JPS6271599A - Biological denitrification treatment - Google Patents
Biological denitrification treatmentInfo
- Publication number
- JPS6271599A JPS6271599A JP21029685A JP21029685A JPS6271599A JP S6271599 A JPS6271599 A JP S6271599A JP 21029685 A JP21029685 A JP 21029685A JP 21029685 A JP21029685 A JP 21029685A JP S6271599 A JPS6271599 A JP S6271599A
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- denitrification
- methanol
- phenol
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
「発明の目的」
本発明は生物学的脱窒処理方法に係り、コークス炉ガス
液(安水)中に含有されるアンモニア性窒素などの総窒
素を生物学的に除去するに当り、その水素供与体として
一般的に使用されているメタノールに代え該安水中に含
有されているフェノールを用い経済的且つ効率的な脱窒
を行わせようとするものである。Detailed Description of the Invention ``Object of the Invention'' The present invention relates to a biological denitrification treatment method, in which total nitrogen such as ammonia nitrogen contained in coke oven gas liquid (ammonium water) can be removed biologically. In removing nitrogen, the aim is to use phenol contained in the aqueous solution instead of methanol, which is commonly used as a hydrogen donor, to carry out economical and efficient denitrification.
産業上の利用分野
コークス炉ガス液中に含まれるアンモニア性窒素などの
生物学的除去技術。Industrial applications: Biological removal technology for ammonia nitrogen, etc. contained in coke oven gas liquids.
従来の技術
石炭を乾留しコークスを製造する過程で発生するコーク
ス炉ガス液(以下安水という)中には種々の有害物質が
含まれており、この有害物質は一般的に活性汚泥処理に
よって除去されている。ところで近年海洋、湖沼或いは
河川などにおける富栄養化が社会的問題となっているこ
とは周知の如くで、廃水中に含まれる窒素分がこのよう
な問題における大きな原因の1つである。然して上記し
た安水中にもアンモニア性窒素が高濃度に含有されてい
て、これを除去することが必要であり、この安水中に含
有されたアンモニア性窒素の除去方法として従来におり
てはアルカリ添加による水蒸気蒸留法が採用されている
。Conventional technology The coke oven gas liquid (hereinafter referred to as ammonium water) generated during the process of carbonizing coal to produce coke contains various harmful substances, and these harmful substances are generally removed by activated sludge treatment. has been done. By the way, it is well known that eutrophication in oceans, lakes, rivers, etc. has become a social problem in recent years, and nitrogen contained in wastewater is one of the major causes of this problem. However, the above-mentioned ammonia solution also contains ammonia nitrogen at a high concentration, and it is necessary to remove it. A steam distillation method is used.
又窒素分合有量が比較的低い下水や法服1等の廃水に関
する窒素除去の目的として生物学的脱窒法が注目され運
転されている。即ちこの生物学的脱窒法は廃水中に含ま
れるアンモニア性窒素等の総窒素を好気的雰囲気下でニ
トロバクタ−、ニトロヅモナスなどの硝化菌によって硝
酸、亜硝酸に葭化し、更に嫌気性雰囲気下で硝酸、亜硝
酸を脱IM素菌で窒素ガスに還元除去するものであって
、ごの一連の過程I、こおいて廃水中に含まれるBOD
等の有害成分も同時に分解除去される。然してこの生物
学的脱窒法においては2つの考え方があり、その1つは
微生物自身の自己酸化呼吸を利用し微生物細胞内物質を
水素供与体として硝酸、亜硝酸を分解するものであり、
もう1つは系外より水素供与体である有機炭素源を添加
するものである。In addition, biological denitrification methods are attracting attention and being used for the purpose of removing nitrogen from wastewater such as sewage and legal uniforms, which have a relatively low nitrogen content. In other words, this biological denitrification method converts total nitrogen such as ammonia nitrogen contained in wastewater into nitrate and nitrite by nitrifying bacteria such as Nitrobacter and Nitrosumonas in an aerobic atmosphere, and then converts it into nitrate and nitrite in an anaerobic atmosphere. Nitrate and nitrite are reduced and removed by de-IM bacteria to nitrogen gas, and in this process, BOD contained in wastewater is removed.
