JPS6270799A - Nuclear radiation absorber - Google Patents

Nuclear radiation absorber

Info

Publication number
JPS6270799A
JPS6270799A JP61162924A JP16292486A JPS6270799A JP S6270799 A JPS6270799 A JP S6270799A JP 61162924 A JP61162924 A JP 61162924A JP 16292486 A JP16292486 A JP 16292486A JP S6270799 A JPS6270799 A JP S6270799A
Authority
JP
Japan
Prior art keywords
absorbent material
aluminum
material according
gadolinium
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61162924A
Other languages
Japanese (ja)
Inventor
クロード・プランシヤン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUONDORII MONCHIYUPE
Original Assignee
FUONDORII MONCHIYUPE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUONDORII MONCHIYUPE filed Critical FUONDORII MONCHIYUPE
Publication of JPS6270799A publication Critical patent/JPS6270799A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

1. An absorber for nuclear radiations characterised in that it is formed by an alloy of gadolinium with an aluminium selected from the group comprising pure aluminium, alloyed aluminium and pure or alloyed aluminium containing a dispersed phase.

Description

【発明の詳細な説明】 本発明は核放射線吸収材に係る。[Detailed description of the invention] The present invention relates to nuclear radiation absorbing materials.

原子力産業の発達に伴って、有効で強力な放射線吸収材
の配合及び製造のための研究が世界的規模で進められて
いる。この目的を達成するためには、以下の基準に適合
する製造するための材料を使用する必要がある。
BACKGROUND OF THE INVENTION With the development of the nuclear power industry, research is being conducted on a worldwide scale to formulate and manufacture effective and powerful radiation absorbing materials. To achieve this objective, it is necessary to use materials for manufacturing that comply with the following criteria:

−特別の核特性、即ち実効捕獲断面積が大きい、二次放
出レベルが低い、放射線に対する経時的安定性がよい等
の特性をもつことが必要である。
- It is necessary to have special nuclear properties, such as a large effective capture cross section, low secondary emission levels, and good stability against radiation over time.

−特別な中性子線において、放射線の吸収により発生さ
れる熱効果に耐えるような高溶解点を有することが必要
である。
- In particular neutron beams it is necessary to have a high melting point to withstand the thermal effects generated by the absorption of radiation.

−発生された熱の迅速な除去を備えるために、良熱伝導
体でなければならない。
- Must be a good thermal conductor in order to provide for rapid removal of the heat generated.

−成形し易い機械的特性をもつことが必要である。- It is necessary to have mechanical properties that make it easy to mold.

−動作媒体又は環境において耐腐食性でなければならな
い。そして −コストができるだけ低いことが必要である。
- Must be corrosion resistant in the operating medium or environment. and - it is necessary that the costs be as low as possible.

中性子吸収に使用される全ての材料のうちで、最も広く
和られているものは力Fミウム、サマリウム、ユーロピ
ウム、ホウ素及びガドリニウムである。
Of all the materials used for neutron absorption, the most widely used are Fmium, samarium, europium, boron, and gadolinium.

カドミウムの欠点は、毒性が強く、融点が極めて低く(
321C)また沸点も極めて低い(765℃)ことであ
る。サマリウムとユーロピウムとは極めてコストが高い
のでその工業利用は実質的に皆無である。
The disadvantages of cadmium are that it is highly toxic and has an extremely low melting point (
321C) It also has an extremely low boiling point (765°C). Samarium and europium are extremely expensive, so their industrial use is virtually non-existent.

