EP0211779A1 - Nuclear-radiation absorber - Google Patents

Nuclear-radiation absorber Download PDF

Info

Publication number
EP0211779A1
EP0211779A1 EP86420187A EP86420187A EP0211779A1 EP 0211779 A1 EP0211779 A1 EP 0211779A1 EP 86420187 A EP86420187 A EP 86420187A EP 86420187 A EP86420187 A EP 86420187A EP 0211779 A1 EP0211779 A1 EP 0211779A1
Authority
EP
European Patent Office
Prior art keywords
aluminum
absorber according
gadolinium
absorber
dispersed phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86420187A
Other languages
German (de)
French (fr)
Other versions
EP0211779B1 (en
Inventor
Claude Planchamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fonderies Montupet
Original Assignee
Fonderies Montupet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fonderies Montupet filed Critical Fonderies Montupet
Priority to AT86420187T priority Critical patent/ATE40763T1/en
Publication of EP0211779A1 publication Critical patent/EP0211779A1/en
Application granted granted Critical
Publication of EP0211779B1 publication Critical patent/EP0211779B1/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals

Definitions

  • the present invention relates to a nuclear radiation absorber.
  • the best known are cadmium, samarium, europium, boron and gadolinium.
  • Cadmium has the disadvantage of being a very toxic product and of having a very low melting temperature (321 ° C) and a boiling temperature (765 ° C).
  • the sanarium and europium have practically not given rise to industrial development because of their too high price.
  • boron which is used in different forms: elemental boron, borides, boron carbide, boric acid, etc.
  • this material has very poor mechanical properties and must be strongly diluted in a metallic matrix such as aluminum.
  • nium for example, in order to acquire the qualities necessary to be able to take the form required by each type of absorber. But thus, its absorbency is greatly reduced and must be compensated by an increase in the volume of material used which, ultimately, significantly increases the price of the absorber.
  • the material obtained is a composite product, the production of which requires the use of very elaborate manufacturing processes if it is desired to obtain a regular dispersion of the boron in the aluminum matrix and avoid heterogeneity of absorption capacity.
  • Gadolinium and its oxide have already been used for many years in various nuclear installations where, mixed with the fuel, they act as moderators. However, their application to the manufacture of radiation absorbers poses problems.
  • the oxide generally available in powder form, it must be mixed with other products using very complex technologies and its very poor mechanical properties make its application when producing absorbers of complex shape. , both delicate and expensive. In addition, this oxide has poor thermal conductivity and its absorption capacity is relatively reduced compared to that of elementary gadolinium.
  • gadolinium has the highest capture cross section of all known absorbers in the slow neutron spectrum.
  • its section for thermal neutrons with energy 10 ⁇ 2 eV is 100 times larger.
  • fast neutrons its efficiency is as good as that of boron.
  • This absorber is characterized in that it consists of an alloy of gadolinium with an aluminum chosen from the group comprising pure aluminum, alloyed aluminum, pure or alloyed aluminum containing a dispersed phase.
  • the aluminum used can be pure either because it has been refined by any means such as three-layer electrolysis or fractional crystallization or simply as it is collected at the outlet of the electrolysis tanks with its usual impurities such as iron and silicon.
  • this aluminum can also be a conventional alloy such as those designated by the numbers 1000, 5000 and 6000 in the standards of the Aluminum Association, which makes it possible to reinforce the mechanical properties of the absorbers obtained, or else an aluminum alloy with at least one other metal also having absorbent qualities such as cadmium, samarium, europium, lithium, hafnium, tantalum, the latter alloys can also be obtained from alloys of types 1000, 5000 and 6000.
  • aluminum, alloyed or not may contain a dispersed phase such as carbon fibers or the like intended to reinforce the mechanical strength of the absorbers, or alternatively, combined or not with these fibers, a radiation absorbing product such as, for example for example, boron and its derivatives which can represent up to 30% of the mass of aluminum used.
  • a dispersed phase such as carbon fibers or the like intended to reinforce the mechanical strength of the absorbers, or alternatively, combined or not with these fibers, a radiation absorbing product such as, for example for example, boron and its derivatives which can represent up to 30% of the mass of aluminum used.
  • the gadolinium-aluminum alloys thus produced allow, due to their good mechanical properties, to be easily transformed into absorbers of any shape by at least one of the manufacturing processes chosen from molding, whether in sand, in shell, under low or high pressure, hot or cold rolling, extrusion and forging.
  • the aluminum matrix gives finished products excellent thermal conductivity (from 120 to 180 W / m ° K2 depending on the aluminum matrix chosen), thus allowing the heat created by absorption to be quickly dissipated towards external cooling systems.
  • the starting point of melting of the Al-Gd alloys tested is very high, in most cases greater than 620 ° C; this characteristic allows the neutron barriers thus manufactured to easily withstand the heating caused by the absorption of neutrons or other radiation.
  • the atomic mass of Gd being very high (156.9 g), the ⁇ and X rays in particular are strongly absorbed.
  • Corrosion resistance in general, is not or little affected by the presence of gadolinium, and the corrosion properties are close to those of the aluminum matrices used. Alloys of the 1000, 5000 and 6000 series exhibit excellent corrosion resistance against atmospheric agents or in a marine atmosphere. This behavior can be further improved by appropriate surface treatments (anodization, alodine, paint, plastic coatings ).
  • the mechanical characteristics are high and depend on the aluminum matrix chosen.
  • the mechanical properties vary with the gadolinium content; Table II gives results obtained on cast alloys, one with a Gd content of 12% by weight, the other with a weight percentage of 25%.
  • Table III presents the results obtained on alloys rolled to 11% Gd by weight.
  • the level of resistance and elastic limit can be greatly increased to reach the following values:
  • compositions of ternary, quaternary, quinary alloys, etc., comprising gadolinium could give values much higher than these.
  • the applications of this invention are multiple and touch all the fields where a problem of absorption of radiation arises (neutrons, ⁇ rays, X rays, that these fields are military or civil.
  • Examples of applications include: baskets for transporting and storing nuclear waste, pool racks for storing fuel elements from nuclear reactors, shielding decontamination installations, shielding military vehicles , atomic shelters, nuclear reactor components, the shielding of control devices using radiation or radioactive sources, etc. This list cannot in any way be limiting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Materials For Medical Uses (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

