JPS60154464A - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPS60154464A
JPS60154464A JP59008627A JP862784A JPS60154464A JP S60154464 A JPS60154464 A JP S60154464A JP 59008627 A JP59008627 A JP 59008627A JP 862784 A JP862784 A JP 862784A JP S60154464 A JPS60154464 A JP S60154464A
Authority
JP
Japan
Prior art keywords
electrode
layer
metal
fuel cell
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59008627A
Other languages
Japanese (ja)
Inventor
Hakaru Ogawa
斗 小川
Kenji Murata
謙二 村田
Atsuo Muneuchi
篤夫 宗内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59008627A priority Critical patent/JPS60154464A/en
Publication of JPS60154464A publication Critical patent/JPS60154464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain an electrode whose electrolyte holding ability is good and reaction gas diffusion resistance is small by forming an electrode in two layers in which one layer consists of apongy metal of Ni and Ni alloy and the other consists of porous sinter of fibrous Ni and Ni alloy. CONSTITUTION:100mm. square spongy nickel layer 2 having a porosity of 80%, a thickness of 1.2mm., and a mean pore size of 0.2mm. is formed. Fibrous nickel of 4mu in diameter having a length of 2-3mm. is formed in a 100mm. square layer 1 having a thickness of 0.2mm.. The nickel layer 1 is placed on the nickel layer 2 and they are sintered in an atomosphere of hydrogen at 1,000 deg.C for 2hr. A unit cell is formed with this electrode, and a fuel cell is assembled with unit cells, then fuel gas and oxidizing agent gas are supplied to each electrode for testing. Test results show that voltage in 200mA/cm<2> discharge is increased by 0.07V, or about 12%, compared with the conventional cell.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は溶融炭酸塩燃料電池に係り、特にそのガス拡散
電極の構造の改良に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to molten carbonate fuel cells, and more particularly to improvements in the structure of gas diffusion electrodes thereof.

(従来技術とその問題点〕 従来、溶融炭酸塩燃料電池の電極としては、 Niおよ
びNi系合金粉末の□焼結多孔質体が用いられてきた。
(Prior Art and its Problems) Conventionally, a □ sintered porous body of Ni and Ni-based alloy powder has been used as an electrode for a molten carbonate fuel cell.

しかしながらこの電極には以下の問題点が存在する二 (1)適度な電解質保持を行なうため、ある一定範 。However, this electrode has the following problems: (1) Within a certain range to maintain appropriate electrolyte retention.

囲(5〜15μ)の孔径分布を有する必要がある。この
結果、原料粉末を分級して粒径を揃える必要がある。
It is necessary to have a pore size distribution of (5-15μ). As a result, it is necessary to classify the raw material powder to make the particle size uniform.

(2)原料粉末が微粒(20μ以下)なため、電池作動
中に粒子間の焼結が進み易く、孔径が小さくなって細孔
が電解質で閉そくされるとともに空孔率が低下しモ、反
応サイト(三相界面)が減少するとともにガス拡散性が
低下して電池の性能を低下させる。
(2) Because the raw material powder is fine particles (20μ or less), sintering between particles tends to proceed during battery operation, and the pore size becomes smaller and the pores are blocked with electrolyte, reducing the porosity and causing reactions. As the number of sites (three-phase interface) decreases, gas diffusivity decreases, resulting in a decrease in battery performance.

(3)強度上の問題がら空孔率は65%以下、また厚さ
は0.’35’m以上必要であり、必要な原料が多い。
(3) Due to strength issues, the porosity is less than 65%, and the thickness is 0. It requires more than 35m and requires a lot of raw materials.

(4)横方向のガス拡散性が悪いため5反応サイトヘガ
ス供給するには、セパレータプレートにガス供給溝が必
要であシ、このガス供給用溝の設計が悪いと、溝への電
極の落ち込みが生じる。
(4) Due to poor lateral gas diffusivity, a gas supply groove is required in the separator plate to supply gas to the 5 reaction sites, and if this gas supply groove is poorly designed, the electrode may fall into the groove. occurs.

従来電極への改良案として、二重孔径分布を有する電極
、すなわち10μ程度の細孔を有する層と30μ程度の
細孔を有する層との2層からなる粉末焼結体電極がある
。しかしながらこの電極では従来電極の問題点は以前と
して解決されていない。すなわち。
As an improvement to the conventional electrode, there is an electrode having a dual pore size distribution, that is, a powder sintered electrode consisting of two layers: a layer having pores of about 10 μm and a layer having pores of about 30 μm. However, this electrode still does not solve the problems of conventional electrodes. Namely.

