JPS626983B2 - - Google Patents

Info

Publication number
JPS626983B2
JPS626983B2 JP9889079A JP9889079A JPS626983B2 JP S626983 B2 JPS626983 B2 JP S626983B2 JP 9889079 A JP9889079 A JP 9889079A JP 9889079 A JP9889079 A JP 9889079A JP S626983 B2 JPS626983 B2 JP S626983B2
Authority
JP
Japan
Prior art keywords
cast iron
vibration damping
thickness
surface layer
carbon equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9889079A
Other languages
Japanese (ja)
Other versions
JPS5623247A (en
Inventor
Satoru Narutani
Noboru Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9889079A priority Critical patent/JPS5623247A/en
Publication of JPS5623247A publication Critical patent/JPS5623247A/en
Publication of JPS626983B2 publication Critical patent/JPS626983B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は振動減衰特性のすぐれた複合鋼板に係
り、特に鋳鉄に鋼板をグラツドした振動減衰特性
のすぐれた複合鋼板に関する。各種機器の動作時
に発生する振動は機器自身の構造材の疲労寿命に
悪影響を及ぼすためでなく、近年、振動騒音公害
問題の対象とされるようになり、その低減、防止
に対して強い社会的要求が喚起されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite steel plate with excellent vibration damping properties, and more particularly to a composite steel plate with excellent vibration damping properties in which a steel plate is glazed onto cast iron. The vibrations generated during the operation of various devices do not have a negative impact on the fatigue life of the structural materials of the devices themselves, but in recent years have become a subject of vibration and noise pollution problems, and there is a strong social focus on reducing and preventing them. Demand is being aroused.

従来これらの問題に対して、発生した振動、騒
音を周囲の環境から遮蔽する消極的な対策のほか
に、システム・ダンピングを含む各種の機械学的
および音響工学的手法が利用されてきた。しか
し、基本的には、振動の発生源となる機器の構造
材として、振動減衰性(以下制振性とも称する)
のすぐれた材料、すなわち制振材料を利用するい
わゆるマテリアル・ダンピングによつて、振動発
生を発生源において低減、防止する方法が非常に
有効であると言える。制振材料が適用される用途
ではその制振性は機器本来の目的からすると二次
的な性質であることが多く、まず第一に、例えば
強度等の機械的性質や加工性等が要求されるが、
これらの性質を向上させることは一般的には制振
性を低める傾向を有することが多く、この点にす
ぐれた制振材料開発の困難さがある。最近、マテ
リアル・ダンピングに対して強い関心が向けられ
ており、種々の目的に適した各種制振材料が開発
されつつある。この種の材料としてMn―Cu合金
やFe―Cr合金が一般的によく知られているが、
前者については制振性の良好な温度範囲が50〜80
℃であり、温度範囲が非常に狭いこと、又両者と
も加工によつて制振性が劣化し、しかも後者の場
合は特に著しいという難点を有する。又、有機材
料を鋼板でクラツドした複合材料もすぐれた制振
性を有することが知られているが、この材料につ
いても溶接性や加工性に問題があることが指摘さ
れている。
In the past, various mechanical and acoustic engineering methods, including system damping, have been used to address these problems, in addition to passive measures to shield the generated vibrations and noise from the surrounding environment. However, basically, as a structural material for equipment that is a source of vibration, vibration damping properties (hereinafter also referred to as vibration damping properties) are used.
It can be said that it is a very effective method to reduce and prevent vibrations from occurring at the source by using so-called material damping, which utilizes excellent materials such as vibration damping materials. In applications where vibration damping materials are applied, their damping properties are often secondary to the original purpose of the device, and first of all, mechanical properties such as strength and workability are required. However,
Improving these properties generally tends to reduce damping properties, and this is the difficulty in developing excellent damping materials. Recently, there has been a strong interest in material damping, and various damping materials suitable for various purposes are being developed. Mn-Cu alloy and Fe-Cr alloy are generally well known as this type of material, but
For the former, the temperature range for good vibration damping is 50 to 80.
℃, the temperature range is very narrow, and both have the disadvantage that the damping properties deteriorate due to processing, and the latter is particularly significant. Composite materials made of organic materials clad with steel plates are also known to have excellent vibration damping properties, but it has been pointed out that this material also has problems with weldability and workability.

かかる制振材料として、大きく発達した片状黒
鉛を多量に含む鋳鉄が大きな振動減衰能を有する
ことは古くからよく知られている。しかしこの材
料には、鋳鉄特有の強度が低くかつ、塑性加工性
が劣るため薄板材の製造ができないという欠点が
あつた。
As such a vibration damping material, it has been well known for a long time that cast iron containing a large amount of highly developed flake graphite has a large vibration damping ability. However, this material had the disadvantages that cast iron had low strength and poor plastic workability, making it impossible to manufacture thin sheets.