1. An absorber for nuclear radiations characterised in that it is formed by an alloy of gadolinium with an aluminium selected from the group comprising pure aluminium, alloyed aluminium and pure or alloyed aluminium containing a dispersed phase.

Description

La présente invention est relative à une absorbeur de radiations nuclé­aires.The present invention relates to a nuclear radiation absorber.

Avec le développement des techniques nucléaires, de nombreuses recherches ont été menées à travers le monde pour concevoir et fabriquer des absor­beurs de radiations efficaces et compétitifs. Pour atteindre ce but, il faut que les matériaux mis en oeuvre pour les réaliser répondent aux critères suivants :
- posséder des propriétés nucléaires particulières : grande section ef­ficace de capture, faible émission secondaire, bonne stabilité dans le temps par rapport au rayonnement.
- avoir un point de fusion élevé pour supporter l'échauffement engendré par l'absorption des rayonnements, notamment des rayonnements neutroni­ques.
- être bons conducteurs de chaleur pour assurer une évacuation rapide des calories créées.
- présenter des caractéristiques mécaniques permettant une mise en forme aisée.
- résister à la corrosion dans l'atmosphère ou le milieu de travail.
- coûter le moins cher possible.
With the development of nuclear techniques, much research has been carried out around the world to design and manufacture efficient and competitive radiation absorbers. To achieve this goal, the materials used to make them must meet the following criteria:
- possess particular nuclear properties: large effective cross-section, low secondary emission, good stability over time with respect to radiation.
- have a high melting point to withstand the heating generated by the absorption of radiation, in particular neutron radiation.
- be good heat conductors to ensure rapid evacuation of the calories created.
- have mechanical characteristics allowing easy shaping.
- resist corrosion in the atmosphere or the working environment.
- cost as little as possible.

Parmi tous les matériaux utilisés pour absorber les neutrons, les plus connus sont le cadmium, la samarium, l'europium, le bore et le gadolinium.Among all the materials used to absorb neutrons, the best known are cadmium, samarium, europium, boron and gadolinium.

Le cadmium a l'inconvénient d'être un produit très toxique et d'avoir une température de fusion (321°C) et une température d'ébullition (765°C) très basses. Le sanarium et l'europium n'ont pratiquement pas donné lieu à un développement industriel à cause de leur prix trop élevé.Cadmium has the disadvantage of being a very toxic product and of having a very low melting temperature (321 ° C) and a boiling temperature (765 ° C). The sanarium and europium have practically not given rise to industrial development because of their too high price.

