JPS6126738A - Zirconium alloy - Google Patents

Zirconium alloy

Info

Publication number
JPS6126738A
JPS6126738A JP14685884A JP14685884A JPS6126738A JP S6126738 A JPS6126738 A JP S6126738A JP 14685884 A JP14685884 A JP 14685884A JP 14685884 A JP14685884 A JP 14685884A JP S6126738 A JPS6126738 A JP S6126738A
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
zirconium
corrosion
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14685884A
Other languages
Japanese (ja)
Inventor
Masatoshi Inagaki
正寿 稲垣
Hiromichi Imahashi
今橋 博道
Kimihiko Akahori
赤堀 公彦
Junjiro Nakajima
中島 潤二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14685884A priority Critical patent/JPS6126738A/en
Publication of JPS6126738A publication Critical patent/JPS6126738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the corrosion resistance is steam at high temp. and pressure by adding prescribed percentages of Sn, Ni and Fe to Zr without adding Cr. CONSTITUTION:This Zr alloy consists of, by weight, 1-2% Sn, <=0.3% Ni, <=0.55% Fe+oxygen+impurities (Fe+Ni>=0.15%), 0% Cr and the balance Zr. The alloy has superior corrosion resistance and undergoes no nodular corrosion even when it is used in steam at high temp. and pressure for a long period.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉内における高温高圧水中での使用に適
したジルコニウム基合金に係り、特に高い耐食性を有す
るシルコウム基合金の組成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a zirconium-based alloy suitable for use in high-temperature, high-pressure water in a nuclear reactor, and particularly to a composition of a silconium-based alloy having high corrosion resistance.

〔発明の背景〕[Background of the invention]

′ジルコニウム基台金は、優れた耐食性は小さい中性子
吸収断面積とを有しているため、原子炉内構造部材であ
る燃料被覆管、チャンネルボックス。
'Zirconium base metal has excellent corrosion resistance and small neutron absorption cross section, so it is used in the internal structural components of nuclear reactors such as fuel cladding tubes and channel boxes.

スペーサ等に使用されている。これら用途に使用される
錫を含むジルコニウム合金としては、ジルカロイ−2(
Sn :1.20〜1.70  wt%。
Used for spacers, etc. The tin-containing zirconium alloy used for these purposes is Zircaloy-2 (
Sn: 1.20 to 1.70 wt%.

Fe : 0.07〜1.2 wt%、Cr;0.05
〜0.15wt%、 N i : 0.03〜0.08
wt%y O: 900〜1400ppm 、残Zr、
但しFa+Cr+Ni : 0.18〜0.38  w
t%)。
Fe: 0.07-1.2 wt%, Cr; 0.05
~0.15wt%, Ni: 0.03~0.08
wt%yO: 900-1400ppm, residual Zr,
However, Fa+Cr+Ni: 0.18~0.38w
t%).

ジルカロイ−4(Sn :1.20〜1.70− wt
%、Fa : 0.18〜0.24  wt%、Cr:
0.07〜0.13−wt%、 O: 1000〜16
00pp+a 。
Zircaloy-4 (Sn: 1.20-1.70-wt
%, Fa: 0.18-0.24 wt%, Cr:
0.07-0.13-wt%, O: 1000-16
00pp+a.

残Zr、但し、Fe+Or : 0.28〜0.37w
t%)等がある。
Remaining Zr, however, Fe+Or: 0.28~0.37w
t%) etc.

合金元素のうち、Snは機械的性質の改善と溶    
 ゛解原料であるジルコニウムスポンジ中に含まれる窒
素が耐食性に及ぼす悪影響を防止するために添加される
。酸素の添加は引張強つを向上させる。
Among alloying elements, Sn improves mechanical properties and
Nitrogen contained in the zirconium sponge, which is a raw material for decomposition, is added to prevent the negative effect on corrosion resistance. Addition of oxygen improves tensile strength.

Fe、Cr及びNiは耐食性を向上させる′ために添加
される。
Fe, Cr and Ni are added to improve corrosion resistance.