(1)2層を形成するためには1粒径の揃った2種類の
粉末が必要であり、原料粉末の分級が必要である。
(1) In order to form two layers, two types of powder with the same particle size are required, and the raw material powder must be classified.

(2110μ程度の細孔を有する層を形成する粉末には
、従来電極と同じ粉末を使用するので、電池作動中に粒
子間の焼結が進み易い。
(Since the powder forming the layer with pores of about 2110 μm is the same as that used for conventional electrodes, sintering between particles tends to proceed during battery operation.

(3)基本的には従来電極と同じ粉末焼結体電極なので
、空孔率を大きくしたり、厚さを薄くするのは強度上問
題があシ、必要な原料を低減できない。
(3) Since it is basically the same powder sintered electrode as conventional electrodes, increasing the porosity or decreasing the thickness would pose problems in terms of strength and would not reduce the amount of raw material required.

(4130μ程度の細孔を有する層の空孔率は65−以
下であるため、横方向のガス拡散性が悪く、従来電極同
様セパレータプレートにガス供給用溝を必要とする。
(Since the porosity of the layer having pores of about 4130 μm is 65 or less, gas diffusion in the lateral direction is poor, and as with conventional electrodes, gas supply grooves are required in the separator plate.

〔発明の目的〕[Purpose of the invention]

本発明は、電解質保持力が良好で1反応ガスの拡散抵抗
が小さい電極を有し電池特性の良好な溶融炭酸塩燃料電
池を提供することを目的とする。
An object of the present invention is to provide a molten carbonate fuel cell having an electrode having good electrolyte retention and low diffusion resistance for one reaction gas, and having good cell characteristics.

〔発明の概要〕[Summary of the invention]

NiおよびN系合金からなる海綿状金属による層とNi
およびNi系合金からなる繊維状金属の多孔質焼結体か
らなる薄い層との2層構造の電極を有する溶融炭酸塩燃
料電池である。
A spongy metal layer consisting of Ni and N-based alloys and a layer of Ni
This is a molten carbonate fuel cell having an electrode having a two-layer structure including a thin layer made of a porous sintered body of fibrous metal and a Ni-based alloy.

〔発明の効果〕〔Effect of the invention〕

本発明の効果を下記に述べる。 The effects of the present invention will be described below.

(1)繊維状金属は径が揃っているため従来電極と違い
分級を行なう必要がない。またせんい状金属の長さは、
海綿金属の穴へ落ち込まない程度であれば揃っていなく
てよい。 4 (2)海綿状金属からなる層は、孔径0.1〜0.5 
wm。
(1) Since fibrous metals have uniform diameters, there is no need to classify them, unlike conventional electrodes. Also, the length of the spiral metal is
They don't have to be aligned as long as they don't fall into the hole in the sponge metal. 4 (2) The layer made of spongy metal has a pore size of 0.1 to 0.5
wm.

空孔率65〜98%であ)、横方向のガス拡散が良好で
セパレータプレートにガス供給用の溝を設ける必要がな
い。
The porosity is 65 to 98%), and lateral gas diffusion is good, so there is no need to provide gas supply grooves in the separator plate.

(3)強度を海綿状金属層で保持させるため、繊維状金
属多孔質焼結体の厚さを0.2■以下、多孔率を65−
〜80チにできるため、必要な原料を従来より減少でき
る。
(3) In order to maintain strength with the spongy metal layer, the thickness of the fibrous metal porous sintered body is 0.2cm or less, and the porosity is 65-
Since it can be made up to 80 inches, the amount of raw materials required can be reduced compared to conventional methods.

(4)せんい状金属多孔質焼結体は、電池作動時に焼結
が進行しにくく、電池の性能劣化が少ない。
(4) The spiral-shaped metal porous sintered body is difficult to sinter during battery operation, and the performance of the battery is less likely to deteriorate.

〔発明の実施例] 実施例1 第1図を参考にして実施例を説明する。[Embodiments of the invention] Example 1 An embodiment will be described with reference to FIG.

空孔率80%、厚さ1.2 m 、平均孔径0.2 m
 。
Porosity 80%, thickness 1.2 m, average pore diameter 0.2 m
.

