JPS6271281A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPS6271281A
JPS6271281A JP21153585A JP21153585A JPS6271281A JP S6271281 A JPS6271281 A JP S6271281A JP 21153585 A JP21153585 A JP 21153585A JP 21153585 A JP21153585 A JP 21153585A JP S6271281 A JPS6271281 A JP S6271281A
Authority
JP
Japan
Prior art keywords
gate electrode
melting point
high melting
wsi
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21153585A
Other languages
Japanese (ja)
Inventor
Mikio Kanamori
金森 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21153585A priority Critical patent/JPS6271281A/en
Publication of JPS6271281A publication Critical patent/JPS6271281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce surface oxidation of high melting point metal by forming the surface of a gate electrode of at least 20-layer gate electrode having a high melting point metal silicide. CONSTITUTION:After WSi and then W and WSi are continuously accumulated on the entire surface by a sputtering unit on a semi-insulating GaAs substrate, WSi/W/WSi metal films of the first layer wirings 11 are patterned by a dry etching method. Then, after an SiO2 film is accumulated by a CVD method on the entire surface as an interlayer insulting film, the SiO2 film is opened with diluted fluoric acid on the first layer wirings. Then, the laminated film of Ti, Pt, Au is formed as the second layer wirings by a lifting off method using a resist. Thus, the surface of a gate electrode is formed in a high melting point metal silicide to reduce the oxidation of the gate electrode surface.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、化合物半導体電界効果トランジスタを含む■
−■化合物半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to
-■Relating to a compound semiconductor device.

(従来の技術) ショットキ障壁型電界効果トランジスタ(以下MESF
E’l’という)、とりわけヒ化ガリウム(GaAs 
)を用いたGaAs MESFh’rは、その高速性に
すぐれ、超高周波用半導体素子として、近年ますます使
用されつつある。
(Prior technology) Schottky barrier field effect transistor (MESF)
gallium arsenide (GaAs), especially gallium arsenide (GaAs
) is excellent in high-speed performance and has been increasingly used as a semiconductor element for ultra-high frequencies in recent years.

第2図は、従来より周知のCfaAs MESFETの
一例を示す素子の模式断面図である。本構造では、Ga
As 犯8B’ETの高性能化のため、例えば1983
年発行のアイ・ニス・ニス・シー・シーのテクニカルペ
ーパーのダイジェスト(1880C1)igesLof
 Tecilnical Papers)の218頁に
示されているように、ソース及びドレイン領域が()a
As動作層4と同じ導電型を有する高濃度不純物領域5
として形成されている。なお第2図においてlはゲート
電極、2.3はオーミック電極、6は半絶縁性GaAs
基板である。
FIG. 2 is a schematic cross-sectional view of an element showing an example of a conventionally well-known CfaAs MESFET. In this structure, Ga
As for improving the performance of 8B'ET, for example, in 1983.
Digest of I. Nis.C. Technical Papers published in 1880C1 igesLof
As shown on page 218 of Technical Papers), the source and drain regions are ()a
High concentration impurity region 5 having the same conductivity type as As active layer 4
It is formed as. In FIG. 2, l is a gate electrode, 2.3 is an ohmic electrode, and 6 is a semi-insulating GaAs
It is a board.

以上示した第2図の構造を有するMESFETにおいて
は、ソースとドレインの直列寄生抵抗が、この高濃度不
純物領域5の存在により著しく低減されるため、高い相
互コンダクタンス、低いオン抵抗が達成されFETの高
速動作が可能となる。
In the MESFET having the structure shown in FIG. 2 shown above, the series parasitic resistance between the source and drain is significantly reduced by the presence of this heavily doped impurity region 5, so high mutual conductance and low on-resistance are achieved, and the FET High-speed operation is possible.