耐食性向上に顕著な効果を有するFe、Cr及びNiの
うち、Niの添加量が増加すると高温高圧水中あるいは
高温高圧水蒸気中での水素吸収量が増加すると言われて
おり1例えば“TheMetallurgy of Z
irconium” (D、 L、Douglass著
)P360に記載されている。このためNiはジルカロ
イ−2材では約0.05  wt%と添加量が少く、ジ
ルカロイ−4材では添加されていない。
Among Fe, Cr, and Ni, which have a remarkable effect on improving corrosion resistance, it is said that when the amount of Ni added increases, the amount of hydrogen absorbed in high-temperature, high-pressure water or high-temperature, high-pressure steam increases.1For example, "The Metallurgy of Z"
irconium" (by D. L. Douglas) P360. Therefore, the amount of Ni added in Zircaloy-2 material is as small as about 0.05 wt%, and it is not added in Zircaloy-4 material.

ソ連のジルカロイ改良合金“Zirkaloy”は0.
8wt%Sn、0.2  wt%Fe、0.3  wt
%Niの組成を有しCarを含まない合金であることが
″耐熱材料ハンドブック” (今井、河嶋著)朝食書店
(S、40.11.30発行)に記載されている。この
合金では、合金元素のうちでも中性子吸収断面積が最も
大きいNiが多量に含まれているため、合金の中性子吸
収断面積も通常のジルカロイ−2あるいはジルカロイ−
4よりも大きい。
Soviet Zircaloy improved alloy "Zirkaloy" is 0.
8wt%Sn, 0.2wt%Fe, 0.3wt
%Ni and does not contain Car, as described in "Heat-Resistant Materials Handbook" (authored by Imai and Kawashima), Shokusho Shoten (S, published on November 30, 40). This alloy contains a large amount of Ni, which has the largest neutron absorption cross section among alloying elements, so the neutron absorption cross section of the alloy also differs from that of ordinary Zircaloy-2 or Zircaloy-2.
greater than 4.

Fee Cr及びNiの中性子吸収断面積はZrに比べ
て大きいので、できるだけ小量にするのが好ましいが、
例えば“Metallurgy of The Rar
eMetalg−2,Zirconium” (Mil
ler著)P325に記載されているように、これら合
金元素は耐食性向上に有効であるので現用ジルコニウム
基合金に添加されている。
Since the neutron absorption cross section of Fee Cr and Ni is larger than that of Zr, it is preferable to keep the amount as small as possible.
For example, “Metalurgy of The Rar”
eMetalg-2, Zirconium” (Mil
ler), these alloying elements are added to current zirconium-based alloys because they are effective in improving corrosion resistance.

耐食性が優れたこれら市販ジルコニウム合金も炉内で長
時間高温高圧の水にさらされると丘疹状の局部腐食(以
後ノジュラ腐食と記す)が発生する。ノジュラ腐食の発
生は、健全部の肉厚を減少させるので強度低下の原因と
なり、ノジュラ腐食が全肉厚を貫通すると被覆管内の放
射性物質が炉水中に漏れる。原子力燃料の高燃焼度化、
運転サイクルの長期化をはかるためには、現用ジルコニ
ウム合金の耐食性をさらに高める必要がある。
These commercially available zirconium alloys, which have excellent corrosion resistance, also develop papular localized corrosion (hereinafter referred to as nodular corrosion) when exposed to high-temperature, high-pressure water in a furnace for a long period of time. Occurrence of nodular corrosion causes a decrease in strength because the wall thickness of healthy parts is reduced, and if nodular corrosion penetrates the entire wall thickness, radioactive materials in the cladding tube will leak into the reactor water. Higher burnup of nuclear fuel,
In order to extend the operating cycle, it is necessary to further improve the corrosion resistance of currently used zirconium alloys.