本発明の目的は従来の制振材料の前記欠点を解
消してすぐれた振動減衰特性すなわち制振性を有
する材料を提供しようとするものである。
An object of the present invention is to eliminate the above-mentioned drawbacks of conventional vibration damping materials and to provide a material having excellent vibration damping characteristics, that is, vibration damping properties.

本発明の要旨とするところは次の如くである。
すなわち、鋼板より成る表層部と、炭素当量=C
%+1/3Si%にて規定される炭素当量が3.0%以上で ある鋳鉄より成り前記表層部によつて挾持される
内層とから成り、前記両面の表層部厚さの全板厚
に対する板厚比がいずれも5%以上であることを
特徴とする振動減衰特性のすぐれた複合鋼板であ
る。
The gist of the present invention is as follows.
In other words, the surface layer made of steel plate and the carbon equivalent = C
% + 1/3Si% of cast iron with a carbon equivalent of 3.0% or more, and an inner layer sandwiched by the surface layer, and the plate thickness ratio of the surface layer thickness of both sides to the total plate thickness. It is a composite steel plate with excellent vibration damping characteristics, characterized in that both are 5% or more.

本発明者らは鋳鉄のすぐれた制振性を有効に利
用しつつ、かつ冷間加工によつて薄板材をも製造
可能な材料を得ることを目的として種々研究、実
験を重ねた結果、鋳鉄を普通鋼もしくは特殊鋼で
クラツドすることによつて本発明の目的を達成で
きることを見出した。
The inventors of the present invention have conducted various research and experiments with the aim of effectively utilizing the excellent vibration damping properties of cast iron, and at the same time creating a material that can be made into thin plates through cold working. It has been found that the object of the present invention can be achieved by cladding the steel with ordinary steel or special steel.

以下本発明について詳細に説明する。 The present invention will be explained in detail below.

本発明による複合鋼板を構成する材料としては
表層部に鋼板を用いる。その成分に関しては特に
規定はしないが、これら表層部材は主として内層
部の鋳鉄の加工性を補助、改善するために使用さ
れるものであり、それ自身単体材料として加工性
のすぐれたものを利用することが望ましい。複合
鋼板の全板厚に対する表層部の板厚比は加工性を
向上させるという観点からすると両面いずれも少
なくとも5%以上が必要であるが、一方余りに過
大な場合には加工性は良好となるものの中心層の
鋳鉄の制振性を有効に生かし得ない結果となるの
で、表層部、中心部の性質にも依存するが、15〜
25%の範囲にとることが望ましい。また表層部の
両面の厚さが必要により異つても差支えない。表
層部材として他の性質、例えば耐食性を得ようと
する場合には、11%以上のCrを含むステンレス
鋼を使用する等、複合鋼板として十分な加工性が
得られるならば、何らその使用を妨げるものでは
ない。本複合鋼板の制振性は内層材となる鋳鉄の
性質によつて決定されるため、使用日的に応じて
制振性の大小に密接に関係する炭素当量を適当に
選ぶ必要があるが、炭素当量=C%+1/3Siと規定 する場合、炭素当量が3.0%以上であることが必
要である。炭素当量が3.0%未満の場合には、鋳
鉄自身の制振性が低く後の冷間圧延等の処理によ
つてもその向上が余り望めないからである。従つ
て本発明では使用する鋳鉄の炭素当量の下限値を
0.3に限定した、鋳鉄の黒鉛形状は片状でも球状
であつてもよい。かくの如き鋳鉄を内層部材とし
これを挾持する鋼板を表層部とする材料を複合す
る方法は両層の接合が機械的強度の上から見て十
分な状態が得られるならば如何なる方法によつて
もよい。一例をあげれば、必要な寸法形状に鋳込
んだ鋳鉄を鋳型の中心に設置し周囲に溶鋼を鋳込
む方法や、表層部と内層部の厚さ比を所定の値に
なるように材料を機械加工した後、周囲を溶接し
て組みたてる方法でもよい。以上のようにして作
られた複合材料は中心層の鋳鉄の融点直下の温度
に加熱された後、熱間圧延される。この加熱熱間
圧延によつて両層の界面での接合が行なわれる。
用途によつてそれ程大きな制振性が必要でない場
合には熱延したままの状態でも使用できるが更に
すぐれた制振性を得ようとする場合には、熱延板
に適当な焼鈍を施し鋳鉄の基地をフエライト化し
た後所定の板厚まで冷間圧延して使用することが
推奨される。
As the material constituting the composite steel plate according to the present invention, a steel plate is used for the surface layer portion. Although there are no particular regulations regarding the composition, these surface layer members are mainly used to assist and improve the workability of the inner layer of cast iron, and materials that themselves have excellent workability as a single material are used. This is desirable. From the perspective of improving workability, the thickness ratio of the surface layer to the total thickness of a composite steel plate should be at least 5% on both sides; however, if the ratio is too large, workability will not be good. The result is that the damping properties of the cast iron in the center layer cannot be effectively utilized, so depending on the properties of the surface layer and the center,
It is desirable to keep it within the range of 25%. Further, the thickness of both surfaces of the surface layer portion may be different depending on necessity. When trying to obtain other properties as a surface member, such as corrosion resistance, stainless steel containing 11% or more of Cr should be used.If sufficient workability can be obtained as a composite steel plate, there is no hindrance to its use. It's not a thing. The vibration damping properties of this composite steel plate are determined by the properties of the cast iron that serves as the inner layer material, so it is necessary to appropriately select the carbon equivalent, which is closely related to the magnitude of vibration damping properties, depending on the usage date. When specifying carbon equivalent = C% + 1/3 Si, it is necessary that the carbon equivalent is 3.0% or more. This is because when the carbon equivalent is less than 3.0%, the vibration damping properties of the cast iron itself are low, and even after subsequent treatments such as cold rolling, it cannot be expected to improve much. Therefore, in the present invention, the lower limit of the carbon equivalent of the cast iron used is
The graphite shape of cast iron, limited to 0.3, can be flaky or spherical. The method of combining materials such as this, in which cast iron is used as an inner layer member and steel plates that hold it together as a surface layer, can be carried out by any method as long as the bond between both layers has sufficient mechanical strength. Good too. For example, cast iron cast to the required dimensions and shape is placed in the center of a mold and molten steel is poured around it, or the material is machined so that the thickness ratio of the surface layer to the inner layer is a predetermined value. After processing, the periphery may be welded and assembled. The composite material made as described above is heated to a temperature just below the melting point of the cast iron in the center layer, and then hot rolled. By this heating hot rolling, the two layers are joined at the interface.
If the application does not require a very large damping property, it can be used in the hot-rolled state, but if you want to obtain even better damping properties, the hot-rolled sheet should be appropriately annealed and cast iron can be used. It is recommended that the base be made into ferrite and then cold-rolled to a predetermined thickness before use.