上記の高濃度不純物領域5は、ゲート1惨1をマスクと
してイオン注入を行い、引き続きイオン注入不純物の活
性化のために800c程度の熱処理(アニール)を行う
ことによって形成する方法がある。この場合、ゲート電
極1はGaAs動作庖動作液4た状態でアニールされる
ことから、ゲート電極材としてはこのアニールに耐え、
アニール後も安定なショットキ接合特性を示す耐熱性が
要求される。またこの耐熱性ゲート電極材は集積回路に
おいては、内部配線にも用いられることから、配線遅延
時間低減のため低抵抗であることが要求される。
The above-mentioned high concentration impurity region 5 can be formed by performing ion implantation using the gate 1 as a mask, and then performing heat treatment (annealing) at about 800C to activate the ion implanted impurity. In this case, since the gate electrode 1 is annealed in the GaAs operating liquid 4, the gate electrode material can withstand this annealing.
Heat resistance is required to ensure stable Schottky bonding properties even after annealing. Furthermore, since this heat-resistant gate electrode material is also used for internal wiring in integrated circuits, it is required to have low resistance in order to reduce wiring delay time.

現状では耐熱性ゲート電極材としてはタングステン(冑
)、タングステンシリサイド(WSi)、タングステン
ナ・・′ドライド(WN)などが試みられている。この
うちW8 iは800℃アニール後において抵抗率は1
00μΩ・1以上と高く、GaAs集積回路の高速化を
困難にしている。したがって例えば特許出願番号58−
35342に示されているように高融点全極シリサイド
上に高融点金属を形成した2層構造の耐熱性ゲート電極
が提案されている。この場合、高融点金属、例えばWは
高融点金属シリサイド例えば〜¥3iに比べ抵抗率が1
桁程度低いことから、ゲート抵抗の低減化が図れる。
At present, tungsten, tungsten silicide (WSi), tungsten oxide (WN), and the like are being tried as heat-resistant gate electrode materials. Of these, W8i has a resistivity of 1 after annealing at 800°C.
It is as high as 00 μΩ·1 or more, making it difficult to increase the speed of GaAs integrated circuits. Thus, for example, patent application no.
As shown in No. 35342, a heat-resistant gate electrode having a two-layer structure in which a refractory metal is formed on a refractory all-polar silicide has been proposed. In this case, a high melting point metal such as W has a resistivity of 1 compared to a high melting point metal silicide such as ~3i.
Since it is several orders of magnitude lower, the gate resistance can be reduced.

(発明が解決しようとする問題点) 上記した耐熱性ゲート電極材としてWまたはWSi上に
Wを積層した2層構造ゲート電極のようにゲート電極の
表面が高融点金属で形成されている場合、ゲート電極形
成後のFET製造工程、例えばゲート電極を用いた第1
層配線上極と第2層配線電極の眉間絶縁膜形成のために
行う5IO2等の堆積など、200℃以上の工程を行う
際、第1層配線の高融点金属の表面が酸化する場合があ
ることがわかった。このため第2層配線(例えばTi−
Au)と第一層配線とが電気的に接続するコンタクト部
では両者の接触界面において高抵抗層が存在し、所望の
FET%性またIC%性が得られないことが明らかにな
った。
(Problems to be Solved by the Invention) When the surface of the gate electrode is formed of a high-melting point metal, such as the above-mentioned two-layer structure gate electrode in which W is laminated on W or WSi as the heat-resistant gate electrode material, FET manufacturing process after gate electrode formation, for example, the first step using the gate electrode
When performing a process at 200°C or higher, such as the deposition of 5IO2, etc., to form an insulating film between the eyebrows of the upper layer wiring electrode and the second layer wiring electrode, the surface of the high melting point metal of the first layer wiring may be oxidized. I understand. Therefore, the second layer wiring (for example, Ti-
It has become clear that in the contact portion where Au) and the first layer wiring are electrically connected, a high resistance layer exists at the contact interface between the two, and the desired FET% and IC% cannot be obtained.

本発明の目的は上記の問題点に鑑み、高融点金属の表面
酸化を低減する半導体装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a semiconductor device that reduces surface oxidation of a high melting point metal.

(問題点を解決するための手段〕 本発明は高融点全極ゲート電極を有する化合物半導体電
界効果トランジスタを含む化合物半導体装置において、
該ゲート電極の表面に高融点金属シリサイドを備えた少
なくとも2層のゲート電極構造を特徴とする化合物半導
体装置として構成されるう (作用) 本発明は高融点金属シリサイドが高融点金属に比べ酸化
しに(い材料であることに着目しておりゲート電極の表
面を高融点金属シリサイドにすることによりゲート電極
表面の酸化を低減することが可能となる。
(Means for Solving the Problems) The present invention provides a compound semiconductor device including a compound semiconductor field effect transistor having a high melting point all-polar gate electrode.
The present invention is constructed as a compound semiconductor device characterized by at least a two-layer gate electrode structure having a high melting point metal silicide on the surface of the gate electrode. By making the surface of the gate electrode a high melting point metal silicide, it is possible to reduce oxidation of the gate electrode surface.