現用のジルカロイ−2材及びジルカロイ−4材の高耐食
化技術としては、例えば、特開昭51−110411及
び特開昭51−110412に記載されているβクエン
チと呼ばれる熱処理技術が公知である。βクエンチとは
、ジルコニウム基合金を〔α+β〕相温度範囲あるいは
β相温度範囲から急冷(冷却速度=30℃/秒〜300
℃/秒)する熱処理であり、βクエンチすることにより
合金中に析出しているZr (Cr、Fe)、、Zr、
(Ni。
As a technique for increasing the corrosion resistance of the currently used Zircaloy-2 and Zircaloy-4 materials, for example, a heat treatment technique called β quench described in JP-A-51-110411 and JP-A-51-110412 is known. β-quenching refers to rapid cooling of a zirconium-based alloy from the [α+β] phase temperature range or the β-phase temperature range (cooling rate = 30°C/sec to 300°C/sec).
℃/sec), and by β-quenching, Zr (Cr, Fe), Zr,
(Ni.

Fe)等の金属間化合物相はマトリックス中に固溶し、
冷却過程で析出する金属間化合物相はβクエンチする前
のものより微細化する。βクエンチにより耐食性は向上
するが、マトリックは、Fe。
The intermetallic compound phase such as Fe) is dissolved in the matrix,
The intermetallic compound phase precipitated during the cooling process becomes finer than that before β-quenching. Corrosion resistance is improved by β quenching, but the matrix is Fe.

Cr及びNiの過飽和固溶体であるため一延性が著しく
低下し、βクエンチ後強加工を施すと割れが発生する。
Since it is a supersaturated solid solution of Cr and Ni, its ductility is significantly reduced, and cracking occurs when strong working is performed after β-quenching.

燃料被覆管の製造工程を例にとると、溶解されたインゴ
ットは、熱間鍛造(約1000℃)、溶体化処理(約1
000℃で数時間)、熱間鍛造(700℃〜750℃)
の後、熱間押出しにより円筒状ビレットに成形される6
通常、この円筒状ビレットは焼なましの後冷間圧延と焼
なましとを交互に3回繰返し燃料被覆管に成形される。
Taking the manufacturing process of fuel cladding tubes as an example, the melted ingot undergoes hot forging (approximately 1,000°C) and solution treatment (approximately 1,000°C).
000℃ for several hours), hot forging (700℃~750℃)
After that, it is formed into a cylindrical billet by hot extrusion.
Usually, after annealing, this cylindrical billet is formed into a fuel cladding tube by repeating cold rolling and annealing three times alternately.

高耐食燃料被覆管を得るために、最終工程でβクエンチ
すると延性が低下し被覆管の仕様を満足しなくなる。延
性を付与するために、βクエンチをいずれかの冷間圧延
工程の前に施し、βクエンチ後冷間圧延と焼なましとを
交互に繰返すことにより金属組織が再結晶組織となるよ
うな’m*工程も提案されている。しかし、βクエンチ
材は強加工を施すことができないので、通常の製造工程
よりも冷間圧延及び焼なましの繰直し回数が1〜2回増
加する。
In order to obtain a highly corrosion-resistant fuel cladding tube, β-quenching is performed in the final step, resulting in a decrease in ductility and the cladding tube specifications no longer being met. In order to impart ductility, β-quenching is performed before any cold rolling process, and cold rolling and annealing are alternately repeated after β-quenching, so that the metal structure becomes a recrystallized structure. An m* process has also been proposed. However, since β-quenched material cannot be subjected to strong working, the number of repetitions of cold rolling and annealing is increased by 1 to 2 times compared to the normal manufacturing process.

βクエンチ後、焼なましを長時間にわたり施すと、マト
リックス中に過飽和に固溶したFe。
After β-quenching, when annealing is performed for a long time, Fe becomes a supersaturated solid solution in the matrix.

Cr及びNiは、金属間化合物相として析出しかつ粗大
化してくるので、耐食性は徐々に低下してくる。
Since Cr and Ni precipitate as intermetallic compound phases and become coarse, corrosion resistance gradually decreases.

よって、チャンネルボックス、燃料被覆管、スペーサー
等原子炉々内構造部材として使用されるジルコニウム合
金は、熱処理により耐食性が変化せずかつ高い耐食性を
有していることが望ましい。
Therefore, it is desirable that zirconium alloys used as internal structural members of nuclear reactors, such as channel boxes, fuel cladding tubes, and spacers, have high corrosion resistance and do not change in corrosion resistance due to heat treatment.