Le plus largement répandu d'entre eux est le bore qui est utilisé sous différentes formes : bore élémentaire, borures, carbure de bore, acide borique, etc... D'ailleurs, de nombreux brevets ont été déposés à ce su­jet. Toutefois, ce matériau a de très mauvaises propriétés mécaniques et doit être fortement dilué dans une matrice métallique telle que l'alumi­ nium, par exemple, afin d'acquérir les qualités nécessaires pour pouvoir prendre la forme requise par chaque type d'absorbeur. Mais ainsi, son pouvoir absorbant se trouve grandement diminué et doit être compensé par une augmentation du volume de matériau utilisé ce qui, en définitive, élève sensiblement le prix de l'absorbeur. De toute façon, le bore étant pratiquement insoluble dans l'aluminium, le matériau obtenu est un pro­duit composite dont la réalisation nécessite de recourir à des procédés de fabrication très élaborés si on veut obtenir une dispersion régulière du bore dans la matrice d'aluminium et éviter une hétérogénéité de la ca­pacité d'absorption.The most widely used of these is boron, which is used in different forms: elemental boron, borides, boron carbide, boric acid, etc. Besides, numerous patents have been filed on this subject. However, this material has very poor mechanical properties and must be strongly diluted in a metallic matrix such as aluminum. nium, for example, in order to acquire the qualities necessary to be able to take the form required by each type of absorber. But thus, its absorbency is greatly reduced and must be compensated by an increase in the volume of material used which, ultimately, significantly increases the price of the absorber. In any case, since the boron is practically insoluble in aluminum, the material obtained is a composite product, the production of which requires the use of very elaborate manufacturing processes if it is desired to obtain a regular dispersion of the boron in the aluminum matrix and avoid heterogeneity of absorption capacity.

Le gadolinium et son oxyde sont déjà utilisés depuis de nombreuses années dans diverses installations nucléaires où, mélangés au combustible, ils jouent le rôle de modérateurs. Mais, leur application à la confection d'absorbeurs de radiation pose des problèmes.Gadolinium and its oxide have already been used for many years in various nuclear installations where, mixed with the fuel, they act as moderators. However, their application to the manufacture of radiation absorbers poses problems.

En ce qui concerne l'oxide, généralement disponible sous forme de poudre, il doit être mélangé à d'autres produits en utilisant des technologies très complexes et ses propriétés mécaniques très mauvaises rendent son application, lors de la réalisation d'absorbeurs de forme complexe, à la fois délicate et coûteuse. De plus, cet oxyde a une mauvaise conductibi­lité thermique et sa capacité d'absorption est relativement réduite par rapport à celle du gadolinium élémentaire.Regarding the oxide, generally available in powder form, it must be mixed with other products using very complex technologies and its very poor mechanical properties make its application when producing absorbers of complex shape. , both delicate and expensive. In addition, this oxide has poor thermal conductivity and its absorption capacity is relatively reduced compared to that of elementary gadolinium.

Quant au métal lui-même, son prix reste élevé et sa mise en oeuvre diffi­cile à cause de sa très grande oxydabilité.As for the metal itself, its price remains high and its implementation difficult because of its very high oxidability.

Cependant, le gadolinium présente dans le spectre de neutrons lents la section efficace de capture la plus élevée de tous les absorbeurs connus. Notamment, comparée au bore, sa section pour des neutrons thermiques d'énergie 10⁻² eV est 100 fois plus grande. Quant aux neutrons rapides, son efficacité est aussi bonne que celle du bore.However, gadolinium has the highest capture cross section of all known absorbers in the slow neutron spectrum. In particular, compared to boron, its section for thermal neutrons with energy 10⁻² eV is 100 times larger. As for fast neutrons, its efficiency is as good as that of boron.

C'est pourquoi la demanderesse, consciente de l'intérêt du gadolinium, mais aussi de ses inconvénients, a cherché et trouvé le moyen d'en faire des absorbeurs de radiation nucléaires intéressants.This is why the plaintiff, aware of the interest of gadolinium, but also of its drawbacks, has sought and found a way to make it attractive nuclear radiation absorbers.

Cet absorbeur est caractérisé en ce qu'il est constitué par un alliage de gadolinium avec un aluminium choisi dans le groupe comprenant l'alu­minium pur, l'aluminium allié, l'aluminium pur ou allié contenant une phase dispersée.This absorber is characterized in that it consists of an alloy of gadolinium with an aluminum chosen from the group comprising pure aluminum, alloyed aluminum, pure or alloyed aluminum containing a dispersed phase.

