JPS60255945A - Zirconium base alloy - Google Patents

Zirconium base alloy

Info

Publication number
JPS60255945A
JPS60255945A JP11083884A JP11083884A JPS60255945A JP S60255945 A JPS60255945 A JP S60255945A JP 11083884 A JP11083884 A JP 11083884A JP 11083884 A JP11083884 A JP 11083884A JP S60255945 A JPS60255945 A JP S60255945A
Authority
JP
Japan
Prior art keywords
zirconium
corrosion resistance
corrosion
base alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11083884A
Other languages
Japanese (ja)
Inventor
Masatoshi Inagaki
正寿 稲垣
Hiromichi Imahashi
今橋 博道
Kimihiko Akahori
赤堀 公彦
Junjiro Nakajima
中島 潤二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11083884A priority Critical patent/JPS60255945A/en
Publication of JPS60255945A publication Critical patent/JPS60255945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To obtain a Zr base alloy having high corrosion resistance by which nodular corrosion is prevented in water at high temp. and pressure for a long period by specifying a composition contg. Sn, Fe, Ni, oxygen and other trace impurities. CONSTITUTION:This Zr base alloy contains 1.0-2.0wt% Sn, Fe, Ni, oxygen and other trace impurities. The amounts of Fe and Ni in the Zr base alloy are in the range defined by four points (0.15, 0), (0, 0.1), (0, 0.5) and (0.5, 0), preferably four points (0.25, 0), (0, 0.15), (0, 0.4) and (0.4, 0) on the plane of orthogonal coordinates with the Fe content (%) as the (x) coordinate axis and the Ni content (%) as the (y) coordinate axis. The Zr base alloy may further contain 0.1% Cr. The Zr base alloy has high corrosion resistance and is suitable for use in water at high temp. and pressure especially in a nuclear reactor.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はジルコニウム基合金に係り、特に原子炉内にお
ける高温高圧水中での使用に適した高い耐食性を有する
ジルコニウム基合金の組成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a zirconium-based alloy, and more particularly to a composition of a zirconium-based alloy that has high corrosion resistance and is suitable for use in high-temperature, high-pressure water in a nuclear reactor.

〔発明の背景〕[Background of the invention]

ジルコニウム基合金は、優れた耐食性と小さい中性子吸
収断面積とを有しているため、第1図に示すように、原
子炉内構造部材である燃料被覆管1、チャンネルボック
ス2、スペーサ3等に使用されている。これら用途に使
用される錫を含むジルコニウム合金としては、ジルカロ
イ−2(Sn: 1.20〜1.70w t%、 F 
e : 0.07〜0.20w t%。
Zirconium-based alloys have excellent corrosion resistance and a small neutron absorption cross section, so they are used in the reactor internal structural members such as the fuel cladding tube 1, channel box 2, spacer 3, etc., as shown in Figure 1. It is used. Zirconium alloys containing tin used in these applications include Zircaloy-2 (Sn: 1.20-1.70 wt%, F
e: 0.07-0.20 wt%.

G r : 0.05〜0.15w t%、 N i 
: 0.03〜0.08w t%、 O: 900〜1
400ppm、残Zr、但しFe+Cr+ N l :
 0.18〜0.38w t%)、ジルカロイ−4(S
 n : 1.20〜1.70w t%、 F e :
 0.18〜0.24wt%、Cr:0.07〜0.1
3wt%、 O: 1000〜1600ppm 、残Z
r、但し、F a +Cr : 0.28−0.37w
 t%)等がある。
Gr: 0.05-0.15wt%, Ni
: 0.03~0.08wt%, O: 900~1
400ppm, remaining Zr, however, Fe+Cr+N l:
0.18-0.38wt%), Zircaloy-4 (S
n: 1.20-1.70 wt%, Fe:
0.18-0.24wt%, Cr: 0.07-0.1
3wt%, O: 1000-1600ppm, remaining Z
r, however, F a +Cr: 0.28-0.37w
t%) etc.