〔発明の目的〕[Purpose of the invention]

本発明の目的は高温高圧水あるいは高温高−圧水蒸気中
で長期間使用してもノジュラ腐食が発生せず高い耐食性
を有し、かつ中性子吸収断面積が現用ジルコニウム基合
金を越えないジルコニウム基合金を提供することにある
The object of the present invention is to provide a zirconium-based alloy that does not cause nodular corrosion even when used for long periods in high-temperature, high-pressure water or high-temperature, high-pressure steam, has high corrosion resistance, and has a neutron absorption cross section that does not exceed that of currently used zirconium-based alloys. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

第1図は1本発明のFe及びNiの合金組成範囲を示す
。この組成範囲の合金は、中性子吸収断面積が現用ジル
カロイと同等ないしそれ以下であり、長期間の使用に耐
えるものであり、かつ水素吸収量は現用のジルカロイよ
り少いという優れた特性を有していることを以下に詳細
に説明する。
FIG. 1 shows the alloy composition range of Fe and Ni according to the present invention. Alloys in this composition range have the excellent properties of having a neutron absorption cross section equal to or lower than that of current Zircaloys, being able to withstand long-term use, and absorbing less hydrogen than current Zircaloys. This will be explained in detail below.

第2図はジルコニウム基合金表面に形成される酸化膜の
成長メカニズムを示す、酸化膜は金属過剰(酸素欠乏型
)のn型半導体であり、その組成は化学量論的組成から
ずれたZrOヨーいである。過剰な金属イオンは等価な
電子によって電気的中性を保つように補償されており、
酸素欠乏部はアニオン欠陥として酸化膜中に内在してい
る。酸素イオンは、このアニオン欠陥とその位置を交換
することにより内部へ拡散し酸化膜と金属との界面でジ
ルコニウムと結合し酸化が内部に向って進行する。
Figure 2 shows the growth mechanism of an oxide film formed on the surface of a zirconium-based alloy. It is. Excess metal ions are compensated by equivalent electrons to maintain electrical neutrality,
Oxygen-deficient areas are present in the oxide film as anion defects. Oxygen ions diffuse into the interior by exchanging their positions with these anion defects, bond with zirconium at the interface between the oxide film and the metal, and oxidation progresses inward.

このとき、酸素イオンと等価な電荷の電子が酸化膜内部
から表面に移動し、水素イオンはこの電子により還元さ
れて水素ガスを発生する。よって酸化量と水素ガス発生
量は比例関係にあり、水素ガスの1部はジルコニウム合
金内部に吸収されて水素化物を形成する原因となる。こ
のことから、耐食性が高いジルコニウム基合金はど水素
ガスの吸収量が低いことが考えられる。
At this time, electrons with a charge equivalent to that of oxygen ions move from the inside of the oxide film to the surface, and hydrogen ions are reduced by these electrons to generate hydrogen gas. Therefore, the amount of oxidation and the amount of hydrogen gas generated are in a proportional relationship, and a portion of the hydrogen gas is absorbed inside the zirconium alloy, causing the formation of hydrides. From this, it is thought that zirconium-based alloys with high corrosion resistance have a low absorption amount of hydrogen gas.

酸化膜の成長速度は、酸化膜中の酸素の拡散速度に律速
され、拡散速度は前述したアニオン欠陥の数及びその動
きやすさに比例する。酸化を抑制し耐食性を高めるには
アニオン欠陥の数を減少させることが有効である++ 
F s g Cr及びNi等耐食性を向上させる元素は
ZrO,イオン格子間に侵入しイオン化して不足してい
る電子のドナーとなり、アニオン欠陥を減少させる効果
があるものと考えられる。
The growth rate of the oxide film is determined by the diffusion rate of oxygen in the oxide film, and the diffusion rate is proportional to the number of anion defects and their ease of movement. Reducing the number of anion defects is effective in suppressing oxidation and increasing corrosion resistance++
It is thought that elements that improve corrosion resistance, such as Fsg Cr and Ni, penetrate into the ion lattice of ZrO, become ionized, and become donors for missing electrons, thereby having the effect of reducing anion defects.