これら材料のうちで最も普及しているものはホウ素であ
り、種々の形態で使用されており、例えば元素ホウ素、
ホウ化物、炭化ホウ素、ホウ酸等がある。更にこの物質
を対象として多数の特許が出願されている。しかし乍ら
この材料の欠点は機械的特性がよくないことであシ、従
って、各種の吸収材の所望形態の維持に必要な品質を得
るために例えばアルミニウムの如き金属マトリクス中で
高度に希釈する必要がある。しかし乍らこの場合、放射
線吸収能力が極度に低下し、これを補償するためには使
用される材料の量を増加させなければならない。このこ
とは結局、吸収材のコスト増につながる。また、ホウ素
はアルミニウムに実質的に不溶なので、得られる材料が
複合物質であり、その製造にはアルミニウムマトリクス
中にホウ素を均等に分散させ吸収能力にムラが生じない
ようにするには、極めて複雑な製造プロセスが必要であ
る。
The most widespread of these materials is boron, which is used in various forms, such as elemental boron,
Examples include borides, boron carbide, and boric acid. Additionally, numerous patents have been filed for this substance. However, the disadvantage of this material is that its mechanical properties are poor, and therefore it must be highly diluted in a metal matrix, e.g. aluminum, to obtain the qualities necessary to maintain the desired morphology of the various absorbents. There is a need. However, in this case the radiation absorption capacity is severely reduced, and to compensate for this the amount of material used must be increased. This ultimately leads to an increase in the cost of the absorbent material. Additionally, since boron is virtually insoluble in aluminum, the resulting material is a composite material, and its manufacture requires extremely complex dispersion of boron evenly within the aluminum matrix to ensure uniform absorption capacity. A manufacturing process is required.

ガドリニウム及びその酸化物は種々の原子力装置で以前
から使用されており、燃料と混合されて減速材の機能を
果たす。しかし乍ら、放射線吸収材の製造に使用するた
めには問題がちる。
Gadolinium and its oxides have long been used in various nuclear devices, where they are mixed with fuel to act as a moderator. However, there are problems when using it for manufacturing radiation absorbing materials.

一般的に粉末の形態で得られるガドリニウムの酸化物は
別の物質と混合して使用される必要があり、このために
は極めて複雑な技術を要する。また、機械的特性が極め
てよくないので複雑な形状の吸収材の製造に注意を要し
コストも高い。更に、酸化物の欠点は熱伝導率のレベル
が低いことであり、元素カドIJ ニウムに比較して吸
収能力が比較的低い。
Gadolinium oxide, which is generally obtained in powder form, must be used in admixture with other substances, which requires extremely complex technology. In addition, since the mechanical properties are extremely poor, care must be taken in manufacturing absorbent materials with complicated shapes, resulting in high costs. Furthermore, the disadvantage of oxides is their low level of thermal conductivity and relatively low absorption capacity compared to elemental cadmium.

ガドリニウムの金属自体に関して考えると、コストがい
っそう高くなり、また極めて酸化し易いので使用が難し
い。
Regarding the metal itself, gadolinium is even more expensive and is extremely susceptible to oxidation, making it difficult to use.

しかし乍ら、低速中性子の領斌では、ガドIJ ニウム
は公知の全ての吸収材のうちで最大の実効捕獲断面積を
もつ。特にホウ素と比較すると、エネルギレベル10 
  eVの熱中性子の断面積は100倍の大きさである
。高速中性子に関しては、ガドリニウムとホウ素との有
効性は同程度である。
However, in the realm of slow neutrons, GadIJnium has the largest effective capture cross section of all known absorbers. Energy level 10, especially when compared to boron
The cross section of eV thermal neutrons is 100 times larger. For fast neutrons, gadolinium and boron are equally effective.

このような理由から、本出願人はガドリニウムの利点と
欠点とを熟知したうえで、ガドリニウムからすぐれた核
放射線吸収材を製造する方法を研究しその開発に成功し
た。
For these reasons, the applicant of the present application has studied and succeeded in developing a method for producing an excellent nuclear radiation absorbing material from gadolinium, after being fully aware of the advantages and disadvantages of gadolinium.

吸収材の特徴は、純アルミニウムと合金アルミニウムと
分散相含有の純もしくは合金アルミニウムから成るグル
ープから選択されたアルミニウムとガドリニウムとの合
金から形成されることである。
The absorbent material is characterized in that it is formed from an alloy of gadolinium and aluminum selected from the group consisting of pure aluminum, alloyed aluminum, and pure or alloyed aluminum with a dispersed phase.