実施例 1 内層部材としてC3.68%、Si2.74%、Mn0.91%
を含む球状黒鉛鋳鉄(炭素当量4.59)と表層材と
してC0.14%、Si0.21%、Mn0.99%を含む普通鋼
を用い、内層部の全板厚に対する比率が95,68,
60,47%(以下それぞれ試料A,B,C,Dと称
する)になるように機械加工、組立て、周囲の隙
間部の溶接により25mm厚の複合材料を製作した。
また比較材として同一寸法の鋳鉄および普通鋼単
体の材料も用意し、これらについて比較試験を行
つた。これらの材料を1050℃で1時間加熱した
後、3mm厚に熱間圧延し更に700℃15時間の焼鈍
を与えた後、0.6mm厚まで冷間圧延した。比較材
の鋳鉄単体材は熱間圧延の末期に顕著な割れを生
じ冷間圧延は不可能であつた。一方複合材料につ
いては試料Aは20〜30%まで冷間圧延が可能であ
り、試料B,C,Dは冷間圧延率80%の0.6mm厚
まで何ら支障なく圧延できた。これらの材料につ
いて横振動内部摩擦測定装置により、室温におけ
る内耗値Q-1を測定し、それらの制振性を評価し
た。
Example 1 Inner layer material: C3.68%, Si2.74%, Mn0.91%
Using spheroidal graphite cast iron (carbon equivalent: 4.59) and ordinary steel containing 0.14% C, 0.21% Si, and 0.99% Mn as the surface material, the ratio of the inner layer to the total plate thickness was 95, 68,
60 and 47% (hereinafter referred to as samples A, B, C, and D, respectively), a composite material with a thickness of 25 mm was manufactured by machining, assembling, and welding the surrounding gap.
In addition, cast iron and ordinary steel with the same dimensions were also prepared as comparative materials, and comparative tests were conducted on these materials. These materials were heated at 1050° C. for 1 hour, then hot rolled to a thickness of 3 mm, annealed at 700° C. for 15 hours, and then cold rolled to a thickness of 0.6 mm. The comparative cast iron single material developed significant cracks at the end of hot rolling, making cold rolling impossible. On the other hand, regarding composite materials, sample A could be cold rolled to a thickness of 20 to 30%, and samples B, C, and D could be rolled to a thickness of 0.6 mm at a cold rolling rate of 80% without any problems. The internal wear value Q -1 of these materials at room temperature was measured using a transverse vibration internal friction measuring device, and their vibration damping properties were evaluated.