第3図は、Zr−1,5wt%5n−Fe−Ni合金の
中性子吸収断面積とFe及びNi添加量との関係を示す
。図より、現用ジルカロイ−2材の中性子吸収断面積を
越えない添加量は、Fe50.55 wt%、Ni≦0
.3  wt%であることがわかる。
FIG. 3 shows the relationship between the neutron absorption cross section of the Zr-1,5wt%5n-Fe-Ni alloy and the amounts of Fe and Ni added. From the figure, the additive amount that does not exceed the neutron absorption cross section of the current Zircaloy-2 material is Fe50.55 wt%, Ni≦0
.. 3 wt%.

(発明の実施例〕 以下に実施例により詳細に説明する。(Embodiments of the invention) Examples will be described in detail below.

実施例1 第4W4は、ジルコニウム基合金の溶解、熱処理及び加
工方法を示す、溶解原料には原子炉用ジルコニウムスポ
ンジを用いた。真空アーク溶解により表1に示す組成の
Zr−8n合金5Zr−8n−Fe合金、Zr−8n−
Cr合金及びZr−8n−Ni合金を溶製した。各イン
ゴットは、熱間圧延(700℃)、焼なましく700’
C,4時間)を施した後4分割した1分割された各板材
のうち3枚には、(α+β)相温度範囲(840”C及
び900℃)及びβ相温度(1000”C)に5分間保
持した後水冷し、βクエンチを施した。残りの1枚には
βクエンチを施さながった。この4枚の板材は、3w!
Jの冷間圧延と800’C,2時間の中間焼なましとに
より、板厚l■とした。各板材をさらに3分割し、58
0℃、620’e及び730℃の温度で2時間焼なまし
した0合金組成及び熱処理の異なる各板材より試験片を
切り出し腐食試験に供した。腐食試験は、圧力10.3
MPaの高温高圧水蒸気中で行った。腐食試験温度及び
時間は、410℃、8時間及び510℃、16時間とし
、途中で冷却することなく連続的に変化させた。
Example 1 No. 4W4 shows a method of melting, heat treatment, and processing a zirconium-based alloy. Zirconium sponge for nuclear reactors was used as the melting raw material. Zr-8n alloy 5Zr-8n-Fe alloy, Zr-8n-
A Cr alloy and a Zr-8n-Ni alloy were melted. Each ingot is hot rolled (700℃) and annealed to 700'
C, 4 hours) and then divided into 4 pieces.Three of each plate was divided into 4 parts, and three of them were subjected to (α+β) phase temperature range (840"C and 900℃) and β phase temperature (1000"C). After being held for a minute, it was cooled with water and β-quenched. The remaining one was subjected to β quenching. These four boards are 3w!
J cold rolling and intermediate annealing at 800'C for 2 hours to give a plate thickness of 1. Divide each plate into 3 parts, 58
Test pieces were cut out from each plate material with different alloy compositions and heat treatments annealed at temperatures of 0°C, 620'e, and 730°C for 2 hours and subjected to corrosion tests. Corrosion test at pressure 10.3
The test was conducted in high-temperature, high-pressure steam of MPa. The corrosion test temperature and time were 410° C. for 8 hours and 510° C. for 16 hours, and were continuously changed without cooling in between.

第5図は、耐食性に及ぼす合金元素量、βクエンチ温度
及び最終焼なまし温度の影響を示す。図中の・印はノジ
ュラ腐食が発生したことを示し。
FIG. 5 shows the influence of alloying element content, β quench temperature and final annealing temperature on corrosion resistance. The mark in the figure indicates that nodular corrosion has occurred.

O印はノジュラ腐食が発生しなかったことを示す。The O mark indicates that nodular corrosion did not occur.