100m+角のNiの海綿金属■に直径4μ、2〜3鴎
長のせんい状Niを厚さ0.2m、100鱈角に成形し
たせんい状金属層■を乗せ、1ooo℃水素界囲気中で
2時間焼結した。この電極を用いて、第2図に示す単セ
ルを形成し電池を組み立て各種に燃料ガス、酸化剤ガス
を供給して試験を行な−)九2 なお■は電解質層であ
る。200 mA/d時の電圧が従来より0.07 V
約12%向上した。このとき。
A spiral-shaped metal layer ■ made of Ni spiral-shaped Ni with a diameter of 4 μm and 2 to 3 square lengths and formed into a 0.2-meter thick and 100 square length was placed on a 100 m + square Ni sponge metal ■, and heated at 100°C in a hydrogen atmosphere for 2 hours. Sintered for hours. Using this electrode, a single cell shown in FIG. 2 was formed, and the battery was assembled and tested by supplying fuel gas and oxidizing gas to each cell. The voltage at 200 mA/d is 0.07 V compared to conventional models.
It improved by about 12%. At this time.

単セルホルダーにはガス供給用溝を設けなかった。No gas supply groove was provided in the single cell holder.

また、焼結後、せんい状金属層■の平均孔径と空孔率を
測定したところ% 15μ、70%であった。
Further, after sintering, the average pore diameter and porosity of the spiral metal layer (2) were measured and found to be 15μ and 70%.

また、金属せんいの直径を2μにしたところ電解質に腐
食されて、せんいが切断された。さらに。
Furthermore, when the diameter of the metal wire was set to 2μ, the wire was corroded by the electrolyte and was cut. moreover.

直径20μにしたところ電極の表面積が低下し従来電極
を使用した場合と単セルの性能が同じになった。海綿金
属の穴径を0.5 ms以上にすると、従来電極を使用
した場合と抵抗が大きくなるため単セルの性能が同じに
なった。
When the diameter was set to 20μ, the surface area of the electrode decreased and the performance of the single cell became the same as when using conventional electrodes. When the diameter of the hole in the sponge metal was increased to 0.5 ms or more, the resistance increased and the performance of the single cell became the same as when using conventional electrodes.

また、穴径0.1腰昧満にすると、従来電極同様横方向
のガス拡散が悪くなり、セパレータプレートにガス供給
用溝が必要となった。
Further, when the hole diameter is set to 0.1, gas diffusion in the lateral direction becomes poor as in the conventional electrode, and gas supply grooves are required in the separator plate.

変形例 第3図に示すように海綿金属■1のセパレータプレート
側にくし状のガス供給用溝を設けてもよい。
Modification As shown in FIG. 3, comb-shaped gas supply grooves may be provided on the separator plate side of the sponge metal 1.

又、Ni系合金の海綿金属以外にSUS系の海綿状金属
を用いても良い。
In addition to the Ni-based alloy sponge metal, a SUS-based sponge metal may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る実施例の電極の断面図、第2図は
第1図に示した電極を用いて構成した単セルの斜視図、
第3図は本発明に係る変形例を示す斜視図である。 ■・・・金属せんい焼結多孔質層、 ■・・・海綿金属、 ■・・・ガス供給用溝、 ■・・・電解質層、 代理人 弁理士 則 近 憲 佑(ほか1名)第1図 第3図
FIG. 1 is a cross-sectional view of an electrode according to an embodiment of the present invention, FIG. 2 is a perspective view of a single cell constructed using the electrode shown in FIG. 1,
FIG. 3 is a perspective view showing a modification according to the present invention. ■...Sintered metal fiber porous layer, ■...Sponge metal, ■...Gas supply groove, ■...Electrolyte layer, Agent: Patent attorney Noriyuki Chika (and 1 other person) No. 1 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)平板状に形成された電解質層と、この電解質層の
両面にそれぞれ設けられた一対のガス拡散電極とを具備
し、上記ガス拡散電極ば細孔径気孔率とも大なるニッケ
ルあるいはニッケル゛合金からなる厚い多孔質層と、細
孔径、気孔率とも小なる該金属必・らなる薄い多孔質層
から成る事を特徴とする溶融炭酸塩燃料電池。
(1) It comprises an electrolyte layer formed in a flat plate shape and a pair of gas diffusion electrodes provided on both sides of the electrolyte layer, and the gas diffusion electrodes are made of nickel or nickel alloy with a large pore size and porosity. A molten carbonate fuel cell characterized by comprising a thick porous layer made of the metal and a thin porous layer made of the metal with small pore diameter and porosity.
(2)薄い多孔質層は、直径2〜20μの繊維状金属の
多孔質焼結体である事を特徴とする特許請求の範囲第1
項記載の溶融炭酸塩燃料電池。
(2) The thin porous layer is a porous sintered body of fibrous metal with a diameter of 2 to 20 μm.
The molten carbonate fuel cell described in Section 1.
(3)厚い多孔質層は、直径0.1〜0,5fiの連結
した細孔を□有する海綿金属である事を特徴とする特許
請求の範囲第1項記載の溶融炭酸塩燃料電池。
(3) The molten carbonate fuel cell according to claim 1, wherein the thick porous layer is a sponge metal having connected pores with a diameter of 0.1 to 0.5 fi.
JP59008627A 1984-01-23 1984-01-23 Molten carbonate fuel cell Pending JPS60154464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008627A JPS60154464A (en) 1984-01-23 1984-01-23 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008627A JPS60154464A (en) 1984-01-23 1984-01-23 Molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPS60154464A true JPS60154464A (en) 1985-08-14