合金元素のうち、Snは機械的性質の改善と溶解原料で
あるジルコニウムスポンジ中に含まれる窒素が耐食性に
及ぼす悪影響を防止するために添加される。酸素の添加
は引張強さを向上させる。
Among the alloying elements, Sn is added to improve mechanical properties and to prevent the adverse effect of nitrogen contained in the zirconium sponge, which is a melted raw material, on corrosion resistance. Addition of oxygen improves tensile strength.

Fa、Cr及びNiは耐食性を向上させるために添加さ
れる。
Fa, Cr and Ni are added to improve corrosion resistance.

耐食性向上に顕著な効果を有するFe、Cr及びN1の
うち、Niの添加量が増加すると高温高圧水中あるいは
高温高圧水蒸気中での水素吸収量が増加すると言われて
おり例えば″The Metallurgyof Zi
rconium”(D、L、DOUGLASS著)p、
360に記載されている。吸収された水素は水素化物と
して板状に析出し材料の強度低下の原因となる。このた
めNiは、ジルカロイ−2材では、約0.05W t%
と添加量が少く、ジルカロイ−4材では添加されていな
い。
Among Fe, Cr, and N1, which have a remarkable effect on improving corrosion resistance, it is said that when the amount of Ni added increases, the amount of hydrogen absorbed in high-temperature, high-pressure water or high-temperature, high-pressure steam increases.For example, "The Metallurgy of Zi"
rconium” (written by D. L. DOUGLAS) p.
360. The absorbed hydrogen precipitates in the form of a plate as a hydride, causing a decrease in the strength of the material. Therefore, Ni is approximately 0.05Wt% in Zircaloy-2 material.
The amount added is small, and it is not added in Zircaloy-4 material.

Fe及びCrは0.1wt%〜0.5wt%添加するこ
とにより耐食性が向上すると言われており例えばMet
allurgy of The Rare Metal
s −2、Zirconium(Miller著)p3
25に記載されている。Fe。
It is said that corrosion resistance is improved by adding 0.1 wt% to 0.5 wt% of Fe and Cr.
allurgy of The Rare Metal
s-2, Zirconium (by Miller) p3
25. Fe.

Cr及びNiの中性子吸収断面積はZrに比べて大であ
り、できる限り添加量は少い方が好しい。
The neutron absorption cross section of Cr and Ni is larger than that of Zr, and it is preferable that the amount added be as small as possible.

以上述べた理由により、現用ジルコニウム合金の組成が
選定されている。
For the reasons stated above, the composition of the current zirconium alloy has been selected.

しかし、耐食性が優れたこれら市販ジルコニウム合金も
、炉内で長時間高温高圧の水にさらされると、丘疹状の
局部腐食(以後ノジュラ腐食と記す)が発生する。ノジ
ュラ腐食の発生は、健全部の肉厚を減少させるので強度
低下の原因となり。
However, even these commercially available zirconium alloys, which have excellent corrosion resistance, develop papular localized corrosion (hereinafter referred to as nodular corrosion) when exposed to high-temperature, high-pressure water in a furnace for a long time. The occurrence of nodular corrosion reduces the wall thickness of healthy parts, causing a decrease in strength.

ノジュラ腐食が全肉厚を貫通すると被覆管内の放射性物
質が炉水中に漏れる。原子力燃料の高燃焼度化、運転サ
イクルの長期化をはかるためには、現用ジルコニウム合
金の耐食性をさらに高める必要がある。
If nodular corrosion penetrates the entire wall thickness, radioactive materials inside the cladding will leak into the reactor water. In order to achieve higher burn-up and longer operating cycles of nuclear fuel, it is necessary to further improve the corrosion resistance of currently used zirconium alloys.