Zr−8n合金においては、Sn添加量及び熱処理によ
らずすべてノジュラ腐食が発生する。Z、r−8n−F
e合金の耐食性は、最終焼なまし温度の影響をほとんど
受けず、Feが0.25 wt%以上合金化されると、
βクエンチを施さなくてもノジュラ腐食は発生しないこ
とがわかる。1000℃のβクエンチを施すとFeが0
.15 wt%以上合金化されているとノジュラ腐食の
発生は防止できることがわかる。
In all Zr-8n alloys, nodular corrosion occurs regardless of the amount of Sn added and the heat treatment. Z, r-8n-F
The corrosion resistance of e-alloys is almost unaffected by the final annealing temperature, and when Fe is alloyed with 0.25 wt% or more,
It can be seen that nodular corrosion does not occur even without β-quenching. When β-quenched at 1000℃, Fe becomes 0.
.. It can be seen that the occurrence of nodular corrosion can be prevented when alloyed with a content of 15 wt% or more.

Zr−8n−Cr合金の耐食性は、最終焼なまし温度が
高いほど低下し、600℃以上の焼なましを施すとβク
エンチ温度及び合金化量を変化させてもノジュラ腐食の
発生を防止できないことがわかる。
The corrosion resistance of Zr-8n-Cr alloy decreases as the final annealing temperature increases, and when annealing is performed at 600°C or higher, the occurrence of nodular corrosion cannot be prevented even if the β-quench temperature and alloying amount are changed. I understand that.

Zr−8n−Ni合金の耐食性は、最終焼なまし温度の
影響を受けずNiが0.1.I5 wt%以上合金化さ
れているとβクエンチを施さなくてもノジュラ腐食の発
生を防止できる。βクエンチ温度を900℃とするとノ
ジュラ腐食の発生を防止するNi合金化量は0.1  
wt%でよいことがわかる。 以上の結果より耐食性向
上に有効な合金元素はFe及びNiであり、Crの効果
は小であることがわかる。
The corrosion resistance of the Zr-8n-Ni alloy is not affected by the final annealing temperature, and the corrosion resistance of the Zr-8n-Ni alloy is not affected by the final annealing temperature. When alloyed with I5 wt% or more, nodular corrosion can be prevented without β-quenching. When the β-quench temperature is 900°C, the amount of Ni alloyed to prevent nodular corrosion is 0.1
It can be seen that wt% is sufficient. From the above results, it can be seen that the alloying elements effective in improving corrosion resistance are Fe and Ni, and the effect of Cr is small.

実施例2 実施例1と同様な溶解方法及び加工、熱処理によりZr
−8n−Fe−Ni合金の板を製造した。
Example 2 Zr was produced by the same melting method, processing, and heat treatment as in Example 1.
-8n-Fe-Ni alloy plates were manufactured.

最終焼なまし温度は730℃とした。第6図は各合金の
耐食性を実施例1と同様な腐食試験によりノジュラ腐食
発生の有無を調べた1図中Δ印は1点のみノジュラ腐食
が発生したことを示す、第6図によりFe及びNiの合
金化量が、(1)式を満足する領域では、熱処理 0.25  ・X1lt : +o、15 Xya≧0
.0375 (1)X * t : N iの合金化量
The final annealing temperature was 730°C. Figure 6 shows that the corrosion resistance of each alloy was examined by the same corrosion test as in Example 1 to determine whether or not nodular corrosion occurred. In the region where the alloyed amount of Ni satisfies formula (1), the heat treatment is 0.25 ・X1lt: +o, 15 Xya≧0
.. 0375 (1) X*t: Alloying amount of Ni.

XFII !’F 8の合金化量、 によらずノジュラ腐食の発生が防止できることがわかる
。βクエンチ温度を1000℃とすると、ノジュラ腐食
の発生は(2)式を満足するFe及びNiの合金化によ
り防止できることがわかる。
XFII! It can be seen that nodular corrosion can be prevented regardless of the amount of F8 alloyed. It can be seen that when the β-quenching temperature is 1000° C., the occurrence of nodular corrosion can be prevented by alloying Fe and Ni that satisfies equation (2).

0.15  x□+0.1  x、、≧0.01j  
   (2)実施例3 第7図は、表1に示す各組成の合金の腐食増量と水素吸
収量との関係を示す、水素吸収量と腐食増量との間には
図に示すような比例関係がある。
0.15 x□+0.1 x, ≧0.01j
(2) Example 3 Figure 7 shows the relationship between the corrosion weight increase and the hydrogen absorption amount for alloys with the respective compositions shown in Table 1. There is a proportional relationship between the hydrogen absorption amount and the corrosion weight gain as shown in the figure. There is.