Il s'agit donc d'un alliage à base de gadolinium et d'aluminium dans le­quel la proportion de gadolinium se situe entre 0,05 % et 70 % en poids. En-dessous de 0,05 % l'effet absorbant s'avère trop réduit et au-dessus de 70 % se produisent des difficultés d'élaboration de l'alliage. De pré­férence, cette fourchette se situe entre 0,1 et 15 % et dépend de la na­ture et du flux de radiations à absorber.It is therefore an alloy based on gadolinium and aluminum in which the proportion of gadolinium is between 0.05% and 70% by weight. Below 0.05% the absorbent effect proves to be too reduced and above 70% there are difficulties in developing the alloy. Preferably, this range is between 0.1 and 15% and depends on the nature and the flux of radiation to be absorbed.

L'aluminium utilisé peut être pur soit qu'il ait été raffiné par un moyen quelconque tel que l'électrolyse trois couches ou la cristallisation fractionnée ou simplement tel qu'il est recueilli à la sortie des cuves d'électrolyse avec ses impuretés habituelles comme le fer et le silicium.The aluminum used can be pure either because it has been refined by any means such as three-layer electrolysis or fractional crystallization or simply as it is collected at the outlet of the electrolysis tanks with its usual impurities such as iron and silicon.

Mais cet aluminium peut aussi être un alliage classique tel que ceux dé­signés par les nombres 1000, 5000 et 6000 dans les normes de l'Aluminium Association, ce qui permet de renforcer les propriétés mécaniques des ab­sorbeurs obtenus, ou encore un alliage d'aluminium avec au moins un autre métal ayant également des qualités absorbantes tel que le cadmium, le samarium, l'europium, le lithium, l'hafnium, le tantale, ces derniers al­liages pouvant également être obtenus à partir d'alliage des types 1000, 5000 et 6000.But this aluminum can also be a conventional alloy such as those designated by the numbers 1000, 5000 and 6000 in the standards of the Aluminum Association, which makes it possible to reinforce the mechanical properties of the absorbers obtained, or else an aluminum alloy with at least one other metal also having absorbent qualities such as cadmium, samarium, europium, lithium, hafnium, tantalum, the latter alloys can also be obtained from alloys of types 1000, 5000 and 6000.

De plus, l'aluminium allié ou non peut contenir une phase dispersée telle que des fibres de carbone ou autres destinées à renforcer la tenue méca­nique des absorbeurs, ou encore, combiné ou non à ces fibres, un produit absorbant des radiations tel que, par exemple, le bore et ses dérivés qui peut représenter jusqu'à 30 % de la masse d'aluminium mise en oeuvre.In addition, aluminum, alloyed or not, may contain a dispersed phase such as carbon fibers or the like intended to reinforce the mechanical strength of the absorbers, or alternatively, combined or not with these fibers, a radiation absorbing product such as, for example for example, boron and its derivatives which can represent up to 30% of the mass of aluminum used.

Les alliages de gadolinium-aluminium ainsi réalisés permettent, en raison de leurs bonnes propriétés mécaniques, d'être facilement transformés en absorbeurs de forme quelconque par l'un au moins des procédés de fabrica­tion choisi parmi le moulage, que ce soit en sable, en coquille, sous basse ou haute pression, le laminage à chaud ou à froid, l'extrusion et le forgeage.The gadolinium-aluminum alloys thus produced allow, due to their good mechanical properties, to be easily transformed into absorbers of any shape by at least one of the manufacturing processes chosen from molding, whether in sand, in shell, under low or high pressure, hot or cold rolling, extrusion and forging.

Ces alliages donnent des structures parfaitement homogènes avec des sec­tions efficaces de capture très régulières. De plus, leur densité, qui est variable en fonction du pourcentage de Gd donne, pour des teneurs en Gd allant jusqu'à 30 % en poids, une valeur proche de celle de l'alumi­nium, ce qui permet la réalisation de barrières neutroniques très lé­gères. Le Tableau I donne des valeurs de densité pour deux alliages bi­naires Al-Gd, l'un à 11 % de Gd, 1'autre à 23 % de Gd.

Figure imgb0001
These alloys give perfectly homogeneous structures with very regular effective cross-sections. In addition, their density, which is variable as a function of the percentage of Gd, gives, for Gd contents of up to 30% by weight, a value close to that of aluminum, which allows the creation of very neutron barriers. light. Table I gives density values for two binary Al-Gd alloys, one at 11% Gd, the other at 23% Gd.
Figure imgb0001

Le matrice aluminium confère aux produits finis une excellente conducti­bilité thermique (de 120 à 180 W/m° K₂ suivant la matrice aluminium choi­sie) permettant ainsi d'évacuer rapidement la chaleur créée par l'absorp­tion vers des systèmes refroidisseurs extérieurs.The aluminum matrix gives finished products excellent thermal conductivity (from 120 to 180 W / m ° K₂ depending on the aluminum matrix chosen), thus allowing the heat created by absorption to be quickly dissipated towards external cooling systems.