Harmful components such as these are also decomposed and removed at the same time. However, there are two ways of thinking about this biological denitrification method. One is to use the microorganism's own autooxidative respiration to decompose nitric acid and nitrite using microorganism intracellular substances as hydrogen donors.
The other method is to add an organic carbon source, which is a hydrogen donor, from outside the system.
発明が解決しようとする問題点
然し前記したような従来法によるものは夫々に問題点を
有しており、アルカリ添加による水蒸気脱窒法において
は除去効率に限界があると共に蒸気、アルカリなどの使
用量が多く、アンモニア性窒素除去の経費が非常に高く
なる。Problems to be Solved by the Invention However, the conventional methods described above each have their own problems, and in the steam denitrification method by adding alkali, there is a limit to the removal efficiency and the amount of steam, alkali, etc. used is limited. The cost of ammonia nitrogen removal becomes very high.
生物学的脱窒法における微生物自身の自己酸化呼吸を利
用するものにおいては脱窒素速度が遅いため大容量の脱
窒素タンクを必要とし、設備的に不利である。又系外よ
り水素供与体としての有機炭素源を添加するものでは総
括の窒素除去率が低下する欠点があり、一般的にメタノ
ール、エタノールが用いられるが、メタノールを用いる
ことは生物学的脱窒法の運転コストを増加させると共に
窒素除去率の高度維持のために過剰のメタノールを添加
することとなり、その結果としてメタノールに寄因する
BODの増加が問題となる。Biological denitrification methods that utilize the autooxidative respiration of microorganisms themselves require large-capacity denitrification tanks due to the slow denitrification rate, which is disadvantageous in terms of equipment. In addition, adding an organic carbon source as a hydrogen donor from outside the system has the disadvantage that the overall nitrogen removal rate decreases, so methanol and ethanol are generally used, but using methanol is not suitable for biological denitrification. In addition to increasing the operating cost, excessive methanol is added to maintain a high nitrogen removal rate, and as a result, an increase in BOD due to methanol becomes a problem.
「発明の構成」
問題点を解決するための手段
アンモニア性窒素等の総窒素を硝化菌によって硝酸、亜
硝酸に酸化し、更にこの硝酸、亜硝酸を脱窒素菌により
窒素ガスに還元し除去するに当り、該窒素ガス還元過程
で系外から添加される水素供与体としてコークス炉ガス
液中フェノールを使用することを特徴とする生物学的脱
窒処理方法。"Structure of the Invention" Means for Solving the Problem Total nitrogen such as ammonia nitrogen is oxidized to nitric acid and nitrous acid by nitrifying bacteria, and the nitric acid and nitrous acid are further reduced to nitrogen gas by denitrifying bacteria and removed. A biological denitrification treatment method characterized in that phenol in a coke oven gas liquid is used as a hydrogen donor added from outside the system during the nitrogen gas reduction process.
作用
コークス炉ガス液(安水)中フェノールが脱窒素菌の窒
素ガス還元時における水素供与体として利用される。Effect Phenol in the coke oven gas liquid (ammonium water) is used as a hydrogen donor during nitrogen gas reduction by denitrifying bacteria.
従ってメタノールの使用を不要とし、少くとも大幅に削
減して経済的に脱窒処理が達成される。Therefore, the denitrification process can be achieved economically with the use of methanol being eliminated or at least significantly reduced.
実施例
上記したような本発明について更に説明すると、前記し
たような安水についての生物学的脱窒法において好気的
雰囲気下で硝化反応により生成する硝酸、亜硝酸は下記
の反応式によって分解し脱窒される。EXAMPLE To further explain the present invention as described above, in the biological denitrification method for ammonium water as described above, nitric acid and nitrous acid produced by the nitrification reaction in an aerobic atmosphere are decomposed by the following reaction formula. Denitrified.