図より耐食性の高い材料はど水素吸収量も少く、Niを
添加することにより水素吸収量が増加することはないこ
とがわかる。
The figure shows that materials with high corrosion resistance absorb less hydrogen, and the addition of Ni does not increase the amount of hydrogen absorbed.

実施例4 Snを3.Owt%添加すると冷間圧延時の加工硬化が
著しく、30%以上の冷関圧延製施すと割れが発生した
。このことから、Snの合金化量は1.0〜2.Owt
%の範囲が好ましい。
Example 4 Sn was 3. When Owt% was added, work hardening during cold rolling was significant, and cracking occurred when cold rolling was performed at 30% or more. From this, the alloying amount of Sn is 1.0 to 2. Owt
A range of % is preferred.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、耐食性の優れたジルコニウム合金部材
の製造が可能となる。その結果1部材の信頼性が向上し
炉内滞在寿命を大幅に長期化できるので原子力燃料の高
燃焼度化が可能となる。
According to the present invention, it is possible to manufacture a zirconium alloy member with excellent corrosion resistance. As a result, the reliability of one component is improved and the lifetime in the reactor can be significantly extended, making it possible to increase the burnup of nuclear fuel.

ジルコニウム合金部材の製造プロセスh’−おいても、
熱処理温度を比較的自由にに°選定できるので、その製
造が容易になる効果を有する。また中性子吸収断面積も
従来のジルカロイ−2材およびジルカロイ−4材と同等
であり発電効率も低下しない。
Even in the manufacturing process h'- of zirconium alloy members,
Since the heat treatment temperature can be selected relatively freely, it has the effect of facilitating its manufacture. Furthermore, the neutron absorption cross section is equivalent to that of conventional Zircaloy-2 and Zircaloy-4 materials, and power generation efficiency does not decrease.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は最適合金組成範囲を示す図、第2図は酸化膜中
の酸素拡散のメカニズムを示す図、第3図は合金の中性
子吸収断面積を示す図、第4図はジルコニウム合金板材
の製造プロセスを示す図、第51!l及び第6図はノジ
ュラ腐食発生に及ぼす合金元素及び熱処理温度の影響を
示す図、第7図は表1に示す各組成の合金の腐食増量と
水素吸収量との関係図である。 1・・・燃料被覆管、2・・・チャンネルボックス、3
・・・スペーサー、4・・・ウォータロッド、5・・・
燃料ハンドル。
Figure 1 shows the optimum alloy composition range, Figure 2 shows the mechanism of oxygen diffusion in the oxide film, Figure 3 shows the neutron absorption cross section of the alloy, and Figure 4 shows the zirconium alloy plate material. Diagram showing the manufacturing process, No. 51! 1 and 6 are diagrams showing the effects of alloying elements and heat treatment temperatures on the occurrence of nodular corrosion, and FIG. 7 is a diagram showing the relationship between corrosion weight increase and hydrogen absorption amount for alloys having the respective compositions shown in Table 1. 1...Fuel cladding tube, 2...Channel box, 3
...Spacer, 4...Water rod, 5...
fuel handle.

Claims (1)