従って吸収材はガドリニウム0.05〜70重量係を含
有するガドリニウム−アルミニウムベースの合金である
。ガドIJ ニウム0.05%未満では吸収効果が過度
に低下し、70悌を上回ると合金の形成が難しい。上記
範囲は好ましくは0.1〜15俤であり、吸収すべき放
射線の種類と束とに左右される。
The absorbent material is therefore a gadolinium-aluminum based alloy containing 0.05 to 70 gadolinium. Gad IJ If the content is less than 0.05%, the absorption effect will be excessively reduced, and if it exceeds 70%, it will be difficult to form an alloy. The range is preferably from 0.1 to 15 degrees and depends on the type and flux of radiation to be absorbed.

使用される純アルミニウムは、3層電解もしくは分別晶
出の如き任意の方法で精製されたものでもよく、又は鉄
及びケイ素の如き通常の不純物と共に電解槽の出口で収
集された−11でもよい。
The pure aluminum used may be purified by any method such as three-layer electrolysis or fractional crystallization, or it may be -11 collected at the outlet of the electrolytic cell along with the usual impurities such as iron and silicon.

または、アルミニウムがアルミニウム協会規格の表示番
号1000.5000及び6000の従来の合金でもよ
い。これら合金は、製造される吸収材の機械的特性を強
化し得る。または、カドミウム、サマリウム、ユーロピ
ウム、リチウム、ハフニウム及びタンタルの如き同じく
吸収質の別の1種類以上の金属とアルミニウムとの合金
を使用してもよい。これら合金はタイプ1000.50
00及び6000の合金から製造され得る。
Alternatively, the aluminum may be conventional alloys with Aluminum Institute designation numbers 1000, 5000 and 6000. These alloys can enhance the mechanical properties of the absorbent material produced. Alternatively, alloys of aluminum with one or more other metals that are also absorbing, such as cadmium, samarium, europium, lithium, hafnium, and tantalum, may be used. These alloys are type 1000.50
00 and 6000 alloys.

更に、合金又は合金でないアルミニウムが、吸収材の機
械的強度を改良するだめの炭素繊維もしくはその他の繊
維の如き分散相を含んでいてもよい。また、かかる繊維
と任意に組合せて放射線吸収物質例えばホウ素及びその
誘導体を使用アルミニウムの30重量%未満までの量で
含んでいてもよい。
Additionally, the alloyed or unalloyed aluminum may contain a dispersed phase such as carbon fibers or other fibers to improve the mechanical strength of the absorbent material. It may also contain, optionally in combination with such fibers, radiation absorbing substances such as boron and its derivatives in amounts up to less than 30% by weight of the aluminum used.

本発明方法で製造されるガドIJ ニウム−アルミニウ
ム合金は機械的特性がよいので、低圧もしくは高圧の砂
型鋳造もしくはチル鋳造、熱間圧延もしくは冷間圧延、
押出及び鍛造から選択された製法を少なくとも1つ用い
てff:意の形状の吸収材に容易に成形される。
Since the Gad IJ Ni-Al alloy produced by the method of the present invention has good mechanical properties, it can be processed by low-pressure or high-pressure sand casting or chill casting, hot rolling or cold rolling.
Using at least one manufacturing method selected from extrusion and forging, the absorbent material can be easily formed into a desired shape.

かかる合金は、完全に均質な組織をもち極めて均一な実
効捕獲断面積をもつ。更に、Qdの割合次第で比重を変
えることができるので、Qdの割合を30重量%未′t
i1こするとアルミニウムIC極めて近い比重にするこ
とができ、極めて軽量な中性子バリヤーが得られる。
Such alloys have a completely homogeneous structure and a highly uniform effective capture cross section. Furthermore, the specific gravity can be changed depending on the proportion of Qd, so the proportion of Qd can be adjusted to less than 30% by weight.
By rubbing i1, the specific gravity can be made very similar to that of aluminum IC, and an extremely lightweight neutron barrier can be obtained.

以下の表IはQdの含量が夫々11%及び23%の2種
類の二元合金υ−Qdの比重を示す。
Table I below shows the specific gravity of two binary alloys υ-Qd with Qd contents of 11% and 23%, respectively.