現用のジルカロイ−2材及びジルカロイ−4材の高耐食
化技術としては例えば特開昭51−110411及び特
開昭51−110412に記載されているβクエンチと
呼ばれる熱処理技術が公知である。βクエンチとは、ジ
ルコニウム基合金を〔α+β〕相温度範囲あるいはβ相
温度範囲から急冷(冷却速度:30℃/秒〜300℃/
秒)する熱処理であり。
A heat treatment technique called β quench described in JP-A-51-110411 and JP-A-51-110412 is known as a technique for increasing the corrosion resistance of currently used Zircaloy-2 and Zircaloy-4 materials. β-quenching refers to rapid cooling of a zirconium-based alloy from the [α+β] phase temperature range or β-phase temperature range (cooling rate: 30°C/sec to 300°C/second).
sec) is a heat treatment.

βクエンチすることにより合金中に析出しているZr 
(Cr、 Fe) 、、 Zr、 (Ni、 Fe)等
の金属間化合物相はマトリックス中に固溶し、冷却過程
で析出する金属間化合物相はβクエンチする前のものよ
り微細化する。βクエンチにより耐食性は向上するが、
マトリックスは、Fe、Cr及びNiの過飽和固溶体で
あるため延性が著しく低下し、βクエンチ後強加工を施
すと割れが発生する。
Zr precipitated in the alloy by β-quenching
Intermetallic compound phases such as (Cr, Fe), Zr, (Ni, Fe), etc. are dissolved in the matrix, and the intermetallic compound phases precipitated during the cooling process are finer than those before β-quenching. β-quenching improves corrosion resistance, but
Since the matrix is a supersaturated solid solution of Fe, Cr, and Ni, the ductility is significantly reduced, and cracking occurs when strong working is performed after β-quenching.

燃料被覆管の製造工程を例にとると、溶解されたインゴ
ットは、熱間鍛造(1000℃)、溶体化処理(約10
00℃で数時間)、(熱間鍛造(700℃〜750℃)
の後、熱間押出しにより円筒状ビレットに成形される0
通常、この円筒状ビレットは焼なましの後冷間圧延と焼
なましとを交互に3回繰返し燃料被覆管に成形される。
Taking the manufacturing process of fuel cladding tubes as an example, the molten ingot is hot forged (1000℃) and solution treated (approximately 100℃).
00℃ for several hours), (Hot forging (700℃~750℃)
After that, it is formed into a cylindrical billet by hot extrusion.
Usually, after annealing, this cylindrical billet is formed into a fuel cladding tube by repeating cold rolling and annealing three times alternately.

高耐食燃料被覆管を得るために、最終工程でβクエンチ
すると延性が低下し被覆管の仕様を満足しなくなる。延
性を付与するために、βクエンチをいずれかの冷間圧延
工程の前に施し、βクエンチ後冷間圧延と焼なましとを
交互に繰返すことにより金属組織が再結晶組織となるよ
うな製造工程も提案されている。しかし、βクエンチ材
は強加工を施すことができないので、通常の製造工程よ
りも冷間圧延及び焼なましの繰返し回数が1〜2回増加
する。
In order to obtain a highly corrosion-resistant fuel cladding tube, β-quenching is performed in the final step, resulting in a decrease in ductility and the cladding tube specifications no longer being met. In order to impart ductility, β-quenching is performed before any cold rolling process, and after β-quenching, cold rolling and annealing are alternately repeated, so that the metal structure becomes a recrystallized structure. A process is also proposed. However, since β-quenched material cannot be subjected to strong working, the number of repetitions of cold rolling and annealing is increased by one to two times compared to the normal manufacturing process.

βクエンチ後、焼なましを長時間にわたり施すと、マト
リックス中に過飽和に固溶したFe。
After β-quenching, when annealing is performed for a long time, Fe becomes a supersaturated solid solution in the matrix.

Cr及びNiは、金属間化合物相として析出しかつ粗大
化してくるので、耐食性は徐々に低下してくる。
Since Cr and Ni precipitate as intermetallic compound phases and become coarse, corrosion resistance gradually decreases.