(実施例) 以下、本発明の実施例について、図面を参照して説明す
る。纂1図(a)〜(C1は本発明の一実施例を説明す
るために工程順に示した素子のパターン平面図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. Figures 1 (a) to (C1) are plan views of device patterns shown in the order of steps to explain an embodiment of the present invention.

まず半絶縁性GaAs基板6を用意し、基板上にスパッ
タ装置を用いてWSilOOOλ、引き続きWを後、第
1層配′#A]lであるVvS i /W/Vv S 
i金属膜をeb’、と02を用いたドライエソチンク法
で第1図(a)に示すようにパターニングした。
First, a semi-insulating GaAs substrate 6 is prepared, and a sputtering device is used to coat the substrate with WSilOOOOλ, followed by W, and then the first layer arrangement '#A]l is VvSi /W/VvS.
The i metal film was patterned as shown in FIG. 1(a) by a dry ethosinking method using eb' and 02.

次に層間絶縁膜としてSin、をCVD法を用いて40
0℃で500OA全面堆積した後、第1図(b)に示す
ように第1層配線上のSin、を希フッ酸により2μm
角で開口した。
Next, as an interlayer insulating film, a film of 40% Sin was deposited using the CVD method.
After depositing 500 OA over the entire surface at 0°C, as shown in Fig. 1(b), the thickness of Sin on the first layer interconnection was reduced to 2 μm using dilute hydrofluoric acid.
It opened at the corner.

次に第2層配線としrTi  1000λ、Pt100
0λAu 5000人の積層膜をレジストを用いたリフ
トオフ法で第1図(C)に示すように形成した。
Next, as the second layer wiring, rTi 1000λ, Pt100
A laminated film of 5,000 λAu layers was formed as shown in FIG. 1(C) by a lift-off method using a resist.

以上のほか従来のに1層配線としてWSi1000A引
き続きWを3000λを堆積して形成される金属膜を用
いた場合も同時に製作した。
In addition to the above, a metal film formed by depositing 1000 λ of WSi followed by 3000 λ of WSi was also fabricated as a conventional one-layer wiring.

形成した第2層配線の両端のバット間の抵抗から配線の
抵抗外を除いて接触抵抗を求めた。従来の構造を第1層
配線として用いた場合は接触抵抗は430Ω・μゴであ
り、本発明の構造を用いた場合では接触抵抗は23Ω・
ltmと低い結果が得られた。
The contact resistance was determined by excluding the resistance of the wiring from the resistance between the bats at both ends of the formed second layer wiring. When the conventional structure is used as the first layer wiring, the contact resistance is 430Ω・μ, and when the structure of the present invention is used, the contact resistance is 23Ω・μ.
A result as low as ltm was obtained.