表I:二元合金后−Qdの比重 Qdの重量%   比重 11     2.92 25     3.12 アルミニウムマトリクスは最終製品に好レベルて生じた
熱が外部冷却系に速やかに除去される。
Table I: Weight % of Specific Gravity Qd of Binary Alloy After-Qd Specific Gravity 11 2.92 25 3.12 The aluminum matrix provides a good level for the final product and the heat generated is quickly removed to the external cooling system.

合金A/ −Gdの溶融開始温度は極めて高く、多くの
場合620Cよシ高温である。この特性のため、中性子
又はその他の光線の吸収によって生じた加熱効果lこ容
易に耐える中性子バリヤーが形成されるO Gdの原子買値は極めて高< (156,9g )、特
にγ線とX線とはかな夛の程度まで吸収される。
The melting start temperature of alloy A/-Gd is extremely high, often as high as 620C. Because of this property, a neutron barrier is formed that easily withstands the heating effects caused by the absorption of neutrons or other radiation. Absorbed to a fleeting degree.

一般的に耐食性はガドリニウムの存在によって全く又は
殆んど影響を受けない。従って、耐食性は使用アルミニ
ウムマトリクスに極めて近い。シリーズ1000.50
00及び6000の合金は、大気の物質又は海岸の空気
に対してすぐれた耐食性をもつ。この耐食性は更に、適
当な表面処理(陽極酸化、中和(alodine )、
塗装、プラスチック被膜等)によって強化され得る。
Corrosion resistance is generally not or only slightly affected by the presence of gadolinium. Therefore, the corrosion resistance is very close to the aluminum matrix used. Series 1000.50
The 00 and 6000 alloys have excellent corrosion resistance to atmospheric agents or coastal air. This corrosion resistance can be further improved by appropriate surface treatments (anodizing, alodine,
(painting, plastic coating, etc.).

機械的特性は良好であり選択されたアルミニウムマトリ
クスに依存する。アルミニウムーガドリニウムニ元合金
の場合、機械的特性はガドリニウムの活に伴って変化す
る。以下の表■け、Gdを夫々、12重量及び25重量
%含む2種類の鋳造合金について得られた結果を示す。
The mechanical properties are good and depend on the selected aluminum matrix. In the case of aluminum-gadolinium binary alloys, the mechanical properties change with the activation of gadolinium. The table below shows the results obtained for two cast alloys containing 12 and 25% by weight of Gd, respectively.

表■−υ−Qd二元合金の機械的特性 以下の表IはQdを11重量%含む圧延合金で得られた
結果を示す。
Table 1 - Mechanical Properties of Qd Binary Alloys Table I below shows the results obtained with rolled alloys containing 11% by weight of Qd.

銅、ケイ素、亜鉛、マグネシウム等の元素をドープした
アルミニウムマトリクスを使用すると、強度レベルと弾
性限度とが顕著に増加して以下の値に到達し得る。
Using an aluminum matrix doped with elements such as copper, silicon, zinc, magnesium, etc., the strength level and elastic limit can be significantly increased to reach the following values:

T(、m       280〜320MPARp0.
2   220〜260MPAAチ        3
〜10優 上記の高いほうの数値は上限値ではなく、三元合金、四
元合金、三元合金等のガドIJ ニウム含有合金は上記
の値よシも高い値を与え得る。
T(, m 280-320MPARp0.
2 220~260MPAAchi 3
The higher values above ~10 are not upper limits; GadIJ nium-containing alloys such as ternary alloys, quaternary alloys, and ternary alloys can give values even higher than the above values.

これら金属合金の機械加工には全く問題がない。There are no problems in machining these metal alloys.

省1ハすべき)髪うメータ及び処理速度は、アルミニウ
ム合金一般の場合と同じである。
The hair meter and processing speed are the same as for aluminum alloys in general.

本発明は、軍事利用又は平和利用に隅わり4.+14 
(放射線(中性子、γ線、X線)の吸収が問題となる分
野に多くの用途をもつ。
4. The present invention has military or peaceful uses. +14
(It has many applications in fields where absorption of radiation (neutrons, gamma rays, X-rays) is a problem.