よって、チャンネルボックス、燃料被覆管、スペーサー
等原子炉々内構造部材として使用されるジルコニウム合
金は、熱処理により耐食性が変化せずかつ高い耐食性を
有していることが望ましい。
Therefore, it is desirable that zirconium alloys used as internal structural members of nuclear reactors, such as channel boxes, fuel cladding tubes, and spacers, have high corrosion resistance and do not change in corrosion resistance due to heat treatment.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高温高圧水あるいは高温高圧水蒸気中
で長期間使用してもノジュラ腐食が発生せず高い耐食性
を有するジルコニウム基合金を提供することにある。
An object of the present invention is to provide a zirconium-based alloy that does not cause nodular corrosion and has high corrosion resistance even when used in high-temperature, high-pressure water or high-temperature, high-pressure steam for a long period of time.

〔発明の概要〕[Summary of the invention]

本発明は、合金元素であるSn、Fe、Cr及びNiの
うち、Fa及びNiが耐食性向上に顕著な効果を有して
いること、及びNi量を0.3wt%を添加したZ r
 −S n −N i合金においても水素吸収量は従来
のジルコニウム基合金とほぼ同等ないしそれ以下である
という発見に基づく。
The present invention is based on the fact that among the alloying elements Sn, Fe, Cr, and Ni, Fa and Ni have a remarkable effect on improving corrosion resistance, and that Zr containing 0.3 wt% of Ni is added.
This is based on the discovery that the amount of hydrogen absorbed in the -Sn-Ni alloy is approximately the same as or lower than that of conventional zirconium-based alloys.

第2図はジルコニウム基合金表面に形成される酸化膜の
成長メカニズムを示す二酸化膜は金属過剰(酸素欠乏型
)のn型半導体であり、その組成は化学量論理組成から
ずれたZ−02−Xである。過剰な金属イオンは等価な
電子によって電気的中性を保つように補償されており、
酸素欠乏部はアニオン欠陥として酸化膜中に内在してい
る。酸素イオンは、このアニオン欠陥とその位置を交換
することにより内部へ拡散し酸化膜と金属との界面でジ
ルコニウムと結合し酸化が内部に向って進行する。この
とき、酸素イオンと等価な電荷の電子が酸化膜内部から
表面に移動し、水素イオンはこの電子により還元されて
水素ガスを発生する。よって酸化量と水素ガス発生量は
比例関係にあり、水素ガスの1部はジルコニウム合金内
部に吸収されて水素化物を形成する原因となる。このこ
とから。
Figure 2 shows the growth mechanism of an oxide film formed on the surface of a zirconium-based alloy.The dioxide film is a metal-rich (oxygen-deficient) n-type semiconductor, and its composition deviates from the stoichiometric composition. It is X. Excess metal ions are compensated by equivalent electrons to maintain electrical neutrality,
Oxygen-deficient areas are present in the oxide film as anion defects. Oxygen ions diffuse into the interior by exchanging their positions with these anion defects, bond with zirconium at the interface between the oxide film and the metal, and oxidation progresses inward. At this time, electrons with a charge equivalent to that of oxygen ions move from the inside of the oxide film to the surface, and hydrogen ions are reduced by these electrons to generate hydrogen gas. Therefore, the amount of oxidation and the amount of hydrogen gas generated are in a proportional relationship, and a portion of the hydrogen gas is absorbed inside the zirconium alloy, causing the formation of hydrides. From this.

耐食性が高いジルコニウム基合金はど水素ガスの吸収量
が低いことが考えられる。
It is thought that zirconium-based alloys with high corrosion resistance have a low absorption amount of hydrogen gas.

酸化膜の成長速度は、酸化膜中の酸素の拡散速度に、律
速され、拡散速度は前述したアニオン欠陥の数及びその
動きやすさに比例する。酸化を抑制し耐食性を高めるに
はアニオン欠陥の数を減少させることが有効である。F
e、Cr及びNi等耐食性を向上させる元素はZrO,
イオン格子間に侵入しイオン化して不足している電子の
ドナーとなり、アニオン欠陥を減少させる効果があるも
のと考えられる。
The growth rate of the oxide film is determined by the diffusion rate of oxygen in the oxide film, and the diffusion rate is proportional to the number of anion defects and their ease of movement. In order to suppress oxidation and improve corrosion resistance, it is effective to reduce the number of anion defects. F
Elements that improve corrosion resistance such as e, Cr and Ni are ZrO,
It is thought that it penetrates between the ion lattices, becomes ionized, and becomes a donor for missing electrons, thereby having the effect of reducing anion defects.