N(h + %Cl13011− VtNz + IA
COz + AHzO+on−・・・・・・■
N(h + ’/i、C1hO1l→′AN 、 +
SへCOX + ’へ11□0 +OB−・・・・・・
■
然して安水のような高濃度のアンモニア性窒素を含存し
た廃水では亜硝酸が主生成物となる亜硝酸型硝化反応と
なるので、脱窒に必要なメタノールは1式から求めるこ
とができる。ところで安水中BOD成分の主たるものは
フェノールであり、本発明者等はこのフェノールをメタ
ノールの代りとして水素供与体とすることについて検討
を重ね、第1図に示すような装置を用い実験を重ねた。N(h + %Cl13011- VtNz + IA
COz + AHzO+on-・・・・・・■ N(h + '/i, C1hO1l→'AN, +
COX to S + '11□0 +OB-・・・・・・
■ However, in wastewater containing a high concentration of ammonia nitrogen such as ammonium water, a nitrite-type nitrification reaction occurs in which nitrite is the main product, so the methanol required for denitrification can be determined from one equation. . By the way, the main BOD component in aqueous solution is phenol, and the present inventors have repeatedly studied the possibility of using this phenol as a hydrogen donor instead of methanol, and have conducted repeated experiments using the apparatus shown in Figure 1. .
即ち原廃水槽1に水藤気蒸留前の安水を受入れ、原廃水
供給ポンプ2によって脱窒槽6に供給するようにされ、
又循環ポンプ8によって脱窒液を硝化槽3に戻すように
されたもので、この硝化槽3においては給気手段5によ
って空気を吹込み好気状態に維持され、アンモニア性窒
素が酸化されて亜硝酸になると共に前記脱窒槽6におい
て未反応のBOD分が除去されるように成っている。然
してこのような反応過程において生成する亜硝酸によっ
て脱窒?!6のpHが低下し、こうしてp!(が低下す
ると硝化菌の活性が弱まるのでpH調整用アルカリ槽4
から硝化槽3に調整用アルカリが添加されるように成っ
てG・で、該硝化槽3で生成した亜硝酸は脱窒槽6に専
かれ、又メタノール槽7からのメタノールが一定量添加
されて脱窒を促進するように成っている。脱窒槽6で脱
窒された液は沈殿槽9に受入れられ汚泥と液に固液分離
され、汚泥は返送汚泥ポンプIOによって硝化槽3に戻
される。That is, the raw wastewater tank 1 receives ammonium water before hydrogen vapor distillation, and the raw wastewater supply pump 2 supplies it to the denitrification tank 6.
Further, the denitrification liquid is returned to the nitrification tank 3 by a circulation pump 8, and in this nitrification tank 3, air is blown into the tank 3 by an air supply means 5 to maintain an aerobic state, and ammonia nitrogen is oxidized. The unreacted BOD content is removed in the denitrification tank 6 while converting into nitrous acid. However, is denitrification caused by nitrous acid produced in such a reaction process? ! The pH of 6 decreases, thus p! (As the activity of nitrifying bacteria decreases, the alkaline tank for pH adjustment 4
Since alkali for adjustment is added to the nitrification tank 3, the nitrous acid produced in the nitrification tank 3 is exclusively sent to the denitrification tank 6, and a certain amount of methanol from the methanol tank 7 is added. It is designed to promote denitrification. The liquid denitrified in the denitrification tank 6 is received in the settling tank 9 and separated into sludge and liquid, and the sludge is returned to the nitrification tank 3 by the return sludge pump IO.
ところでこのような装置においてメタノールを徐々に低
下させて行き、脱窒効率がどのように変化するかについ
て検討した結果は第2図に示す通りであり、又これとは
別にバッチ試験装置によって水蒸気蒸留前の安水のみを
添加して脱窒速度がどのように変化するかを調査した結
果は第3図に示す通りであって、又次表に要約して示す
通りである。By the way, the results of examining how the denitrification efficiency changes when methanol is gradually lowered in such an apparatus are shown in Figure 2.In addition, the results of examining how the denitrification efficiency changes when methanol is gradually lowered are shown in Figure 2. The results of investigating how the denitrification rate changes when only ammonium water is added are shown in Figure 3 and summarized in the following table.
