を熱処理したカーボン上
に担持した触媒が最も活性が高いこトラ見い出した。(
J、Electrschem、Soc、130 229
9c1983) この合金金属原子間距離と触媒活性との間の相関性とい
う基準の上に立って、ざらに三元系の合金触媒Pt−C
o−Ni、 Pt−Cr−C、Pt−Cr−Ce等が高
い活性を示すことを見い出した。(特開昭61−885
1公報) また、伯の人々はこのような電極触媒を用いることによ
り触媒活性を高めることと同時に触媒のシンタリングに
よる表面積減少に対しても耐久性があることを主張して
いる。(USP 4373014,43169(発明が
解決しようとする問題点) 上述のような電極触媒を用い、第2図に示したような構
成の燃料電池で発電プラント用として開発されているリ
ン酸を電解質とするものは、起電反応の促進及び廃熱利
用の立場から200℃前後で運転される。このため電池
運転初期において高い活性を示していた触媒も運転時間
の経過と共にシンタリングを起こし、担体上に分散担持
した触媒が凝集してきてその表面積が減少してくるため
、初期性能を長期に亘って維持できなくなるという問題
がめった。
In other words, in recent years Giner's Jalan (J
a 1an) investigated the correlation between the catalytic activity for redox reactions and the distance between metal atoms in alloy catalysts (platinum-based), and formed an alloy with the shortest interatomic distance with platinum among the alloy catalysts investigated. It has been found that a catalyst in which a Pt-Cr alloy is supported on heat-treated carbon has the highest activity. (
J, Electrschem, Soc, 130 229
9c1983) Based on the criterion of the correlation between the distance between alloy metal atoms and the catalytic activity, roughly ternary alloy catalyst Pt-C
It has been found that o-Ni, Pt-Cr-C, Pt-Cr-Ce, etc. exhibit high activity. (Unexamined Japanese Patent Publication No. 61-885
In addition, the authors claim that by using such an electrode catalyst, the catalytic activity can be increased, and at the same time, the electrode catalyst can be resistant to a decrease in surface area due to sintering of the catalyst. (USP 4373014, 43169 (Problems to be Solved by the Invention)) Using the above-mentioned electrode catalyst, phosphoric acid, which has been developed for use in power generation plants, is used as an electrolyte in a fuel cell having the configuration shown in Figure 2. In order to promote the electromotive reaction and utilize waste heat, the batteries are operated at around 200°C.For this reason, the catalyst, which showed high activity at the beginning of the battery operation, sintered as the operation time progressed and the catalyst formed on the carrier. Since the catalyst dispersed and supported on the catalyst agglomerates and its surface area decreases, there is a frequent problem that the initial performance cannot be maintained over a long period of time.

ところで、カーボン担持の白金属触媒のシンタリングを
抑制するには、先ずシンタリングの機構を知らねばなら
ない。
By the way, in order to suppress sintering of a carbon-supported platinum metal catalyst, it is first necessary to understand the sintering mechanism.

シンタリング機構については多くの人々によって調べら
れ大別して次の3つが挙げられている。
The sintering mechanism has been investigated by many people and has been broadly classified into the following three types.

(1)、担体カーボンの酸化減耗による白金の凝集(2
)、熱による白金原子おるいは結晶子の担体表面上の拡
散による凝集 (3)、貴金属微粒子の電解雪中への溶解−再析出によ
る凝集 本発明者はカーボン担持白金触媒のシンタリングについ
て調べるため種々の状態におかれた触媒の半電池試験を
行った結果、上記(2)の熱による白金微粒子の移動凝
集の効果が支配的であることが判明した。
(1), agglomeration of platinum due to oxidative depletion of carrier carbon (2)
), aggregation due to heat-induced diffusion of platinum atoms or crystallites on the surface of the carrier (3), aggregation due to dissolution-re-precipitation of precious metal fine particles in electrolytic snow.The present inventors will investigate the sintering of carbon-supported platinum catalysts. As a result of conducting half-cell tests on catalysts placed in various conditions, it was found that the above-mentioned (2) effect of movement and aggregation of platinum fine particles due to heat was dominant.