合金元素の添加量は、中性子吸収断面積を増加させない
ためにも0.5. w t%以下とするのが好ましい。
The amount of alloying elements added is set at 0.5 to avoid increasing the neutron absorption cross section. It is preferable that it is less than wt%.

表1 合金の化学組成 〔発明の実施例〕 〈実施例1〉 第3図は、ジルコニウム基合金の溶解、熱処理及び加工
方法を示す、溶解原料には原子炉用ジルコニウムスポン
ジを用いた。真空アーク溶解により表1に示す組成のZ
r−8n合金、Zr−8n−Fe合金、Zr−8n−C
r合金及びZr−3n−Ni合金を溶製した。各インゴ
ットは、熱間圧延(700℃)、焼なましく700℃、
4時間)を施した後4分割した。分割された各板材のう
ち3牧には、(α+β)相温度範囲(840℃及び90
0℃)及びβ相温度(1000℃)に5分間保持した後
水冷し、βクエンチを施した。残りの1枚にはβクエン
チを施さなかった。この4枚の板材は、3回の冷間圧延
と600℃、2時間の中間焼なましとにより、板厚1+
鱈とした。各板材をさらに3分割し、530℃、620
℃及び730℃の温度で2時間焼なましした。合金組成
及び熱処理の異なる各板材よりT、Pを切り出し腐食試
験に供した。腐食試験は、圧力10.3M P aの高
温高圧水蒸気中で行った。腐食試験温度及び時間は、4
10℃、8時間及び510℃、16時間とし、途中で冷
却することなく連続的に変化させた。
Table 1 Chemical composition of alloy [Example of the invention] <Example 1> Figure 3 shows the melting, heat treatment and processing method of a zirconium-based alloy. Zirconium sponge for a nuclear reactor was used as the melting raw material. Z with the composition shown in Table 1 by vacuum arc melting
r-8n alloy, Zr-8n-Fe alloy, Zr-8n-C
An r alloy and a Zr-3n-Ni alloy were melted. Each ingot is hot rolled (700℃), annealed at 700℃,
4 hours) and then divided into 4 parts. Three of the divided plates have (α+β) phase temperature ranges (840°C and 90°C).
0° C.) and the β phase temperature (1000° C.) for 5 minutes, the mixture was cooled with water and subjected to β quenching. The remaining one sheet was not subjected to β-quenching. These four plates were cold-rolled three times and intermediately annealed at 600°C for 2 hours, resulting in a plate thickness of 1+.
I made it with cod. Each board was further divided into 3 parts and heated at 530℃ and 620℃.
℃ and annealed for 2 hours at a temperature of 730℃. T and P were cut out from plate materials with different alloy compositions and heat treatments and subjected to corrosion tests. The corrosion test was conducted in high-temperature, high-pressure steam at a pressure of 10.3 MPa. Corrosion test temperature and time are 4
The temperature was 10°C for 8 hours and 510°C for 16 hours, and the temperature was changed continuously without cooling in between.

第4図は、耐食性に及ぼす合金元素量、βクエンチ温度
及び最終焼なまし温度の影響を示す0図中の・印はノジ
ュラ腐食が発生したことを示し、0印はノジュラ腐食が
発生しなかったことを示す。
Figure 4 shows the influence of alloying element content, β quench temperature, and final annealing temperature on corrosion resistance. In Figure 0, the mark ・ indicates that nodular corrosion has occurred, and the mark 0 indicates that nodular corrosion has not occurred. to show that