【特許請求の範囲】 1、ジルコニウム基合金において、1.0〜2.0wt
%の錫、0.3wt%以下のニッケル、0.55wt%
以下の鉄、酸素及びその他不純物を含有し、鉄とNiの
含有量の和が0.15wt%以上であり、Crを含有し
ないことを特徴とするジルコニウム基合金。 2、特許請求の範囲第1項において、鉄含有量をx軸(
単位:wt%)、Ni含有量をy軸(単位:wt%)と
する直交座標平面で(0.55、0)、(0.2、0.
2)、(0.09、0.09)、(0.25、0)の4
点で囲まれた組成を有することを特徴とするジルコニウ
ム基合金。
[Claims] 1. In zirconium-based alloy, 1.0 to 2.0wt
% tin, 0.3 wt% or less nickel, 0.55 wt%
A zirconium-based alloy containing the following iron, oxygen, and other impurities, having a total content of iron and Ni of 0.15 wt% or more, and containing no Cr. 2. In claim 1, the iron content is expressed on the x-axis (
Unit: wt%), (0.55, 0), (0.2, 0.
2), (0.09, 0.09), (0.25, 0) 4
A zirconium-based alloy characterized by having a composition surrounded by dots.
JP14685884A 1984-07-17 1984-07-17 Zirconium alloy Pending JPS6126738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14685884A JPS6126738A (en) 1984-07-17 1984-07-17 Zirconium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14685884A JPS6126738A (en) 1984-07-17 1984-07-17 Zirconium alloy

Publications (1)

Publication Number Publication Date
JPS6126738A true JPS6126738A (en) 1986-02-06

Family

ID=15417149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14685884A Pending JPS6126738A (en) 1984-07-17 1984-07-17 Zirconium alloy

Country Status (1)

Country Link
JP (1) JPS6126738A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024809A (en) * 1989-05-25 1991-06-18 General Electric Company Corrosion resistant composite claddings for nuclear fuel rods
US5026516A (en) * 1989-05-25 1991-06-25 General Electric Company Corrosion resistant cladding for nuclear fuel rods
US5073336A (en) * 1989-05-25 1991-12-17 General Electric Company Corrosion resistant zirconium alloys containing copper, nickel and iron
CN102941241A (en) * 2012-10-17 2013-02-27 青岛宏奥铜管有限公司 Processing method used for Y2 state copper pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024809A (en) * 1989-05-25 1991-06-18 General Electric Company Corrosion resistant composite claddings for nuclear fuel rods
US5026516A (en) * 1989-05-25 1991-06-25 General Electric Company Corrosion resistant cladding for nuclear fuel rods
US5073336A (en) * 1989-05-25 1991-12-17 General Electric Company Corrosion resistant zirconium alloys containing copper, nickel and iron
CN102941241A (en) * 2012-10-17 2013-02-27 青岛宏奥铜管有限公司 Processing method used for Y2 state copper pipe

Similar Documents

Publication Publication Date Title
US4810461A (en) Zirconium-based alloy with high corrosion resistance
US8070892B2 (en) High Fe contained zirconium alloy compositions having excellent corrosion resistance and preparation method thereof
US20100128834A1 (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance
KR19990069104A (en) Zirconium Alloy Compositions with Low Corrosion and High Strength
JPH04232220A (en) Corrosion-resistant zirconium alloy with improved extensibility
US9725791B2 (en) Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
US10221475B2 (en) Zirconium alloys with improved corrosion/creep resistance
JP4982654B2 (en) Zirconium alloy with improved corrosion resistance and method for producing zirconium alloy with improved corrosion resistance
EP3064605A1 (en) Zirconium alloys with improved creep resistance due to final heat treatments
JPS6126738A (en) Zirconium alloy
EP1634973A1 (en) Method of manufacturing a nuclear reactor component in zirconium alloy
JPH01301830A (en) High corrosion-resistant zirconium alloy
EP1634974A1 (en) Process of manufacturing nuclear reactor components in zirconium alloy
JP4975390B2 (en) Method of manufacturing fuel cladding for high burnup
JP2600057B2 (en) Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same
EP0745258B1 (en) A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same
JPH02263943A (en) Corrosion-resistant zirconium alloy any nuclear fuel composite cladding tube
JP2770777B2 (en) High corrosion resistant and low hydrogen absorbing zirconium-based alloy and method for producing the same
JPH10260280A (en) Zirconium based alloy, fuel cladding tube and fuel assembly for reactor
JP3389018B2 (en) Zirconium alloy with excellent hydrogen absorption resistance
JPS60255945A (en) Zirconium base alloy
JPS62182258A (en) Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member
JPH0762197B2 (en) Zirconium alloy for nuclear reactor
JPS6196048A (en) Zirconium-base alloy and fuel assembly
JPH04224648A (en) High corrosion resistant and high strength zirconium alloy