*メタノール添加率、フェノール添加率は生成したN0
II Nに対する重量比を示す。*Methanol addition rate and phenol addition rate are based on the generated NO
The weight ratio to IIN is shown.
即ち第2図によれば、メタノール添加率を減少させて行
っても脱窒槽6内における窒素除去率に変化を与えない
。なお前記した1式より脱窒のための理論的メタノール
添加率は1.14であって、この理論的添加率より相当
に低い5TEP 2.3においても同等以上の脱窒率が
得られる。That is, according to FIG. 2, even if the methanol addition rate is decreased, the nitrogen removal rate in the denitrification tank 6 does not change. According to the above-mentioned equation 1, the theoretical methanol addition rate for denitrification is 1.14, and even with 5TEP 2.3, which is considerably lower than this theoretical addition rate, a denitrification rate equal to or higher than that can be obtained.
又第3図によれば、亜硝酸、硝酸の含有した硝化液の一
部をとり、その中に安水を添加後、一定時間毎にORP
(酸化還元電位)およびNo、−N濃度の変化を調査
した結果が示されているが、時間の経過と共にN0X−
Nは急激に減少し、4〜5時間で一定となる。ORPは
脱窒が略停止した時点で急激に変化する変曲点が顕われ
、このような傾向はメタノールを添加した場合にも示さ
れる。Also, according to Figure 3, after taking a part of the nitrifying solution containing nitrous acid and nitric acid and adding ammonium water into it, ORP is carried out at regular intervals.
(oxidation-reduction potential) and No, -N concentration changes are shown, but as time passes, NOX-
N decreases rapidly and becomes constant after 4 to 5 hours. ORP shows an inflection point that changes rapidly when denitrification almost stops, and this tendency is also shown when methanol is added.
従って安水中のフェノールは前記したような生物学的脱
窒処理に関してメタノールと同様な水素供与体として利
用し得ることは明らかで、例えばアンモニア性窒素11
000pp程度、フェノール11000pp程度、C0
D3500pprn程度の組成を有する水蒸気蒸留後の
安水をこのような生物学的脱窒に用い、704n3/
Hで処理する場合においてメタノール無添加で脱窒が可
能となり、70kg/H程度のメタノール節約を得しめ
る。Therefore, it is clear that phenol in aqueous solution can be used as a hydrogen donor similar to methanol in the biological denitrification process described above, for example, ammonia nitrogen 11
000pp approx., phenol approx. 11000pp, C0
Ammonium water after steam distillation having a composition of about D3500pprn is used for such biological denitrification, and 704n3/
In the case of treatment with H, denitrification is possible without the addition of methanol, resulting in methanol savings of approximately 70 kg/H.
「発明の効果」
以上説明したような本発明によるならば安水中に含まれ
るアンモニア性窒素などの総窒素を生物学的に除去する
に当り、その水素供与体として安水中に含まれるフェノ
ールを有効に利用せしめ、メタノールを使用することな
く、或いはその使用を著しく低減して経済的に、しかも
効率的な処理を行わせ得るものであるから工業的にその
効果の大きい発明である。"Effects of the Invention" According to the present invention as explained above, in biologically removing total nitrogen such as ammonia nitrogen contained in ammonia, it is possible to effectively use phenol contained in ammonia as a hydrogen donor. This invention is industrially very effective because it enables economical and efficient processing without using methanol or with significantly reduced use of methanol.
図面は本発明の技術的内容を示すものであって、第1図
は本発明方法を実施する装置の1例を示した説明図、第
2図はメタノール添加率を低下させた試験結果の図表、
第3図は本発明方法によるパッチ試験の結果を示した図
表である。
然してこれらの図面において、1は原廃水槽、2は原廃
水供給ポンプ、3は硝化槽、4はpH8l1節用アルカ
リ槽、5は空気吹込み手段、6は脱窒槽、7はメタノー
ル槽、8は循環ポンプ、9は沈殿槽、10は汚泥返送ポ
ンプ、11は処理水を示すものである。The drawings show the technical contents of the present invention, and Fig. 1 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention, and Fig. 2 is a diagram of test results with a reduced methanol addition rate. ,
FIG. 3 is a chart showing the results of a patch test according to the method of the present invention. In these drawings, 1 is a raw wastewater tank, 2 is a raw wastewater supply pump, 3 is a nitrification tank, 4 is a pH 8l1 alkaline tank, 5 is an air blowing means, 6 is a denitrification tank, 7 is a methanol tank, and 8 is a methanol tank. A circulation pump, 9 a settling tank, 10 a sludge return pump, and 11 a treated water.