Zr−5n合金においては、Sn添加量及び熱処理によ
らずすべてノジュラ腐食が発生する5Zr−8n−Fe
合金の耐食性は、最終焼なまし温度の影響をほとんど受
けず、Faが0.25wt%以上合全以上れると、βク
エンチを施さなくてもノジュラ腐食は発生しないことが
わかる。 1000℃のβクエンチを施すとFeが0.
15wt%以上合全以上れているとノジュラ腐食の発生
は防止できることがわかる。
In the Zr-5n alloy, nodular corrosion occurs in all 5Zr-8n-Fe alloys, regardless of the Sn addition amount and heat treatment.
It can be seen that the corrosion resistance of the alloy is hardly affected by the final annealing temperature, and when Fa exceeds the total by 0.25 wt%, nodular corrosion does not occur even without β-quenching. When β-quenched at 1000°C, Fe becomes 0.
It can be seen that the occurrence of nodular corrosion can be prevented if the total content is 15 wt% or more.

Zr−3n−Cr合金の耐食性は、最終焼なまし温度が
高いほど低下し、600”C以上の焼なましを施すとβ
クエンチ温度及び合金化量を変化させてもノジュラ腐食
の発生を防止できないことがわかる。
The corrosion resistance of Zr-3n-Cr alloy decreases as the final annealing temperature increases;
It can be seen that the occurrence of nodular corrosion cannot be prevented even if the quench temperature and the amount of alloying are changed.

Zr−3n−Ni合金の耐食性は、最終焼なまし温度の
影響を受けずNiが0.15w t%以上合金化されて
いるとβクエンチを施さなくてもノジュラ腐食の発生を
防止できる。βクエンチ温度を900℃とするとノジュ
ラ腐食の発生を防止するN1合金化量はO,1wt%で
よいことがわかる。
The corrosion resistance of the Zr-3n-Ni alloy is not affected by the final annealing temperature, and if Ni is alloyed at 0.15 wt% or more, nodular corrosion can be prevented even without β-quenching. It can be seen that when the β-quench temperature is 900° C., the amount of N1 alloyed to prevent the occurrence of nodular corrosion may be O.1 wt%.

以上の結果より耐食性向上に有効な合金元素はFe及び
N1であり、Crの効果は小であることがわかる。
From the above results, it can be seen that the alloying elements effective in improving corrosion resistance are Fe and N1, and the effect of Cr is small.

〈実施例2〉 実施例1と同様な溶解方法及び加工、熱処理によりZr
−5n−Fa−Ni合金の板を製造した。
<Example 2> Zr was melted using the same melting method, processing, and heat treatment as in Example 1.
-5n-Fa-Ni alloy plates were manufactured.

最終焼なまし温度は730℃とした。第5図は各合金の
耐食性を実施例1と同様な腐食試験によりノジュラ腐食
発生の有無を調べた。図中Δ印は1点のみノジュラ腐食
が発生したことを示す、第5図よりFe及びNiの合金
化量が、(1)式を満足する領域では、熱処理 0.25・XNl +0.15xy、≧0.0375 
=・(1)xsl:Niの合金化量* X Fs : 
F aの合金化量によらずノジュラ腐食の発生が防止で
きることがわかる。βクエンチ温度を1000℃とする
と、ノジュラ腐食の発生は(2)式を満足するFe及び
Niの合金化により防止できることがわかる。
The final annealing temperature was 730°C. FIG. 5 shows the corrosion resistance of each alloy, and the presence or absence of nodular corrosion was examined by the same corrosion test as in Example 1. In the figure, the Δ mark indicates that nodular corrosion has occurred at only one point. From Figure 5, in the region where the alloying amount of Fe and Ni satisfies formula (1), the heat treatment is 0.25 x ≧0.0375
=・(1) xsl: Alloying amount of Ni* X Fs:
It can be seen that the occurrence of nodular corrosion can be prevented regardless of the amount of F a alloyed. It can be seen that when the β-quenching temperature is 1000° C., the occurrence of nodular corrosion can be prevented by alloying Fe and Ni that satisfies equation (2).