Le point de début de fusion des alliages Al-Gd testés est très élevé, dans la plupart des cas supérieur à 620°C; cette caractéristique permet aux barrières neutroniques ainsi fabriquées de supporter aisément l'é­chauffement provoqué par l'absorption des neutrons ou d'autres rayonne­ments.The starting point of melting of the Al-Gd alloys tested is very high, in most cases greater than 620 ° C; this characteristic allows the neutron barriers thus manufactured to easily withstand the heating caused by the absorption of neutrons or other radiation.

La masse atomique de Gd étant très élevée (156,9 g), les rayons γ et X notamment sont fortement absorbés.The atomic mass of Gd being very high (156.9 g), the γ and X rays in particular are strongly absorbed.

La résistance à la corrosion, d'une manière générale, n'est pas ou peu affectée par la présence de gadolinium, et les propriétés de corrosion sont proches de celles des matrices aluminium utilisées. Les alliages de série 1000, 5000 et 6000 présentent une excellente tenue à la corro­sion contre les agents atmosphériques ou en atmosphère marine. Cette te­nue peut encore être améliorée par des traitements de surface appropriés (anodisation, alodine, peinture, revêtements plastiques ...).Corrosion resistance, in general, is not or little affected by the presence of gadolinium, and the corrosion properties are close to those of the aluminum matrices used. Alloys of the 1000, 5000 and 6000 series exhibit excellent corrosion resistance against atmospheric agents or in a marine atmosphere. This behavior can be further improved by appropriate surface treatments (anodization, alodine, paint, plastic coatings ...).

Les caractéristiques mécaniques sont élevées et sont fonction de la ma­trice aluminium choisie. Dans le cas d'alliages aluminium-gadolinium bi­naires, les propriétés mécaniques varient avec la teneur en gadolinium; le tableau II donne des résultats obtenus sur alliages moulés, l'un avec une teneur en Gd de 12 % en poids, l'autre avec un pourcentage pondéral de 25 %.

Figure imgb0002
The mechanical characteristics are high and depend on the aluminum matrix chosen. In the case of binary aluminum-gadolinium alloys, the mechanical properties vary with the gadolinium content; Table II gives results obtained on cast alloys, one with a Gd content of 12% by weight, the other with a weight percentage of 25%.
Figure imgb0002

Le Tableau III présente les résultats obtenus sur alliages laminés à 11% de Gd en poids.

Figure imgb0003
Table III presents the results obtained on alloys rolled to 11% Gd by weight.
Figure imgb0003

En utilisant des matrices aluminium dopées avec des éléments tels que le cuivre, le silicium, le zinc, le magnésium, etc..., le niveau de résis­tance et de limite élastique peut être fortement augmenté pour atteindre les valeurs suivantes :

Figure imgb0004
By using aluminum matrices doped with elements such as copper, silicon, zinc, magnesium, etc ..., the level of resistance and elastic limit can be greatly increased to reach the following values:
Figure imgb0004

Les valeurs supérieures ci-dessus ne sont pas limitatives, étant bien entendu que des compositions d'alliages ternaire, quaternaire, quinaire, etc..., comportant du gadolinium pourraient donner des valeurs bien su­périeures à celles-là.The higher values above are not limitative, it being understood that compositions of ternary, quaternary, quinary alloys, etc., comprising gadolinium could give values much higher than these.

L'usinage de ces alliages métalliques ne pose aucun problème, les para­mètres et les vitesses de travail à prendre en compte étant les mêmes que celles généralement utilisées pour les alliages d'aluminium.The machining of these metal alloys poses no problem, the parameters and the working speeds to be taken into account being the same as those generally used for aluminum alloys.

Les applications de cette invention sont multiples et touchent tous les domaines où un problème d'absorption de rayonnement se pose (neutrons, rayons γ, rayons X, que ces domaines soient militaires ou civils.The applications of this invention are multiple and touch all the fields where a problem of absorption of radiation arises (neutrons, γ rays, X rays, that these fields are military or civil.