(発明の効果) 以上、詳細に説明したように、本発明によれば耐熱性ゲ
ート電標表面酸化を抑制し、ゲート電極と第2層電極界
面における接触抵抗を低減できる半導体装置が得られる
(Effects of the Invention) As described above in detail, according to the present invention, a semiconductor device can be obtained that can suppress oxidation of the heat-resistant gate electrode surface and reduce the contact resistance at the interface between the gate electrode and the second layer electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(aj〜(CJは本発明の一実施例を説明するた
めに工程順に示した素子のパターン平面図、第2図は従
来のGaAs MESFETの模式断面図である。 1・・・・・・耐熱性ゲート電極、11・・・・・・高
融点金属シリサイド/高融点金楓/高融点金楓シリサイ
ド2.3・・・・−・ ソース、ドレイン電極、4・・
・・・・ GaAs 動作層、5・・・・・・高濃度不
純物領域、6・・・・・・半絶縁性(Ja As基板、
7・・・・・・層間絶縁膜開口部、8・・・・・・第2
層配線電極。
FIG. 1 (aj to (CJ) is a pattern plan view of an element shown in order of process to explain an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of a conventional GaAs MESFET. 1... ...Heat-resistant gate electrode, 11... High melting point metal silicide/High melting point gold maple/High melting point gold maple silicide 2.3... Source, drain electrode, 4...
...GaAs active layer, 5...High concentration impurity region, 6...Semi-insulating (JaAs substrate,
7... Interlayer insulating film opening, 8... Second
Layer wiring electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)高融点金属ゲート電極を有する化合物半導体電界
効果トランジスタを含む化合物半導体装置において、該
ゲート電極の表面に高融点金属シリサイドを備えた少な
くとも2層のゲート電極構造を特徴とする化合物半導体
装置。
(1) A compound semiconductor device including a compound semiconductor field effect transistor having a high melting point metal gate electrode, characterized by a gate electrode structure of at least two layers including a high melting point metal silicide on the surface of the gate electrode.
JP21153585A 1985-09-24 1985-09-24 Compound semiconductor device Pending JPS6271281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21153585A JPS6271281A (en) 1985-09-24 1985-09-24 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21153585A JPS6271281A (en) 1985-09-24 1985-09-24 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS6271281A true JPS6271281A (en) 1987-04-01

Family

ID=16607470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21153585A Pending JPS6271281A (en) 1985-09-24 1985-09-24 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS6271281A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132375A (en) * 1983-12-21 1985-07-15 Matsushita Electric Ind Co Ltd Schottky barrier gate field effect transistor
JPS60149173A (en) * 1984-01-17 1985-08-06 Hitachi Ltd Manufacture of compound semiconductor device
JPS60219765A (en) * 1984-04-16 1985-11-02 Mitsubishi Electric Corp Schottky barrier electrode
JPS6116577A (en) * 1984-07-03 1986-01-24 Sony Corp Semiconductor device
JPS6170764A (en) * 1984-09-14 1986-04-11 Matsushita Electric Ind Co Ltd Gaas field-effect transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132375A (en) * 1983-12-21 1985-07-15 Matsushita Electric Ind Co Ltd Schottky barrier gate field effect transistor
JPS60149173A (en) * 1984-01-17 1985-08-06 Hitachi Ltd Manufacture of compound semiconductor device
JPS60219765A (en) * 1984-04-16 1985-11-02 Mitsubishi Electric Corp Schottky barrier electrode
JPS6116577A (en) * 1984-07-03 1986-01-24 Sony Corp Semiconductor device
JPS6170764A (en) * 1984-09-14 1986-04-11 Matsushita Electric Ind Co Ltd Gaas field-effect transistor

Similar Documents

Publication Publication Date Title
US4503599A (en) Method of fabricating field effect transistors
US4392150A (en) MOS Integrated circuit having refractory metal or metal silicide interconnect layer
JPH0354464B2 (en)
JPS634683A (en) Field-effect transistor
KR930011800B1 (en) Mos type semiconductor device
US5459087A (en) Method of fabricating a multi-layer gate electrode with annealing step
JP3375928B2 (en) Semiconductor device
US4400867A (en) High conductivity metallization for semiconductor integrated circuits
JPS60193380A (en) Manufacture of semiconductor device
JPS6292481A (en) Manufacture of semiconductor device
JPS6271281A (en) Compound semiconductor device
JP7438343B2 (en) Ohmic alloy contact area sealing layer
JPH0622247B2 (en) Field effect semiconductor device
JPH022639A (en) Manufacture of field effect transistor
JPS61176162A (en) Field-effect semiconductor device and manufacture thereof
JPH08115924A (en) Field effect transistor and its manufacture
JPH09252050A (en) Semiconductor device and manufacture thereof
JPH10247721A (en) Semiconductor integrated circuit device
JPS6050966A (en) Manufacture of field effect transistor
JPS58100462A (en) Field-effect type transistor
JPS60192371A (en) Semiconductor device and its manufacture
JPH0439773B2 (en)
JPH0332062A (en) Electrode structure and semiconductor element using the electrode structure
JPH0797584B2 (en) Method for manufacturing semiconductor device
JPH0311652A (en) Integrated circuit and its manufacture