0.15 XNI +0.IXF@≧0.015 −(
2)〈実施例3〉 第6図は、実施例1で述べた腐食試験の後、各試験片の
水素量と酸化による腐食増量との関係を示す。腐食試験
前の水素量はlO〜2Qppmであった。第6図から、
水素吸収量は腐食増量に比例し耐食性が高いほど水素吸
収量も低いことがわかる。Ni添加により水素吸収量が
増加することはなかった。
0.15 XNI +0. IXF@≧0.015 −(
2) <Example 3> FIG. 6 shows the relationship between the amount of hydrogen in each test piece and the increase in corrosion due to oxidation after the corrosion test described in Example 1. The amount of hydrogen before the corrosion test was 10 to 2 Qppm. From Figure 6,
It can be seen that the amount of hydrogen absorbed is proportional to the increase in corrosion, and the higher the corrosion resistance, the lower the amount of hydrogen absorbed. The amount of hydrogen absorbed did not increase due to the addition of Ni.

〈実施例4〉 Snを3.0wt%添加すると冷間圧延時の加工硬化が
著しく、30%以上の冷間圧延を施すと割れが発生した
。このことから、Snの合金化量は0.1〜2.0vr
t%の範囲が好ましい。
<Example 4> When 3.0 wt% of Sn was added, work hardening during cold rolling was significant, and cracking occurred when cold rolling was performed at 30% or more. From this, the alloying amount of Sn is 0.1 to 2.0 vr.
A range of t% is preferred.

【発明の効果〕【Effect of the invention〕

本発明によれば、耐食性の優れたジルコニウム合金部材
の製造が可能となる。その結果、部材の信頼性が向上し
炉内滞在寿命を大幅に長期化できるので原子力燃料の高
燃焼度化が可能となる。
According to the present invention, it is possible to manufacture a zirconium alloy member with excellent corrosion resistance. As a result, the reliability of the components improves, and the lifetime in the reactor can be significantly extended, making it possible to increase the burnup of nuclear fuel.

ジルコニウム合金部材の製造プロセスにおいても、熱処
理温度を比較的自由に選定できるので、その製造が容易
になる効果を有する。また中性子吸収断面積も従来のジ
ルカロイ−2材およびジルカロイ−4材と同等であり発
電効率も低下しない。
Also in the process of manufacturing zirconium alloy members, the heat treatment temperature can be selected relatively freely, which has the effect of facilitating the manufacture. Furthermore, the neutron absorption cross section is equivalent to that of conventional Zircaloy-2 and Zircaloy-4 materials, and power generation efficiency does not decrease.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料バンドルを示す図、第2図は酸化膜中の酸
素拡散のメカニズムを示す図、第3図はジルコニウム合
金板材の製造プロセス図、第4図及び第5図はノジュラ
腐食発生に及ぼす合金元素及び熱処理温度の影響を示す
線図、第6図は腐食増量と水素吸収量との関係を示す線
図である。 ■・・・燃料被覆管、2・・・チャンネルボックス、3
・・・スペーサー、4・・ウォータロッド、5・・・燃
料バンドル。 代理人 弁理士 高橋明夫
Figure 1 shows the fuel bundle, Figure 2 shows the mechanism of oxygen diffusion in the oxide film, Figure 3 shows the manufacturing process for zirconium alloy plates, and Figures 4 and 5 show how nodular corrosion occurs. FIG. 6 is a diagram showing the influence of alloying elements and heat treatment temperature, and FIG. 6 is a diagram showing the relationship between corrosion weight increase and hydrogen absorption amount. ■...Fuel cladding tube, 2...Channel box, 3
...Spacer, 4..Water rod, 5..Fuel bundle. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】 1、錫を1.0〜2.Ow t%、鉄、ニッケル、酸素
及びその他微量不純物を含有するジルコニウム基合金に
おいて、鉄含有量をX軸(単位:wt%)。 ニッケル含有量をy軸(単位:wt%)とする直交座標
平面で(0,15,O) 、(0,0,1) 、(0゜
0.5)、(0,5,O) の4点で囲まれた平面の組
成を有することを特徴とするジルコニウム基合金。 2、特許請求の範囲第1項において、好ましくは(0,
25,O) 、(0,0,15) 、(0,0,4) 
。 (0,4,O)の4点で囲まれた平面内の組成を有する
ことを特徴とするジルコニウム基合金。 3、特許請求の範囲第1項及び第2項において、クロム
を0.1wt%以下含有することを特徴とするジルコニ
ウム基合金。
[Claims] 1. tin of 1.0 to 2. In a zirconium-based alloy containing iron, nickel, oxygen, and other trace impurities, the iron content is plotted on the X axis (unit: wt%). (0,15,O), (0,0,1), (0°0.5), (0,5,O) on the orthogonal coordinate plane with the nickel content as the y-axis (unit: wt%). A zirconium-based alloy characterized by having a composition of a plane surrounded by four points. 2. In claim 1, preferably (0,
25,O) , (0,0,15) , (0,0,4)
. A zirconium-based alloy characterized by having a composition within a plane surrounded by four points (0,4,O). 3. A zirconium-based alloy according to claims 1 and 2, characterized in that it contains 0.1 wt% or less of chromium.
JP11083884A 1984-06-01 1984-06-01 Zirconium base alloy Pending JPS60255945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083884A JPS60255945A (en) 1984-06-01 1984-06-01 Zirconium base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083884A JPS60255945A (en) 1984-06-01 1984-06-01 Zirconium base alloy