A titre d'exemples d'application on peut citer : les paniers de transport et de stockage de déchets nucléaires, les racks de piscine pour le sto­ckage des éléments combustibles de réacteurs nucléaires, le blindage d'installation de décontamination, le blindage de véhicules militaires, les abris anti-atomiques, les éléments de réacteurs nucléaires, le blinda­ge d'appareils de contrôle utilisant des rayonnements ou des sources ra­dioactives, etc... Cette liste ne saurait en aucun cas être limitative.Examples of applications include: baskets for transporting and storing nuclear waste, pool racks for storing fuel elements from nuclear reactors, shielding decontamination installations, shielding military vehicles , atomic shelters, nuclear reactor components, the shielding of control devices using radiation or radioactive sources, etc. This list cannot in any way be limiting.

Claims (11)

1. Absorbeur de radiations nucléaires caractérisé en ce qu'il est cons­titué par un alliage de gadolinium avec un aluminium choisi dans le groupe comprenant l'aluminium pur, l'aluminium allié, l'aluminium pur ou allié contenant une phase dispersée.1. Absorber of nuclear radiation characterized in that it consists of an alloy of gadolinium with an aluminum chosen from the group comprising pure aluminum, alloyed aluminum, pure or alloyed aluminum containing a dispersed phase. 2. Absorbeur selon la revendication 1, caractérisé en ce que la propor­tion de gadolinium est comprise entre 0,05 % et 70 % en poids.2. Absorber according to claim 1, characterized in that the proportion of gadolinium is between 0.05% and 70% by weight. 3. Absorbeur, selon la revendication 2, caractérisé en ce que la propor­tion de gadolinium est comprise entre 0,1 et 15 %.3. Absorber according to claim 2, characterized in that the proportion of gadolinium is between 0.1 and 15%. 4. Absorbeur selon la revendication 1, caractérisé en ce que l'aluminium allié est choisi parmi les alliages désignés par les nombres 1000, 5000 et 6000 dans les normes de l'Aluminium Association.4. Absorber according to claim 1, characterized in that the alloyed aluminum is chosen from the alloys designated by the numbers 1000, 5000 and 6000 in the standards of the Aluminum Association. 5. Absorbeur selon la revendication 1, caractérisé en ce que l'aluminium allié renferme au moins un métal absorbeur de radiations nucléaires.5. Absorber according to claim 1, characterized in that the alloyed aluminum contains at least one metal absorbing nuclear radiation. 6. Absorbeur selon la revendication 5, caractérisé en ce que le métal appartient au groupe constitué par le cadmium, le samarium, l'europium, le lithium, le hafnium, le tantale.6. Absorber according to claim 5, characterized in that the metal belongs to the group consisting of cadmium, samarium, europium, lithium, hafnium, tantalum. 7. Absorbeur selon la revendication 1, caractérisé en ce que la phase dispersée renferme au moins un produit absorbeur de radiations nucléai­res.7. Absorber according to claim 1, characterized in that the dispersed phase contains at least one product absorbing nuclear radiation. 8. Absorbeur selon la revendication 7, caractérisé en ce que la phase dispersée est constituée par le bore ou un de ses dérivés.8. Absorber according to claim 7, characterized in that the dispersed phase consists of boron or one of its derivatives. 9. Absorbeur selon la revendication 8, caractérisé en ce que le bore représente jusqu'à 30 % en poids de l'aluminium.9. Absorber according to claim 8, characterized in that the boron represents up to 30% by weight of the aluminum. 10. Absorbeur selon la revendication 1 caractérisé en ce que la phase dispersée est sous forme de fibres.10. Absorber according to claim 1 characterized in that the dispersed phase is in the form of fibers. 11. Absorbeur selon la revendication 1, caractérisé en ce qu'il est obtenu suivant l'un au moins des procédés de fabrication choisi parmi le moulage, le laminage, l'extrusion, le forgeage.11. Absorber according to claim 1, characterized in that it is obtained according to at least one of the manufacturing processes chosen from molding, rolling, extrusion, forging.
EP86420187A 1985-07-11 1986-07-09 Nuclear-radiation absorber Expired EP0211779B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86420187T ATE40763T1 (en) 1985-07-11 1986-07-09 RADIATION ABSORBER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8510983A FR2584852B1 (en) 1985-07-11 1985-07-11 NUCLEAR RADIATION ABSORBER
FR8510983 1985-07-11

Publications (2)

Publication Number Publication Date
EP0211779A1 true EP0211779A1 (en) 1987-02-25
EP0211779B1 EP0211779B1 (en) 1989-02-08

Family

ID=9321402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86420187A Expired EP0211779B1 (en) 1985-07-11 1986-07-09 Nuclear-radiation absorber

Country Status (19)