内耗値Q-1とは、材料に振動を励起させた後、
自由減衰させる際の1サイクル当りの振動エネル
ギー減衰率を2π(π:円周率)で割つた値とし
て定義される。3mm厚の熱延板については試料
A,B,C,Dについて歪振幅3×10-3mmでQ-1
はそれぞれ2.0,1.0,1.0,0.8×10-3であつた。
この時普通鋼単体の表層材のみの場合は0.3×
10-3であつた。又0.6mm厚冷延板の試料B,C,
DはそれぞれQ-1は7.0×10-3、4.5×10-3、3.3×
10-3であつた。制振特性の温度依存性を調べるた
めにBの0.6mm厚冷延材について捩り振動型内部
摩擦測定装置を用い、−50〜300℃の温度範囲で測
定した結果が第1図であり、50〜80℃では9×
10-3と小さな極大を示すが0〜300℃の温度範囲
では7.0×10-3以上の値を維持することがわか
る。又、第1図では300エルステツドの磁場をか
けた場合(黒丸)と、かけない場合(白丸)を示
したが、両者で全く変化がなく磁場の影響は見ら
れないことが判明した。
The internal wear value Q -1 is the value after exciting vibrations in the material.
It is defined as the value obtained by dividing the vibration energy attenuation rate per cycle during free damping by 2π (π: pi). For samples A, B, C, and D for hot-rolled sheets with a thickness of 3 mm, Q -1 at a strain amplitude of 3 x 10 -3 mm.
were 2.0, 1.0, 1.0, and 0.8×10 -3 , respectively.
At this time, in the case of only the surface material of ordinary steel, 0.3 ×
It was 10 -3 . In addition, samples B, C, and 0.6 mm thick cold-rolled sheets
D and Q -1 are respectively 7.0×10 -3 , 4.5×10 -3 and 3.3×
It was 10 -3 . Figure 1 shows the results of measuring the temperature dependence of vibration damping characteristics on a 0.6 mm thick cold-rolled material B using a torsional vibration type internal friction measuring device in the temperature range of -50 to 300°C. 9× at ~80℃
Although it shows a small maximum of 10 -3 , it maintains a value of 7.0×10 -3 or higher in the temperature range of 0 to 300°C. In addition, Figure 1 shows the case where a magnetic field of 300 oersted is applied (black circles) and the case where it is not applied (white circles), and it was found that there was no change at all in both cases, and no influence of the magnetic field was observed.

実施例 2 C2.5〜4.5%、Si0.5〜3.0%、Mn0.3〜1.2%の組
成範囲内で炭素当量が2.7〜5.0の種々の普通鋳鉄
を全板厚に対する比率で60%となるようにC0.14
%、Si0.21%、Mn0.99%の普通鋼でクラツドした
全板厚25mm厚の複合材料を作り実施例1と同様な
方法で3mm厚の熱延板とした。これらについて横
振動内部摩擦を測定した結果は第2図に示すとお
りである。第2図より制振性の目安として0.8×
10-3以上の内耗値を得るためには炭素当量で3.0
以上にする必要があることがわかる。
Example 2 Various ordinary cast irons with a carbon equivalent of 2.7 to 5.0 within the composition range of 2.5 to 4.5% C, 0.5 to 3.0% Si, and 0.3 to 1.2% Mn have a ratio of 60% to the total plate thickness. Like C0.14
%, Si 0.21%, Mn 0.99% common steel clad with a total plate thickness of 25 mm, and in the same manner as in Example 1 was made into a 3 mm thick hot rolled plate. The results of measuring the lateral vibration internal friction for these are shown in Figure 2. From Figure 2, as a guideline for damping performance, 0.8×
3.0 in carbon equivalent to obtain an internal attrition value of 10 -3 or higher.
It turns out that you need to do more than that.