本発明の用途として例えば、核廃棄物の輸送及び貯稜用
フラスコ、原子炉燃料要素貯蔵用スイミングプールラッ
ク、除染装置の遮蔽、軍用自動車の遮蔽又は装甲、放射
性降下物シェルタ−1原子炉要素、放射線又は放射能諒
を使用する装置のモニタ用遮M:等がある。勿論これら
は非限定例である。
Applications of the invention include, for example, flasks for the transportation and storage of nuclear waste, swimming pool racks for the storage of nuclear reactor fuel elements, shielding of decontamination equipment, shielding or armoring of military vehicles, fallout shelters - 1 nuclear reactor elements. , shielding M for monitoring equipment that uses radiation or radioactivity. Of course, these are non-limiting examples.

Claims (11)

【特許請求の範囲】[Claims] (1)純アルミニウムと合金アルミニウムと分散相を含
む純もしくは合金アルミニウムとから成るグループから
選択されたアルミニウムとガドリニウムとの合金によつ
て形成されることを特徴とする核放射線吸収材。
(1) A nuclear radiation absorbing material characterized in that it is formed of an alloy of gadolinium and aluminum selected from the group consisting of pure aluminum, alloyed aluminum, and pure or alloyed aluminum containing a dispersed phase.
(2)ガドリニウムの割合が0.05〜70重量%であ
ることを特徴とする特許請求の範囲第1項に記載の吸収
材。
(2) The absorbent material according to claim 1, wherein the proportion of gadolinium is 0.05 to 70% by weight.
(3)ガドリニウムの割合が0.1〜15重量%である
ことを特徴とする特許請求の範囲第2項に記載の吸収材
(3) The absorbent material according to claim 2, wherein the proportion of gadolinium is 0.1 to 15% by weight.
(4)合金アルミニウムが、アルミニウム協会規格の表
示番号1000、5000及び6000の合金から選択
されることを特徴とする特許請求の範囲第1項に記載の
吸収材。
(4) The absorbent material according to claim 1, wherein the aluminum alloy is selected from alloys having designation numbers 1000, 5000, and 6000 of the Aluminum Association standard.
(5)合金アルミニウムが1種類以上の核放射線吸収金
属を含有することを特徴とする特許請求の範囲第1項に
記載の吸収材。
(5) The absorbent material according to claim 1, wherein the aluminum alloy contains one or more nuclear radiation absorbing metals.
(6)金属が、カドミウム、サマリウム、ユーロピウム
、リチウム、ハフニウム及びタンタルから成るグループ
に属することを特徴とする特許請求の範囲第5項に記載
の吸収材。
(6) Absorbent material according to claim 5, characterized in that the metal belongs to the group consisting of cadmium, samarium, europium, lithium, hafnium and tantalum.
(7)分散相が1種類以上の核放射線吸収物質を含有す
ることを特徴とする特許請求の範囲第1項に記載の吸収
材。
(7) The absorbent material according to claim 1, wherein the dispersed phase contains one or more nuclear radiation absorbing substances.
(8)分散相がホウ素又はその誘導体の1つによつて形
成されることを特徴とする特許請求の範囲第7項に記載
の吸収材。
(8) Absorbent material according to claim 7, characterized in that the dispersed phase is formed by boron or one of its derivatives.
(9)ホウ素がアルミニウムの30重量%まであること
を特徴とする特許請求の範囲第8項に記載の吸収材。
(9) Absorbent material according to claim 8, characterized in that the boron content is up to 30% by weight of the aluminum.
(10)分散相が繊維状であることを特徴とする特許請
求の範囲第1項に記載の吸収材。
(10) The absorbent material according to claim 1, wherein the dispersed phase is fibrous.
(11)鋳造、圧延、押出及び鍛造から選択された製造
方法を1種類以上用いて製造されることを特徴とする特
許請求の範囲第1項に記載の吸収材。
(11) The absorbent material according to claim 1, which is manufactured using one or more manufacturing methods selected from casting, rolling, extrusion, and forging.
JP61162924A 1985-07-11 1986-07-10 Nuclear radiation absorber Pending JPS6270799A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8510983 1985-07-11
FR8510983A FR2584852B1 (en) 1985-07-11 1985-07-11 NUCLEAR RADIATION ABSORBER