Country Link
EP (1) EP0211779B1 (en)
JP (1) JPS6270799A (en)
KR (1) KR910007461B1 (en)
AT (1) ATE40763T1 (en)
AU (1) AU580177B2 (en)
BR (1) BR8603239A (en)
CA (1) CA1268031A (en)
DE (1) DE3662078D1 (en)
DK (1) DK327786A (en)
ES (1) ES2001015A6 (en)
FI (1) FI85923C (en)
FR (1) FR2584852B1 (en)
GR (1) GR861792B (en)
IE (1) IE58952B1 (en)
IL (1) IL79385A0 (en)
NO (1) NO169035C (en)
NZ (1) NZ216802A (en)
PT (1) PT82958B (en)
ZA (1) ZA865168B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103312A1 (en) * 2004-04-22 2005-11-03 Alcan International Limited Improved neutron absorption effectiveness for boron content aluminum materials
EP3480327A4 (en) * 2016-05-30 2020-06-17 Fujikura, Ltd. Gadolinium wire material, method for manufacturing same, metal-coated gadolinium wire material using same, heat exchanger, and magnetic refrigeration device
US10815552B2 (en) 2013-06-19 2020-10-27 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338553A (en) * 1986-08-01 1988-02-19 Kobe Steel Ltd Aluminum alloy having superior thermal neutron absorbing power
DE19706758A1 (en) * 1997-02-20 1998-05-07 Siemens Ag Apparatus used to store spent fuel elements from nuclear power stations
JP3122436B1 (en) 1999-09-09 2001-01-09 三菱重工業株式会社 Aluminum composite material, method for producing the same, and basket and cask using the same
WO2017209038A1 (en) * 2016-05-30 2017-12-07 株式会社フジクラ Gadolinium wire material, method for manufacturing same, metal-coated gadolinium wire material using same, heat exchanger, and magnetic refrigeration device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3024892A1 (en) * 1979-08-18 1982-02-11 Thyssen Industrie Ag, 4300 Essen Steel castings which can be hardened and tempered - contain lanthanide so they can be used as neutron absorbing shields
EP0055371A1 (en) * 1980-12-27 1982-07-07 Kabushiki Kaisha Toshiba Neutron absorber, neutron absorber assembly utilizing the same, and other uses thereof
WO1984001390A1 (en) * 1982-10-05 1984-04-12 Montupet Fonderies Method for manufacturing aluminium- and boron-based composite alloys and application thereof
GB2147729A (en) * 1983-10-03 1985-05-15 Kernforschungsanlage Juelich Process for lowering the reactivity of a gas-cooled pebble bed reactor and shut-down element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583001B2 (en) * 1977-12-16 1983-01-19 財団法人特殊無機材料研究所 Neutron absorbing material and its manufacturing method
JPS6055460B2 (en) * 1980-08-12 1985-12-05 東芝セラミツクス株式会社 Alumina sintered pellets for neutron absorption
JPS6212895A (en) * 1985-07-10 1987-01-21 株式会社神戸製鋼所 Aluminum alloy having excellent neutron absorptivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3024892A1 (en) * 1979-08-18 1982-02-11 Thyssen Industrie Ag, 4300 Essen Steel castings which can be hardened and tempered - contain lanthanide so they can be used as neutron absorbing shields
EP0055371A1 (en) * 1980-12-27 1982-07-07 Kabushiki Kaisha Toshiba Neutron absorber, neutron absorber assembly utilizing the same, and other uses thereof
WO1984001390A1 (en) * 1982-10-05 1984-04-12 Montupet Fonderies Method for manufacturing aluminium- and boron-based composite alloys and application thereof
GB2147729A (en) * 1983-10-03 1985-05-15 Kernforschungsanlage Juelich Process for lowering the reactivity of a gas-cooled pebble bed reactor and shut-down element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 97, no. 12, 20 septembre 1982, pages 548,549, résumé no. 100403e, Columbus, Ohio, US; & JP-A-82 38 367 (TOSHIBA CERAMICS CO. LTD.) 03-03-1982 *
SINTERED METAL-CERAMIC COMPOSITES, New Delhi, India, 6-9, décembre 1983, pages 159-179, Elsevier Science Publishers, Amsterdam, NL; C. GANGULY et al.: "Dispersion type composites for nuclear reactors" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103312A1 (en) * 2004-04-22 2005-11-03 Alcan International Limited Improved neutron absorption effectiveness for boron content aluminum materials
US10815552B2 (en) 2013-06-19 2020-10-27 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties
EP3480327A4 (en) * 2016-05-30 2020-06-17 Fujikura, Ltd. Gadolinium wire material, method for manufacturing same, metal-coated gadolinium wire material using same, heat exchanger, and magnetic refrigeration device