Publications (1)

Publication Number Publication Date
JPS60255945A true JPS60255945A (en) 1985-12-17

Family

ID=14545944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083884A Pending JPS60255945A (en) 1984-06-01 1984-06-01 Zirconium base alloy

Country Status (1)

Country Link
JP (1) JPS60255945A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116739A (en) * 1981-01-14 1982-07-20 Toshiba Corp Corrosion resistant zirconium alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116739A (en) * 1981-01-14 1982-07-20 Toshiba Corp Corrosion resistant zirconium alloy

Similar Documents

Publication Publication Date Title
JP4455603B2 (en) Zirconium alloy composition for nuclear power and manufacturing method thereof
US20100128834A1 (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance
JPS62228442A (en) Highly corrosion-resistant zirconium-base alloy and reactor fuel assembly by use of same
KR20080074568A (en) High fe contained zirconium alloy compositions having excellent corrosion resistance and preparation method thereof
KR930009987B1 (en) Method of manufacturing tubes of zirconium alloys with improved corrosion resistance for thermal nuclear reactors
JPH08260081A (en) Long-life corrosion-resistant zirconium alloy for coating fuel
US5972288A (en) Composition of zirconium alloy having high corrosion resistance and high strength
JP6535752B2 (en) Manufacturing method of zirconium component for nuclear fuel applying multistage hot rolling
JP2018514649A (en) Zirconium alloy for nuclear fuel cladding having excellent corrosion resistance and method for producing the same
JPH01119650A (en) Manufacture of channel box for nuclear reactor fuel assembly
US10221475B2 (en) Zirconium alloys with improved corrosion/creep resistance
US9725791B2 (en) Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
EP2721188A1 (en) Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
JPS6126738A (en) Zirconium alloy
JPS60255945A (en) Zirconium base alloy
Pylypenko et al. Influence of iron additives on the corrosion resistance of the Zr-1% Nb alloy under operating conditions of a nuclear reactor
KR20080065749A (en) Zirconium alloys having excellent resistance property in both water and steam reaction
JP2600057B2 (en) Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same
EP0745258B1 (en) A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same
JPS6196048A (en) Zirconium-base alloy and fuel assembly
JP3389018B2 (en) Zirconium alloy with excellent hydrogen absorption resistance
JP2770777B2 (en) High corrosion resistant and low hydrogen absorbing zirconium-based alloy and method for producing the same
JPS62182258A (en) Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member
JPH07173587A (en) Production of zirconium alloy welded member
JPS6240349A (en) Manufacture of zirconium base alloy member