Publications (1)

Publication Number Publication Date
JPS6270799A true JPS6270799A (en) 1987-04-01

Family

ID=9321402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162924A Pending JPS6270799A (en) 1985-07-11 1986-07-10 Nuclear radiation absorber

Country Status (19)

Country Link
EP (1) EP0211779B1 (en)
JP (1) JPS6270799A (en)
KR (1) KR910007461B1 (en)
AT (1) ATE40763T1 (en)
AU (1) AU580177B2 (en)
BR (1) BR8603239A (en)
CA (1) CA1268031A (en)
DE (1) DE3662078D1 (en)
DK (1) DK327786A (en)
ES (1) ES2001015A6 (en)
FI (1) FI85923C (en)
FR (1) FR2584852B1 (en)
GR (1) GR861792B (en)
IE (1) IE58952B1 (en)
IL (1) IL79385A0 (en)
NO (1) NO169035C (en)
NZ (1) NZ216802A (en)
PT (1) PT82958B (en)
ZA (1) ZA865168B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338553A (en) * 1986-08-01 1988-02-19 Kobe Steel Ltd Aluminum alloy having superior thermal neutron absorbing power
US7177384B2 (en) 1999-09-09 2007-02-13 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, manufacturing method therefor, and basket and cask using the same
JP2007533851A (en) * 2004-04-22 2007-11-22 アルキャン・インターナショナル・リミテッド Improved neutron absorption efficiency of boron-containing aluminum materials
WO2017209038A1 (en) * 2016-05-30 2017-12-07 株式会社フジクラ Gadolinium wire material, method for manufacturing same, metal-coated gadolinium wire material using same, heat exchanger, and magnetic refrigeration device
CN108026613A (en) * 2016-05-30 2018-05-11 株式会社藤仓 Gadolinium wire rod and its manufacture method, metal covering gadolinium wire rod, heat exchanger and magnetic refrigeration apparatus using gadolinium wire rod

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19706758A1 (en) * 1997-02-20 1998-05-07 Siemens Ag Apparatus used to store spent fuel elements from nuclear power stations
RU2673270C2 (en) 2013-06-19 2018-11-23 Рио Тинто Алкан Интернэшнл Лимитед Composition of aluminum alloy with improved mechanical properties at increased temperature

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484200A (en) * 1977-12-16 1979-07-04 Tokushiyu Muki Zairiyou Kenkiy Neutron absorbent and its preparation
JPS6212895A (en) * 1985-07-10 1987-01-21 株式会社神戸製鋼所 Aluminum alloy having excellent neutron absorptivity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3024892A1 (en) * 1979-08-18 1982-02-11 Thyssen Industrie Ag, 4300 Essen Steel castings which can be hardened and tempered - contain lanthanide so they can be used as neutron absorbing shields
JPS6055460B2 (en) * 1980-08-12 1985-12-05 東芝セラミツクス株式会社 Alumina sintered pellets for neutron absorption
CA1183613A (en) * 1980-12-27 1985-03-05 Koichiro Inomata Neutron absorber, neutron absorber assembly utilizing the same, and other uses thereof
FR2533943B1 (en) * 1982-10-05 1987-04-30 Montupet Fonderies PROCESS FOR THE MANUFACTURE OF COMPOSITE ALLOYS BASED ON ALUMINUM AND BORON AND ITS APPLICATION
DE3335888A1 (en) * 1983-10-03 1985-04-18 Kernforschungsanlage Jülich GmbH, 5170 Jülich METHOD FOR REDUCING THE REACTIVITY OF A GAS-COOLED BULLET HEAD REACTOR AND SHUT-OFF ELEMENT