Also Published As

Publication number Publication date
PT82958B (en) 1993-03-31
KR910007461B1 (en) 1991-09-26
FI85923B (en) 1992-02-28
ZA865168B (en) 1987-03-25
KR870001611A (en) 1987-03-14
FI862902A0 (en) 1986-07-10
NO862793D0 (en) 1986-07-10
DE3662078D1 (en) 1989-03-16
CA1268031A (en) 1990-04-24
JPS6270799A (en) 1987-04-01
NZ216802A (en) 1989-06-28
DK327786A (en) 1987-01-12
FR2584852B1 (en) 1987-10-16
ES2001015A6 (en) 1988-04-16
BR8603239A (en) 1987-02-24
FR2584852A1 (en) 1987-01-16
NO862793L (en) 1987-01-12
EP0211779B1 (en) 1989-02-08
GR861792B (en) 1986-11-04
NO169035B (en) 1992-01-20
NO169035C (en) 1992-04-29
ATE40763T1 (en) 1989-02-15
AU6004886A (en) 1987-01-15
IE58952B1 (en) 1993-12-01
FI862902A (en) 1987-01-12
FI85923C (en) 1992-06-10
IE861851L (en) 1987-01-11
IL79385A0 (en) 1986-10-31
DK327786D0 (en) 1986-07-10
PT82958A (en) 1986-08-01
AU580177B2 (en) 1989-01-05

Similar Documents

Publication Publication Date Title
CA2259448C (en) Metal matrix compositions for neutron shielding applications
EP0380381B1 (en) Wear and corrosion resistant rod for the fuel assembly of a nuclear reactor
CA1186533A (en) Manufacturing process of aluminum and boron based composite alloys, and uses for said alloys
CN1061161C (en) Method for making nuclear fuel rod and its overlay
EP2099943B2 (en) Zirconium alloy resistant to corrosion in drop shadows for a fuel assembly component for a boiling water reactor, component produced using said alloy, fuel assembly, and use of same
JP2007533851A (en) Improved neutron absorption efficiency of boron-containing aluminum materials
EP0211779B1 (en) Nuclear-radiation absorber
CH667880A5 (en) NUCLEAR RADIATION ABSORBER.
JPH0774408B2 (en) Zirconium alloy with improved ductility for corrosion resistance
JPH10130770A (en) Use of material made of magnesium
CN118186256A (en) Aluminum gadolinium alloy material for nuclear shielding, preparation method and application thereof
EP0233426A1 (en) Austenitic stainless steel particularly suitable as a structural core material or as a cladding material in nuclear reactors
EP0258178A1 (en) Nuclear radiation absorbers
KE et al. Tc carbide and new orthorhombic Tc metal phase
RU2698309C1 (en) Aluminum-based composite material (versions) and article made therefrom
CN108179309A (en) Shielding material high strength and high conductivity Pb-Li-Sc lead lithium alloys
EP0720766A1 (en) Nuclear fuel sintered body and process for producing it
CA1168769A (en) Fuel rod for a nuclear reactor
Cohen Development and Properties of silver-base alloys as control rod materials for pressurized water reactors
JPS5850307B2 (en) Structural aluminum-based alloy with excellent neutron shielding effect
CN113913719B (en) Martensitic steel-based composite material and preparation method thereof
EP0689616B1 (en) Corrosion-proof zirconium alloys, in particular for water reactors
DE69102422T2 (en) ARC SPRAYING OF RAPIDLY COOLED ALUMINUM ALLOYS.
JPH07166280A (en) Highly corrosion resistant zirconium alloy
JPS62270742A (en) Aluminum alloy and its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870312

17Q First examination report despatched

Effective date: 19880726

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 40763

Country of ref document: AT

Date of ref document: 19890215

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3662078

Country of ref document: DE

Date of ref document: 19890316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930610

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930611

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930614

Year of fee payment: 8

Ref country code: GB

Payment date: 19930614

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930616

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930629

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930731

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930805

Year of fee payment: 8

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940709

Ref country code: GB

Effective date: 19940709

Ref country code: AT

Effective date: 19940709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940731

Ref country code: CH

Effective date: 19940731

Ref country code: BE

Effective date: 19940731

BERE Be: lapsed

Owner name: FONDERIES MONTUPET

Effective date: 19940731

EUG Se: european patent has lapsed

Ref document number: 86420187.6

Effective date: 19950210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940709

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950401

EUG Se: european patent has lapsed

Ref document number: 86420187.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050709