従って、シンタリングを抑制する手段としては、担体上
に析出している白金微粒子を担体表面上に強固に付着さ
せる必要があると判断した。    ′このような考え
に沿ってシリンタリングを抑制させるという提案は以前
にもなされ例えば前述のVTCのジャラン(Jalan
)等はカーボン担持白金触媒をCOあるいは炭化水素ガ
ス雰囲気中500〜1200°Fで熱処理することによ
り、担持された白金結晶子上おるいはその周囲にカーボ
ンを析出させることにより白金の移動凝集を抑えるとい
う提案をした。(υSP、 4137372 ) この方法によると、確かに白金の凝集は抑制できたが、
導入するCOあるいは炭化水素系のガスの勾により触媒
活性が微妙に変わってしまうという;゛触点があった。
Therefore, it was determined that as a means to suppress sintering, it is necessary to firmly adhere the platinum fine particles precipitated on the carrier onto the carrier surface. 'Proposals to suppress syringing based on this idea have been made before, for example in the aforementioned VTC Jalan.
) etc. heat-treat a carbon-supported platinum catalyst at 500 to 1200°F in a CO or hydrocarbon gas atmosphere to precipitate carbon on or around the supported platinum crystallites, thereby inhibiting platinum migration and aggregation. I suggested that it be suppressed. (υSP, 4137372) Although this method certainly suppressed platinum aggregation,
There was a point where the catalytic activity changed slightly depending on the gradient of the CO or hydrocarbon gas introduced.

1′  そこで、本発明者は担体そのものを改質するこ
とにより白金微粒子の担体上の移動凝集を抑えるという
考えに基づいて、担体の酸化処理を行ない、これにより
担体表面を改質し、白金の拡散に対する障壁を形成して
シンタリングを抑制することを試みた。
1' Therefore, based on the idea that the movement and aggregation of platinum fine particles on the carrier can be suppressed by modifying the carrier itself, the present inventor carried out an oxidation treatment on the carrier, thereby modifying the carrier surface and increasing the platinum content. An attempt was made to suppress sintering by forming a barrier to diffusion.

本発明は上記試みに基づいてなされたもので、燃料電池
用電極触媒が電池作動条件下においてシンタリングを起
こす程度が少なく、これを用いた電極が長期に亘り高い
活性を維持できるようにすることを目的とするものでお
る。
The present invention has been made based on the above-mentioned attempts, and has an object to enable a fuel cell electrode catalyst to have a low degree of sintering under cell operating conditions, and to enable an electrode using the same to maintain high activity over a long period of time. The purpose is to

[発明の構成] (問題点を解決するための手段) 上記目的を達成するために、本発明はカーボン粉末を酸
化鉄を主成分とする触媒を用いて酸化処理を施し、この
酸化処理を施したカーボン粉末に白金の金属微粒子を分
散担持させて電極触媒を形成し、この電極触媒を結着剤
としてのテフロン系デイスパージョンと混練して、混練
ペーストを形成し、この混練ペーストを多孔質基本の片
面に塗着し、その後焼成して得られた電極を用いて燃料
電池を製造することを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention oxidizes carbon powder using a catalyst containing iron oxide as a main component. Platinum metal particles are dispersed and supported on carbon powder to form an electrode catalyst, and this electrode catalyst is kneaded with Teflon-based dispersion as a binder to form a kneaded paste. It is characterized in that a fuel cell is manufactured using an electrode obtained by coating one side of a base and then firing it.

(作 用) 上述のようにあらかじめ担体に酸化処理を施すすことに
よりカーボンの表面が改質され、そこに付着する白金属
の金属微粒子が燃料電池の作動状態の環境において表面
拡散して凝集する過程が抑えられる。
(Function) As mentioned above, by subjecting the carrier to oxidation treatment in advance, the surface of carbon is modified, and the fine metal particles of platinum metal attached thereto diffuse and aggregate on the surface in the operating environment of the fuel cell. The process is suppressed.