本発明は炭素当量が3.0%以上の鋳鉄と板厚比
5%以上の鋼板をクラツドし、これを圧延するこ
とによりすぐれた制振性材料を得ることができ、
今後の制振機器の開発を容易とする効果を収める
ことができた。
In the present invention, a material with excellent vibration damping properties can be obtained by cladding cast iron with a carbon equivalent of 3.0% or more and a steel plate with a plate thickness ratio of 5% or more and rolling this.
We were able to achieve the effect of facilitating the development of future vibration damping equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は球状黒鉛鋳鉄を普通鋼よりなる本発明
による制振性複合鋼板の実施例における0.6mm厚
冷延板の内耗値の温度による変化を示す相関図、
第2図は普通鋳鉄と普通鋼よりなる本発明の制振
性複合鋼板の他の実施例における3mm厚の熱延板
の炭素当量と内耗値との関係を示す相関図であ
る。
FIG. 1 is a correlation diagram showing the change in internal wear value of a 0.6 mm thick cold-rolled plate according to temperature in an example of a damping composite steel plate according to the present invention made of spheroidal graphite cast iron and ordinary steel;
FIG. 2 is a correlation diagram showing the relationship between carbon equivalent and internal wear value of a 3 mm thick hot rolled sheet in another example of the damping composite steel sheet of the present invention made of ordinary cast iron and ordinary steel.

Claims (1)

【特許請求の範囲】 1 鋼板より成る両面の表層部と、炭素当量=C
%+1/3Si%にて規定される炭素当量が3.0%以上 である鋳鉄より成り前記表層部によつて挾持され
る内層部とから成り前記両面の表層部厚さの全板
厚に対する板厚比がいずれも5%以上であること
を特徴とする振動減衰特性のすぐれた複合鋼板。
[Claims] 1 Surface layer portions on both sides made of steel plate and carbon equivalent = C
% + 1/3 S i % The plate thickness is made of cast iron with a carbon equivalent of 3.0% or more, and is composed of an inner layer portion sandwiched by the surface layer portion, and the thickness of the surface layer portion on both sides relative to the total plate thickness. A composite steel plate with excellent vibration damping properties characterized by a ratio of 5% or more.
JP9889079A 1979-08-02 1979-08-02 Composite steel plate having superior damping characteristic Granted JPS5623247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9889079A JPS5623247A (en) 1979-08-02 1979-08-02 Composite steel plate having superior damping characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9889079A JPS5623247A (en) 1979-08-02 1979-08-02 Composite steel plate having superior damping characteristic

Publications (2)

Publication Number Publication Date
JPS5623247A JPS5623247A (en) 1981-03-05
JPS626983B2 true JPS626983B2 (en) 1987-02-14

Family

ID=14231723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9889079A Granted JPS5623247A (en) 1979-08-02 1979-08-02 Composite steel plate having superior damping characteristic

Country Status (1)

Country Link
JP (1) JPS5623247A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164531A (en) * 1986-01-17 1987-07-21 株式会社日本製鋼所 Clad plate using cast iron as core material
JPS62297450A (en) * 1986-06-18 1987-12-24 Tohoku Metal Ind Ltd Composite high damping material
CN104999728B (en) * 2015-07-02 2017-10-03 西安工程大学 The board-like composite of rich chromium cast iron mild steel bimetallic and its manufacture method

Also Published As

Publication number Publication date
JPS5623247A (en) 1981-03-05

Similar Documents

Publication Publication Date Title
JP5655295B2 (en) Low carbon steel sheet and method for producing the same
WO2008078472A1 (en) Iron-based composite material and method for production of iron-based composite material
JPS626983B2 (en)
JP2002294408A (en) Iron-based vibration damping alloy and manufacturing method therefor
JP4998672B2 (en) Manufacturing method of damping alloy sheet
JP5671871B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
US3837844A (en) Wear resisting magnetic material having high permeability
EP1220243B1 (en) Low-noise transformer
JPH05255814A (en) Stainless steel thin sheet excellent in damping capacity and its manufacture
US4009025A (en) Low permeability, nonmagnetic alloy steel
JP3314646B2 (en) Nickel steel sheet for arc welding with low residual magnetism and method for producing the same
JPS62164531A (en) Clad plate using cast iron as core material
JPS6053112B2 (en) anti-vibration alloy
JPS60254678A (en) Torque detector
JPH07100987A (en) Damping metal pipe
JP3024525B2 (en) Surface metal plate and sound damping structural member for reducing sound wave reflectance
JP2017145432A (en) Magnetic steel sheet for inverter power supply reactor iron core, and manufacturing method thereof
JPH1068018A (en) Production of fire resistant steel sheet for structural purpose excellent in welding heat affected zone toughness
JP2005120405A (en) Grain oriented silicon steel sheet for lamination type iron core
JPH02240240A (en) Diaphragm spring of clutch for automobile use
JPS59104284A (en) Non-magnetic clad steel
KR100430967B1 (en) Fe-Mn Damping alloy having a good corrosion resistant and weather proof property
JPS6112821A (en) Manufacture of vibration damping steel sheet