Claims (1)
硝酸に酸化し、更にこの硝酸、亜硝酸を脱窒素菌により
窒素ガスに還元し除去するに当り、該窒素ガス還元過程
で系外から添加される水素供与体としてコークス炉ガス
液中フェノールを使用することを特徴とする生物学的脱
窒処理方法。When total nitrogen such as ammonia nitrogen is oxidized to nitric acid and nitrous acid by nitrifying bacteria, and the nitric acid and nitrite are further reduced to nitrogen gas by denitrifying bacteria and removed, it is added from outside the system during the nitrogen gas reduction process. A biological denitrification treatment method characterized by using phenol in a coke oven gas liquid as a hydrogen donor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21029685A JPS6271599A (en) | 1985-09-25 | 1985-09-25 | Biological denitrification treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21029685A JPS6271599A (en) | 1985-09-25 | 1985-09-25 | Biological denitrification treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6271599A true JPS6271599A (en) | 1987-04-02 |
Family
ID=16587047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21029685A Pending JPS6271599A (en) | 1985-09-25 | 1985-09-25 | Biological denitrification treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6271599A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011206765A (en) * | 2010-03-12 | 2011-10-20 | Nippon Steel Corp | Biological nitrogen treatment method of waste water containing ammonia |
-
1985
- 1985-09-25 JP JP21029685A patent/JPS6271599A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011206765A (en) * | 2010-03-12 | 2011-10-20 | Nippon Steel Corp | Biological nitrogen treatment method of waste water containing ammonia |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4496735B2 (en) | Biological treatment of BOD and nitrogen-containing wastewater | |
JP2000015288A (en) | Waste water treatment method and apparatus | |
JP5100091B2 (en) | Water treatment method | |
KR20150032149A (en) | Method and device for processing waste water containing tmah and ammonium nitrogen | |
JP2010000480A (en) | Effective denitrification method for organic raw water | |
US5820760A (en) | Process for reducing nitrous oxide emission from waste water treatment | |
JPH0576892A (en) | Treatment of organic waste water containing nitrogen component | |
KR100315874B1 (en) | Method and Apparatus of Biological Nitrogen Removal from the High Concentration Industrial Wastewater | |
CA3200289A1 (en) | Improved simultaneous nitritation and denitritation system | |
JP2000061494A (en) | Biological treatment of ammonia nitrogen | |
JPH06178995A (en) | Anaerobic digestion treatment of organic waste water | |
JP3736397B2 (en) | Method for treating organic matter containing nitrogen component | |
JPS585118B2 (en) | Yuukiseihaisuino | |
JPS6271599A (en) | Biological denitrification treatment | |
JP2005288371A (en) | Wastewater treatment method | |
CN101215071A (en) | Method for treating chlorine alkali waste water by calcium carbide ethyne method and biological treatment agent thereof | |
JP3837757B2 (en) | Method for treating selenium-containing water | |
JP2003094096A (en) | Method for treating organic waste, apparatus therefor, and sludge | |
JPH08323391A (en) | Treatment of selenium-containing water | |
JP2003053382A (en) | Nitrification-denitrification treatment method | |
WO2023095399A1 (en) | Biological treatment method and biological treatment system | |
JPS61230792A (en) | Method for nitrating and denitriding coke oven gas liquid | |
JPH09290290A (en) | Treatment of coke-oven gas liquor | |
JPS586558B2 (en) | Sewage treatment method | |
JPS62286596A (en) | Biological treatment of nitrogen-containing waste water |