(実施例) カーボン粉末Vxc−72R(キャボット社製、比表面
積2507rt/g、平均粒子径30mμ)35gを採
取し、ここに酸化鉄3gを混合し、これを黒鉛るつぼに
入れ、窒素ガス雰囲気中1500℃で混合物重量が33
C1程度となるまで加熱した。その後、酸化鉄を除去し
、このカーボン上に公知の方法で(塩化白金酸をギ酸ナ
トリウムで湿式還元する方法)白金微粒子を析出担持さ
せた。
(Example) 35 g of carbon powder Vxc-72R (manufactured by Cabot Corporation, specific surface area 2507 rt/g, average particle diameter 30 mμ) was collected, 3 g of iron oxide was mixed therein, this was placed in a graphite crucible, and the mixture was placed in a nitrogen gas atmosphere. The weight of the mixture at 1500℃ is 33
It was heated until it reached about C1. Thereafter, iron oxide was removed, and fine platinum particles were precipitated and supported on the carbon by a known method (wet reduction of chloroplatinic acid with sodium formate).

このカーボン担持白金触媒に全触媒重量に対して結着剤
としてテフロン含量が30−t%となるようにテフロン
ディスパージョン(三井フロロケミカル% Tef l
 on30−J )を加えて混練ペーストを作成し、こ
の混練ペーストを濾過したものを10等分し、これを2
00 ’Cの多孔質基板上に塗着後、一定圧でプレスす
る。
A Teflon dispersion (Mitsui Fluorochemical Co., Ltd.) was added to this carbon-supported platinum catalyst so that the Teflon content was 30-t% as a binder based on the total catalyst weight.
on30-J) to create a kneaded paste, filtered this kneaded paste, divided into 10 equal parts, and divided into 2
After coating on a porous substrate at 00'C, it is pressed at a constant pressure.

その後、−昼夜乾燥したものを窒素ガス雰囲気中330
°Cにて20分間焼成した。
Then, dry it for 330 days in a nitrogen gas atmosphere.
It was baked for 20 minutes at °C.

この電極からみかけの面積が1 crAの試験片を切り
出しフローティング式の半電池に組み込んだ。
A test piece with an apparent area of 1 crA was cut out from this electrode and incorporated into a floating half cell.

この試験電極にポテンシオスタットにて一定電位(0,
7VVS、 RHE )を印加し、一定時間毎の表面積
の経時変化を電位走査法により調べた。
This test electrode is placed at a constant potential (0,
7VVS, RHE) was applied, and changes in surface area over time were investigated at fixed time intervals using a potential scanning method.

比較のため従来の製造方法でおるカーボン担体に酸化処
理を施していないものに白金を担持させた触媒の試験片
を作り、同一電位における表面積の経時変化を一定時間
毎に測定した。
For comparison, test specimens of the catalyst were prepared by supporting platinum on a conventionally produced carbon carrier without oxidation treatment, and changes in surface area over time at the same potential were measured at regular intervals.

第1図は上記実験結果を示したもので、酸化処理を施し
た担体上に白金微粒子を析出させた触媒を用いた本発明
に係る方法により製造した電極(A>は、従来の酸化処
理を施してない担体上に白金を析出させた触媒を用いた
従来の方法により製造した電極(B)に比べ表面積の減
少速度、減少率が共に低かった。
Figure 1 shows the above experimental results. The electrode (A>) manufactured by the method according to the present invention using a catalyst in which fine platinum particles were deposited on a carrier subjected to oxidation treatment was Compared to the electrode (B) manufactured by a conventional method using a catalyst in which platinum was deposited on a carrier without any treatment, both the speed and rate of decrease in surface area were lower.

また、この試験初期における両電慢の活性を調べるため
、空気還元反応の1−7曲線をとったところ本方法によ
る担体の酸化処理を行った電極の活性は未処理の電極の
それに比べ0.9V (vsRHE )において電流値
が3割はど大きく酸化処理を施したことによる触媒活性
の低下は認められなかった。
In addition, in order to investigate the activity of both voltages at the initial stage of this test, a 1-7 curve of the air reduction reaction was taken, and the activity of the electrode whose carrier was oxidized by this method was 0.0% compared to that of the untreated electrode. At 9V (vsRHE), the current value was 30% larger, and no decrease in catalytic activity was observed due to the oxidation treatment.