Family

ID=11698184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008627A Pending JPS60154464A (en) 1984-01-23 1984-01-23 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS60154464A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165869A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Fused carbonate type fuel cell
JPH023661U (en) * 1988-06-20 1990-01-11
JPH04116631U (en) * 1991-01-31 1992-10-19 いすゞ自動車株式会社 Combustion chamber of direct injection diesel engine
EP0714146A1 (en) * 1994-11-09 1996-05-29 ENERGY RESEARCH CORPORATION (a Corporation of the State of New York) Fuel cell anode and fuel cell
JP2004127566A (en) * 2002-09-30 2004-04-22 Mitsubishi Materials Corp Gas diffusion layer for fuel cell
JP2008047299A (en) * 2006-08-10 2008-02-28 Toyota Motor Corp Fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165869A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Fused carbonate type fuel cell
JPH023661U (en) * 1988-06-20 1990-01-11
JPH04116631U (en) * 1991-01-31 1992-10-19 いすゞ自動車株式会社 Combustion chamber of direct injection diesel engine
EP0714146A1 (en) * 1994-11-09 1996-05-29 ENERGY RESEARCH CORPORATION (a Corporation of the State of New York) Fuel cell anode and fuel cell
JP2004127566A (en) * 2002-09-30 2004-04-22 Mitsubishi Materials Corp Gas diffusion layer for fuel cell
JP2008047299A (en) * 2006-08-10 2008-02-28 Toyota Motor Corp Fuel cell

Similar Documents

Publication Publication Date Title
US20050221163A1 (en) Nickel foam and felt-based anode for solid oxide fuel cells
US4407915A (en) Secondary zinc electrode
JPS60154464A (en) Molten carbonate fuel cell
US5721073A (en) Electrodes for battery and method for fabricating the same
US3895960A (en) Diffusion-bonded battery electrode plaques
JP3386634B2 (en) Alkaline storage battery
JPH11242958A (en) Nonsintered positive electrode for alkaline storage battery and alkaline storage battery using the same
US6274275B1 (en) Alkali storage cell employing a spongelike metal substrate
JPH02821B2 (en)
US3408231A (en) Method of making flexible electrodes
US5324333A (en) Cadmium oxide electrode with binding agent
US3442713A (en) Combined electrolyte-electrode for fuel cells and method of fabrication
JP3173775B2 (en) Paste nickel positive electrode and alkaline storage battery
JP2975616B2 (en) Nickel oxide / hydrogen storage alloy secondary battery
JPH1154131A (en) Fuel cell electrode for solid electrolyte type fuel cell, film forming method thereof, and fuel electrode material used in film formation
JPH0423380B2 (en)
JP2002208404A (en) Electrode for alkaline secondary battery
Britton Lightweight fibrous nickel electrodes for nickel-hydrogen batteries
JPS61133566A (en) Molten carbonate fuel cell
Hryniewicz et al. Porous sinters for elevated-temperature natural-gas fuel cells
JPS61263047A (en) Nickel electrode for alkaline battery
JP2909154B2 (en) Solid oxide fuel cell
Kalal et al. Battery applications of extrafine Inco type-210 nickel powder
JPS58155663A (en) Fuel cell
JPH03252058A (en) Electrode catalyst layer for fuel cell