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484200A (en) * 1977-12-16 1979-07-04 Tokushiyu Muki Zairiyou Kenkiy Neutron absorbent and its preparation
JPS6212895A (en) * 1985-07-10 1987-01-21 株式会社神戸製鋼所 Aluminum alloy having excellent neutron absorptivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338553A (en) * 1986-08-01 1988-02-19 Kobe Steel Ltd Aluminum alloy having superior thermal neutron absorbing power
US7177384B2 (en) 1999-09-09 2007-02-13 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, manufacturing method therefor, and basket and cask using the same
JP2007533851A (en) * 2004-04-22 2007-11-22 アルキャン・インターナショナル・リミテッド Improved neutron absorption efficiency of boron-containing aluminum materials
WO2017209038A1 (en) * 2016-05-30 2017-12-07 株式会社フジクラ Gadolinium wire material, method for manufacturing same, metal-coated gadolinium wire material using same, heat exchanger, and magnetic refrigeration device
CN108026613A (en) * 2016-05-30 2018-05-11 株式会社藤仓 Gadolinium wire rod and its manufacture method, metal covering gadolinium wire rod, heat exchanger and magnetic refrigeration apparatus using gadolinium wire rod

Also Published As

Publication number Publication date
FI862902A (en) 1987-01-12
PT82958A (en) 1986-08-01
FI85923C (en) 1992-06-10
KR870001611A (en) 1987-03-14
DE3662078D1 (en) 1989-03-16
FR2584852B1 (en) 1987-10-16
FI85923B (en) 1992-02-28
NO169035B (en) 1992-01-20
DK327786D0 (en) 1986-07-10
PT82958B (en) 1993-03-31
NO862793L (en) 1987-01-12
FR2584852A1 (en) 1987-01-16
AU580177B2 (en) 1989-01-05
ZA865168B (en) 1987-03-25
ES2001015A6 (en) 1988-04-16
KR910007461B1 (en) 1991-09-26
EP0211779A1 (en) 1987-02-25
ATE40763T1 (en) 1989-02-15
NO862793D0 (en) 1986-07-10
GR861792B (en) 1986-11-04
DK327786A (en) 1987-01-12
AU6004886A (en) 1987-01-15
NZ216802A (en) 1989-06-28
BR8603239A (en) 1987-02-24
FI862902A0 (en) 1986-07-10
NO169035C (en) 1992-04-29
IL79385A0 (en) 1986-10-31
CA1268031A (en) 1990-04-24
IE861851L (en) 1987-01-11
EP0211779B1 (en) 1989-02-08
IE58952B1 (en) 1993-12-01

Similar Documents

Publication Publication Date Title
US2727996A (en) Thermal neutron shield and method for making same
US2805473A (en) Uranium-oxide-containing fuel element composition and method of making same
Kotsar et al. High-purity titanium, zirconium, and hafnium in nuclear power
Jing et al. Research progress of rare earth composite shielding materials
CN110643859A (en) Aluminum-based composite material containing gadolinium-tungsten element and application thereof
JPS6270799A (en) Nuclear radiation absorber
Gan et al. Research progress of metal-based shielding materials for neutron and gamma rays
Van Houten Selected engineering and fabrication aspects of nuclear metal hydrides (Li, Ti, Zr, and Y)
CH667880A5 (en) NUCLEAR RADIATION ABSORBER.
CN109763022A (en) A kind of nuclear reactor 150-250 degree is radiated metals with having double fusing points
RU2698309C1 (en) Aluminum-based composite material (versions) and article made therefrom
JPH01168833A (en) Boron-containing titanium alloy
RU2688086C1 (en) Alloy for absorption of thermal neutrons based on zirconium
US2871176A (en) Nuclear reactor component cladding material
CN104611653B (en) Al B are used in a kind of irradiated fuel store and transport4The heat treatment method of C neutron absorber materials
Kamada et al. Development of low activation Al alloys for DT burning fusion device
JPS6338553A (en) Aluminum alloy having superior thermal neutron absorbing power
JPH10319176A (en) Neutron absorber alloy
Myers Neutron damage in steels containing small amounts of boron
US3188202A (en) Aluminum-plutonium alloys
Greenspan et al. Blanket energy multiplication enhancement without afterheat safety hazards
Cohen Development and Properties of silver-base alloys as control rod materials for pressurized water reactors
US3928027A (en) Nonswelling alloy
US3198629A (en) Uranium-vanadium-aluminum ternary alloy
Horak et al. The effects of irradiation on some binary alloys of thorium-plutonium and zirconium-plutonium