また、酸化鉄の代りに酸化銅を用いても同様な効果がお
ることも実験により判明した。
It was also found through experiments that a similar effect can be obtained by using copper oxide instead of iron oxide.

他の実施例 上記実施例における担体の酸化処理において、酸化触媒
として酸化鉄のみを用いる代りにさらに微量のに20 
、 Al2O2を添加してこの処理を行ったところ、未
処理のものに比べての電極の表面積の減少率がざらに小
さくなるように改善された。これはカーボンのbasa
l而上にe面chpitを生成する作用かに20等の助
触媒を添加することによりざらに高められたためと推定
される。
Other Embodiments In the oxidation treatment of the carrier in the above embodiments, instead of using only iron oxide as an oxidation catalyst, a trace amount of iron oxide was added.
When this treatment was performed with the addition of Al2O2, the reduction rate of the surface area of the electrode was significantly reduced compared to the untreated one. This is carbon basa
It is presumed that this is because the effect of generating e-plane chpit was greatly increased by adding a cocatalyst such as Kana 20.

[発明の効果] 以上述べたように、本発明に係る方法により製造された
燃料電池用電曝はシンタリングに対する耐久性が大きく
かつ電極自体の活性も優れており、これを用いて単電池
を構成した燃料電池は長寿命かつ高性能の特性を示すと
いう従来の製造方法では得られない効果がある。
[Effects of the Invention] As described above, the electrode for fuel cells manufactured by the method according to the present invention has great durability against sintering and the activity of the electrode itself is excellent, and it can be used to manufacture single cells. The constructed fuel cell exhibits long life and high performance characteristics, an effect that cannot be obtained with conventional manufacturing methods.

【図面の簡単な説明】 ” 第1図は本発明に係る方法により製造した電)侃と
従来の方法により製造した電極の白金表面積の経時変化
を示すグラフ(ただし縦軸は2.5hrs後の表面積を
SOとして規格化した値、横軸は時間を表す)、第2図
は燃料電池の単位電池の斜視図でおる。 1・・・多孔質基体 2・・・触媒層 3・・・アノード 4・・・カソード 5・・・電解質層 6・・・燃料ガス 7・・・酸化剤ガス 8・・・セパレータ 代理人 弁理士 則 近 憲 佑 同  三俣弘文
[Brief Description of the Drawings] Figure 1 is a graph showing changes over time in the platinum surface area of electrodes manufactured by the method according to the present invention and electrodes manufactured by the conventional method (however, the vertical axis is the graph after 2.5 hrs). Figure 2 is a perspective view of a unit cell of a fuel cell. 1...Porous substrate 2...Catalyst layer 3...Anode 4...Cathode 5...Electrolyte layer 6...Fuel gas 7...Oxidant gas 8...Separator representative Patent attorney Noriyuki Chika Yudo Hirofumi Mitsumata

Claims (4)

【特許請求の範囲】[Claims] (1)各々片面に触媒層が形成された燃料極および酸化
電極の一対の電極を触媒層の形成された面が電解質層を
挟むように配置するとともに前記燃料極に燃料を供給し
、また前記酸化電極に酸化剤を供給して、このとき起こ
る電気化学的反応により両電極間から電気エネルギーを
取り出す燃料電池の製造方法において、カーボン粉末に
酸化鉄を主成分とする触媒を用いて酸化処理を施し、こ
の酸化処理を施したカーボン粉末に白金の金属微粒子を
分散担持させて電極触媒を形成し、この電極触媒を結着
剤としてのテフロン系ディスパージョンと混練して、混
練ペーストを形成し、この混練ペーストを多孔質基本の
片面に塗着し、その後焼成して得られる電極を用いて燃
料電池を製造するようにしたことを特徴とする燃料電池
の製造方法。
(1) A pair of electrodes, a fuel electrode and an oxidation electrode each having a catalyst layer formed on one side, are arranged so that the surfaces on which the catalyst layer is formed sandwich an electrolyte layer, and fuel is supplied to the fuel electrode, and In a fuel cell manufacturing method in which an oxidizing agent is supplied to an oxidizing electrode and electrical energy is extracted from between the two electrodes through the electrochemical reaction that occurs, carbon powder is oxidized using a catalyst containing iron oxide as a main component. The oxidized carbon powder is dispersed and supported with platinum metal fine particles to form an electrode catalyst, and this electrode catalyst is kneaded with a Teflon dispersion as a binder to form a kneaded paste. A method for manufacturing a fuel cell, characterized in that the kneaded paste is applied to one side of a porous base, and then the electrode obtained by firing is used to manufacture a fuel cell.
(2)前記酸化鉄にk_2OまたはAl_2O_3を添
加することを特徴とする特許請求の範囲第1項記載の燃
料電池の製造方法。
(2) The method for manufacturing a fuel cell according to claim 1, characterized in that k_2O or Al_2O_3 is added to the iron oxide.
(3)前記酸化鉄の代りに酸化銅を用いることを特徴と
する特許請求の範囲第1項記載の燃料電池の製造方法。
(3) The method for manufacturing a fuel cell according to claim 1, characterized in that copper oxide is used in place of the iron oxide.
(4)焼成は窒素ガス雰囲気中で行なうことを特徴とす
る特許請求の範囲第1項記載の燃料電池の製造方法。
(4) The method for manufacturing a fuel cell according to claim 1, wherein the firing is performed in a nitrogen gas atmosphere.
JP61184223A 1986-08-07 1986-08-07 Manufacture of fuel cell Pending JPS6343260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61184223A JPS6343260A (en) 1986-08-07 1986-08-07 Manufacture of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61184223A JPS6343260A (en) 1986-08-07 1986-08-07 Manufacture of fuel cell

Publications (1)

Publication Number Publication Date
JPS6343260A true JPS6343260A (en) 1988-02-24

Family

ID=16149520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184223A Pending JPS6343260A (en) 1986-08-07 1986-08-07 Manufacture of fuel cell

Country Status (1)

Country Link
JP (1) JPS6343260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445829A2 (en) * 1990-03-09 1991-09-11 Shin Caterpillar Mitsubishi Ltd. Automatic speed shifting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445829A2 (en) * 1990-03-09 1991-09-11 Shin Caterpillar Mitsubishi Ltd. Automatic speed shifting device
EP0445829A3 (en) * 1990-03-09 1992-01-22 Shin Caterpillar Mitsubishi Ltd. Automatic speed shifting device

Similar Documents

Publication Publication Date Title
EP1748509B1 (en) Fuel cell and gas diffusion electrode for fuel cell
KR101202104B1 (en) Catalyst, method for producing the same, and use of the same
KR20200099046A (en) Manufacturing method of nitrogen doped metal-carbon catalyst for fuel cell
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
CN101808735A (en) Catalyst
JPH0510978B2 (en)
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
KR20180076957A (en) Cathode for fuel cell, and method for preparing membrane electrode assembly comprising the same
JP4620341B2 (en) Fuel cell electrode catalyst
JPS618851A (en) Fuel battery and electrolyte catalyst therefor
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
US20050260483A1 (en) Catalyst for fuel cell and fuel cell comprising the same
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
KR102013907B1 (en) manufacturing method of 0-dimensional and 1-dimensional graphene composite catalyst containing nitrogen-iron and fuel cell application
JP2009158131A (en) Electrocatalyst and method of manufacturing the same
JPS6343260A (en) Manufacture of fuel cell
JP2005129457A (en) Electrode catalyst
JP2977199B2 (en) Electrode catalyst
WO2012133017A2 (en) Fuel cell anode catalyst and manufacturing method therefor
JP2004259642A (en) Fuel electrode for solid oxide fuel cell, and its manufacturing method
JPH077668B2 (en) Molten carbonate fuel cell electrode
JPS63224154A (en) Electrode for fuel cell
JPH02822B2 (en)
JPS63299057A (en) Manufacture of fuel cell electrode
JP2009001846A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell