JPS6267729A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS6267729A
JPS6267729A JP20937885A JP20937885A JPS6267729A JP S6267729 A JPS6267729 A JP S6267729A JP 20937885 A JP20937885 A JP 20937885A JP 20937885 A JP20937885 A JP 20937885A JP S6267729 A JPS6267729 A JP S6267729A
Authority
JP
Japan
Prior art keywords
film
thin film
substrate
sputtering
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20937885A
Other languages
Japanese (ja)
Other versions
JPH0555930B2 (en
Inventor
Takao Nakatsuka
中塚 能男
Minoru Kume
久米 実
Daisuke Kishimoto
岸本 大助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20937885A priority Critical patent/JPS6267729A/en
Priority to US06/864,357 priority patent/US4767516A/en
Priority to DE8686106807T priority patent/DE3682942D1/en
Priority to EP86106807A priority patent/EP0202645B1/en
Publication of JPS6267729A publication Critical patent/JPS6267729A/en
Publication of JPH0555930B2 publication Critical patent/JPH0555930B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To form a vertical magnetic film having high performance by depositing a sputtered ferromagnetic metal on the 1st thin film while maintaining a non-magnetic substrate at a relatively low temp. and epitaxially growing and forming the 2nd thin film thereon. CONSTITUTION:The thin film which has high coercive force and permits the epitaxial crystal growth of the sputtering particles to be deposited at a low temp. on the 1st thin film is formed on said thin film by executing sputtering at the substrate temp. T1 or above in the stage of forming the 1st thin film on the film substrate 1 consisting of PET, etc. having low heat resistance. The ferromagnetic metal is thereafter sputtered on the 1st thin film at the substrate temp. T2 having the relation substrate temp. T2<T1 (T2 is considerably lower than the m.p. of the substrate) and is subjected to the epitaxial crystal growth to form the 2nd thin film. The thermal damage of the substrate is thereby eliminated and the vertically magnetized film having the high performance is formed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、1産化に適したスパッタ法による垂直磁気記
録媒体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method of manufacturing a perpendicular magnetic recording medium by sputtering, which is suitable for one-time production.

(ロ)従来の技術 第9図に示すようKCo−Cr、 Co−Cr −Rh
などの強磁性金属の垂直磁化膜(2)を非磁性基板(1
j上にスパッタ形成して得られる垂直磁気記録媒体は、
残留磁束密度が大きく高密度記録に適している。
(b) Conventional technology As shown in Fig. 9, KCo-Cr, Co-Cr-Rh
A perpendicularly magnetized film (2) of ferromagnetic metal such as
The perpendicular magnetic recording medium obtained by sputtering on the
It has a large residual magnetic flux density and is suitable for high-density recording.

例えば、PET、ポリアミド、ポリイミドなどのプラス
チックフィルム等の非磁性基板上に、Co−Crなどの
磁化膜を高速スパッタ形成する方法として対向ターゲッ
ト式スパッタ法、マグネトロン式スパッタ法を応用する
ことが提案されている。(雑誌「応用物理第48巻第6
Ji+第557〜561頁「新しいスパッタ膜形成技術
の動向」)第10図は一般的な対向ターゲット式スパッ
タ法を利用した磁気テープ製造装置の概略図である。
For example, it has been proposed to apply facing target sputtering and magnetron sputtering as a method for forming a magnetized film such as Co-Cr on a non-magnetic substrate such as a plastic film such as PET, polyamide, or polyimide by high-speed sputtering. ing. (Magazine “Applied Physics Vol. 48 No. 6
Ji+, pages 557 to 561, "Trends in New Sputter Film Forming Technology") FIG. 10 is a schematic diagram of a magnetic tape manufacturing apparatus using a general facing target sputtering method.

この装置において、まず真空槽を十分排気した後、Ar
ガスを導入し、スパッタ電源(4)によりターゲット(
15)(5)′(例えばCo−Cr合金板)に負の高電
圧を印加するとArガスがイオン化してプラズマ放電が
起る。この正に帯電したArイオンが前記ターゲットに
衝突すると、ターゲット表面の粒子がスパッタされてキ
ャンローラ(6)によって定速移送される非磁性基板(
lj上にCo−Crなどの磁化膜か形成される。そして
キャンローラ(6)の局面の一部をキャンマスク(9)
で被覆し、キャンローラ(6)に縮開案内される非磁性
基板(1)に対するスパッタ金属の入射角度を規制する
と、基板上に垂直磁化膜が形成される。
In this device, first, the vacuum chamber is sufficiently evacuated, and then Ar
Gas is introduced and the target (
15) When a high negative voltage is applied to (5)' (for example, a Co-Cr alloy plate), Ar gas is ionized and plasma discharge occurs. When these positively charged Ar ions collide with the target, particles on the target surface are sputtered and the non-magnetic substrate (
A magnetized film of Co--Cr or the like is formed on lj. And part of the phase of the can roller (6) can be masked (9)
When the angle of incidence of the sputtered metal on the non-magnetic substrate (1), which is coated with and guided by a can roller (6) to be contracted and retracted, is controlled, a perpendicularly magnetized film is formed on the substrate.

第10図において、())は供給ローラ、(8)は巻取
ローラ、101(+01 I/i7”ラズマ収束用の磁
石を示す。
In FIG. 10, () indicates a supply roller, (8) indicates a take-up roller, and 101 (+01 I/i7'' magnet for lasma convergence).

非磁性基板+11上に堆積するスパッタ粒子の初期入射
角θiを一定値以下に制限することは、高性能な垂直磁
化膜を形成する上で不可欠である。
Limiting the initial incident angle θi of sputtered particles deposited on the nonmagnetic substrate +11 to a certain value or less is essential for forming a high-performance perpendicularly magnetized film.

一方、初期入射角θiを小さくすると、スパッタ金属(
粒子)の非磁性基板上への堆積率が悪くなり、量産効率
が著しく低下するという問題を桟す。
On the other hand, if the initial incident angle θi is made small, the sputtered metal (
This poses a problem in that the rate of deposition of particles (particles) on the non-magnetic substrate deteriorates, resulting in a significant drop in mass production efficiency.

またキャンローラ(6)を加熱して非磁性基板+13’
に高温に保持することはその上に高保磁力を持つ垂直磁
化膜を形成する上で不可欠である。
In addition, the can roller (6) is heated and the non-magnetic substrate +13'
Maintaining the temperature at a high temperature is essential for forming a perpendicularly magnetized film with high coercive force thereon.

一方非磁性基板温度を一定温度以上に加熱させることは
、PETフィルム等、耐熱性の低い基板等への熱損傷を
発生させ、またポリアミド、ポリイミドフィルム等の1
耐熱性を有する基板の場合でも磁化膜形成中に基板自身
のしわを生じさせ垂直磁化膜の形成を困難にするという
問題を残すことになる。
On the other hand, heating the non-magnetic substrate above a certain temperature may cause thermal damage to substrates with low heat resistance such as PET film, and may cause heat damage to substrates with low heat resistance such as PET film.
Even in the case of a heat-resistant substrate, there remains the problem that the substrate itself wrinkles during formation of a magnetized film, making it difficult to form a perpendicularly magnetized film.

(ハ)発明が解決しようとする問題点 本発明はスパッタ中の非磁性基板温度の上昇による熱損
傷及びしわの発生を防ぐことにより、高性能な垂U!磁
気記録謀体を量産性よく製造するための方法を提供する
ものである。
(c) Problems to be Solved by the Invention The present invention provides a high-performance vertical U! The present invention provides a method for mass-producing magnetic recording bodies with good efficiency.

に)問題点を解決するための手段 定速移送される非磁性基板を比較的高i!in(T t
℃以上)K保ち、その上にCo−Cr等の強磁性金属を
スパッタ法により被着して少くとも7006e以上の高
保磁力を呈し後の工程でその上に被着するスパッタ粒子
のエピタキシャルな結晶成長を可能とする第1薄膜を形
成すると共に、前記第1薄膜上にスパッタされた強磁性
金属を上記非磁性基板の温度を比較的低温(T1℃以下
、但しT2くT1)に保ち乍ら被着せしめ第2薄膜をエ
ピタキシャルに成長形成する   、       −
〜 (ホ)作 用 PET等の耐熱性の低いフィルム基板上に第1薄膜を形
成する際に、基板温度11以上でスパッタリングすると
とくよシ、高保磁力でその上に後の工程で低温で被着す
るスパッタ粒子のエピタキシャルな結晶成長を可能とす
る薄膜を形成する。
) Means for solving the problem A non-magnetic substrate that is transferred at a constant speed is transported at a relatively high i! in(T t
℃ or higher), and a ferromagnetic metal such as Co-Cr is deposited on it by sputtering, exhibiting a high coercive force of at least 7006e, and epitaxial crystals of sputtered particles deposited on it in a later process. While forming a first thin film that enables growth, the ferromagnetic metal sputtered on the first thin film is kept at a relatively low temperature (T1° C. or lower, however, T2 - T1) of the nonmagnetic substrate. epitaxially growing a second thin film; -
~ (E) Effect When forming the first thin film on a film substrate with low heat resistance such as PET, sputtering at a substrate temperature of 11 or higher will cause the film to be deposited on top of it at a low temperature in a later process due to its high coercive force. A thin film is formed that enables epitaxial crystal growth of sputtered particles.

その後基板温度T2 <Tl (T2は基板の融点に比
して著しく低い)の関係にある基板温度T2で第1薄膜
上に強磁性金属をスパッタリングしエビタキシャ〃に結
晶成長させて第2薄膜を形成させると基板の熱損傷を無
くし、高性能な垂直磁化膜が形成される。
Thereafter, a ferromagnetic metal is sputtered onto the first thin film at a substrate temperature T2 in the relationship of substrate temperature T2 < Tl (T2 is significantly lower than the melting point of the substrate), and crystals are grown in an epitaxial manner to form a second thin film. This eliminates thermal damage to the substrate and forms a high-performance perpendicularly magnetized film.

(へ)実施例 本発明の基礎となる実験 (1)第10図の対向ターゲット式スパッタ装置を用い
て、ポリイミドフィルムベース上にCo−Crをスパッ
タリングする際に、初期入射角θiとフィルムベース上
に形成されたCo−Cr膜の残留磁化比MV/MHとの
関係を測定した。第2図は、測定結果を初期入射角θi
を横軸に、残留磁化比MV/MHを縦軸にとって表わし
たものである。
(f) Examples Experiments that form the basis of the present invention (1) When sputtering Co-Cr onto a polyimide film base using the facing target sputtering apparatus shown in Fig. 10, the initial incident angle θi and the The relationship between the residual magnetization ratio MV/MH of the Co--Cr film formed in the above was measured. Figure 2 shows the measurement results at the initial incident angle θi
The horizontal axis represents the residual magnetization ratio MV/MH, and the vertical axis represents the residual magnetization ratio MV/MH.

この図から明らかなように初期入射角θiが小さい程、
Co−Cr膜の残留磁化比MY/MHが大きくなる。M
 V/M Hが1以上であることが垂直磁化膜の条件で
あるから、第2図から明らかな様に、Co−Cr垂直磁
化膜を得るには初期入射角θiを15°以内に制限する
必要があることが分る。
As is clear from this figure, the smaller the initial incident angle θi, the
The residual magnetization ratio MY/MH of the Co--Cr film increases. M
Since the condition for a perpendicularly magnetized film is that V/M H is 1 or more, as is clear from Figure 2, to obtain a Co-Cr perpendicularly magnetized film, the initial incident angle θi is limited to within 15°. I understand that it is necessary.

(2)同様に、第10図の装置を用いて、ポリイミドフ
ィルムベース上K、Co−Crをスパッタリングする際
に、初期入射角θiとフィルムベース上に形成されるC
o−Cr膜の堆積効率の関係を測定した。第3図に初期
入射角θi(横軸)とCo−Cr膜の堆積効率(縦軸)
との関係を示す。
(2) Similarly, when sputtering K and Co-Cr on a polyimide film base using the apparatus shown in FIG. 10, the initial incident angle θi and the C formed on the film base are
The relationship between the deposition efficiency of the o-Cr film was measured. Figure 3 shows the initial incident angle θi (horizontal axis) and Co-Cr film deposition efficiency (vertical axis).
Indicates the relationship between

第10図のスパッタ装置の構造上、初期入射角θ1=4
5はキャンマスク(9)を取外した状態と同等である。
Due to the structure of the sputtering equipment shown in Figure 10, the initial incident angle θ1 = 4
5 is equivalent to the state in which the can mask (9) is removed.

ここではキャンプ2、り(9)を取外したときの堆積効
率を1として規格化した。この図から分るように初期入
射角θ1=15  (即ちMY/MH=1 )のとき堆
積効率は0.7となる。MV/MHが1.5以上の更に
高性能なCo −Cr垂直磁化膜(MV/MHが大きい
程、高記鐘密度に適する)を得るためには、@2図から
初期入射角θiを5以内に制限する必要があるが、この
とき堆積効率は0.5以下に低下する。
Here, the deposition efficiency when Camp 2 and Ri (9) were removed was standardized as 1. As can be seen from this figure, when the initial incident angle θ1=15 (ie, MY/MH=1), the deposition efficiency is 0.7. In order to obtain a higher performance Co-Cr perpendicular magnetization film with MV/MH of 1.5 or more (the larger the MV/MH is, the more suitable it is for high magnetization density), the initial incident angle θi is set to 5 from Figure @2. However, in this case, the deposition efficiency decreases to 0.5 or less.

前述の2つの実験++1(21から、高速ス/(ツタ法
により高性能な垂直磁化膜を移動する非磁性基板上に形
成するには、スパッタ粒子の初期入射角θiを小さくす
る必要があり、その結果スノくツタ粒子の堆積効率が低
下するという背反する要因があることが判った。
From the above two experiments ++1 (21), in order to form a high-performance perpendicularly magnetized film on a moving non-magnetic substrate by the high-speed sputtering method, it is necessary to reduce the initial incident angle θi of the sputtered particles. As a result, it was found that there is a contradictory factor that reduces the deposition efficiency of the snow ivy particles.

(3)上述の実験結果に基づいて、本発明者等はポリイ
ミドフィルムベース上に(o−Crをスノ(ツタリング
被着させる際に、第1薄膜@1)(!4図)を小さい初
期入射角でスパッタリング被着せしめ、垂直対水平残留
磁化比が1以上でエピタキシャルな結晶成長を可能とす
る第1薄暎を形成し、その(て 上θ2≫θ1 の角度で第2薄膜(22【第4図]をΔ スパッタリング被着させれば垂直対水平残留磁化比が1
以上の薄膜が効率よく形成されるので1r!ないかとい
う予測を基に、初期入射角θi=5 でCo−Cr膜の
第1薄膜りυを種々の膜厚で形成し、更にその上に初期
入射角θi−45−でCo−Cr膜の第2薄膜□□□を
全厚tが0.3声mになるように形成したときの第14
膜の膜厚と全Mica−Cr膜の残留磁化比M V/M
 Hとの関係を求めた。第5図は、第14膜圓の厚み′
lt横軸、垂直対水平残留磁化比M V / M Hを
縦軸にとり、実験(3)の結果を示すものである。
(3) Based on the above experimental results, the present inventors deposited the first thin film @ 1 (Fig. 4) at a small initial incidence when depositing (o-Cr) on the polyimide film base. A first thin film is deposited by sputtering at a corner to form a first thin film with a vertical to horizontal residual magnetization ratio of 1 or more and which enables epitaxial crystal growth. If Δ sputtering is applied to [Fig. 4], the vertical to horizontal residual magnetization ratio will be 1.
The above thin film is formed efficiently, so 1r! Based on the prediction, a first thin film υ of Co-Cr film was formed with various thicknesses at an initial incident angle θi=5, and then a Co-Cr film was further formed on top of it at an initial incident angle θi-45-. 14th when the second thin film □□□ is formed so that the total thickness t is 0.3 m
Film thickness and residual magnetization ratio of all Mica-Cr films M V/M
I sought a relationship with H. Figure 5 shows the thickness of the 14th membrane circle'
The results of experiment (3) are shown with the abscissa axis and the vertical-to-horizontal remanent magnetization ratio M V /M H as the ordinate axis.

この図からM V/M Hが1以上のCo−Cr膜を得
るには第1薄膜の膜厚を0.07μm以上にすればよい
ことが分る。第1薄膜の膜厚が0.1μm以上でMV/
MI(が最大値1.5になる。このように第1薄膜を初
期入射角θiを十分小さくして形成すれば結晶粒子が膜
面に垂直に成長し易くなり更にその上に第2N膜を初期
入射角θiを極力大きくして形成しても、第2薄膜の膜
は第1薄膜の上にエビタクシャルに、結晶成長する念め
、第2薄膜も垂直配向性のよい結晶粒子層上なり、その
結果残留磁化比MV/MHの大きい膜を得ることができ
る。従って、第24膜を高い堆積効率で形成することが
できるので高性能な垂直磁気記録媒体の最産性が向上す
る。
From this figure, it can be seen that in order to obtain a Co--Cr film with M V/M H of 1 or more, the thickness of the first thin film should be 0.07 μm or more. When the thickness of the first thin film is 0.1 μm or more, MV/
MI ( has a maximum value of 1.5. If the first thin film is formed with a sufficiently small initial incident angle θi in this way, the crystal grains will easily grow perpendicular to the film surface, and the second N film will be formed on top of it. Even if the initial incident angle θi is made as large as possible, the second thin film is kept on top of the crystal grain layer with good vertical orientation, in order to ensure that the second thin film will grow epitaxially on top of the first thin film. As a result, a film with a large remanent magnetization ratio MV/MH can be obtained.Therefore, the 24th film can be formed with high deposition efficiency, improving the productivity of high-performance perpendicular magnetic recording media.

(4)・第10図の対向ターゲット式スパッタ装置を用
いて、ポリイミドフィルムベース上にCo−Crtスパ
ッタリングする際に、フィルム基板温度とフィルム基板
上【形成されたC o −Cr膜の垂直方向保磁力Hc
よの関係を測定した。第6図は、測定結果を基板温度を
横軸に垂直方向保磁力を縦軸にとって表わしたものであ
る。
(4) When performing Co-Crt sputtering on a polyimide film base using the facing target sputtering apparatus shown in Fig. 10, the film substrate temperature and the vertical direction maintenance of the formed Co-Cr film on the film substrate Magnetic force Hc
We measured the relationship between FIG. 6 shows the measurement results with the substrate temperature on the horizontal axis and the vertical coercive force on the vertical axis.

この図から明らかな様に基板温度Tsが高い程Co−C
r模の垂直方向保磁力HCLが高くなる。
As is clear from this figure, the higher the substrate temperature Ts, the more Co-C
The vertical coercive force HCL of r model increases.

リングヘッドによる垂f亘磁気記録では少なくとも垂直
方向保磁力Hc上が7000 e以上、好ましくけ10
000e程度の膜が必要であるから、第6図から明らか
な様に、Co−Cr垂直磁化膜を得るには基板温度を少
なくとも100°C以上好ましくは110〜120℃程
度(でする必要がある。
In vertical magnetic recording using a ring head, the perpendicular coercive force Hc is at least 7000 e or more, preferably 10
Since a film of about 000e is required, as is clear from FIG. .

この様な実験結果から明らかな如く、高速スパック法に
より高性能な非直磁化妬を移動する非磁性基板上に形成
するには、基板温Jにを高くする必要があるが、高エネ
ルギーのスパッタ粒子の堆積により基板温度が更に上昇
するためPETフィルム等の耐熱性の低い基板上には膜
形成が困難になる。
As is clear from these experimental results, in order to form high-performance non-direct magnetization on a moving non-magnetic substrate by the high-speed spacking method, it is necessary to raise the substrate temperature, but high-energy sputtering is Since the substrate temperature further increases due to the deposition of particles, it becomes difficult to form a film on a substrate with low heat resistance such as a PET film.

実験に依ればPETフィルムに熱損傷、しわ発生なく、
膜厚0.3μmを膜形成できる基板温度は70℃以下で
あることが確認された。
According to experiments, there was no heat damage or wrinkles on the PET film.
It was confirmed that the substrate temperature at which a film with a thickness of 0.3 μm could be formed was 70° C. or lower.

(6)上述の実験結果に基づいて本発明者らは、PET
フィルムベース上1cco−(rをスパッタリング被着
させる際に第1薄膜2υ(第4図)を高い基板温度Tl
で膜厚を薄くしてスパッタリング被着せしめ、高垂直方
向保磁力でエピタキシャルな結晶成長可能とする第1薄
膜を形成し、その上KT1よりも低温の基板温度T2で
第2薄膜n<第4図)をスパッタリング被着させれば高
垂直方向保磁力の薄膜が形成されるのではないかという
予測を基に、基板温度Tsfl)=120℃でCo−C
r膜の第1薄膜ンりを種凌の膜厚で形成し更にその上に
第2薄膜翰を基板温度60℃、全厚 が0.3μmにな
るように形成したときの第1N膜の膜厚と全層Co−C
r膜の垂直方向保磁力HCIの関係を求めた、第7図は
第1薄膜圓の膜厚を横軸、垂直方向保磁力HCJLを縦
軸にとって示し九ものである。
(6) Based on the above experimental results, the present inventors discovered that PET
When depositing 1cco-(r) on the film base by sputtering, the first thin film 2υ (Fig. 4) is heated to a high substrate temperature Tl.
The first thin film is deposited by sputtering with a thin film thickness, which enables epitaxial crystal growth with a high perpendicular coercive force, and the second thin film n < 4th film is formed at a substrate temperature T2 lower than KT1. Co-C
The film of the first N film when the first thin film of the R film is formed to a thickness of about 100 ml, and the second thin film is further formed on top of it at a substrate temperature of 60° C. and a total thickness of 0.3 μm. Thickness and full thickness Co-C
The relationship between the vertical coercive force HCI of the r film is shown in FIG. 7, where the thickness of the first thin film circle is plotted on the horizontal axis and the vertical coercive force HCJL is plotted on the vertical axis.

この図からHc−L(垂直方向の保磁力)が10000
ea度のGo−Cr膜を得るには第1薄暎のII/J1
!lを0.02μm以上にすればよいことがわかる0 次に基板8度T1=120℃でCo−Cr膜の第1f4
嘆シl)を杉成し、くにその上に第2薄膜固を種々の基
板lPA度T2で全厚が0.3μmになる様に形成した
ときの第2/l漢の基板温度T2と全層Co−Cr膜の
垂直方向保磁力Hc↓の関係を求めた。
From this figure, Hc-L (vertical coercive force) is 10000
To obtain a Go-Cr film of ea degree, the first thin layer II/J1 is used.
! It can be seen that it is sufficient to set l to 0.02 μm or more.0 Next, the first f4 of the Co-Cr film is formed at the substrate 8 degrees T1 = 120°C.
The substrate temperature T2 and the total thickness of the second thin film were formed on the substrate with a total thickness of 0.3 μm at various substrate temperature T2. The relationship between the vertical coercive force Hc↓ of the Co--Cr film was determined.

第8図は、第2薄114!(支)の基板温度T S (
2+を横軸、垂・電方向保磁力HcJ−を縦軸にとって
示したものである。
Figure 8 shows the second thin 114! Substrate temperature T S (support)
2+ is shown on the horizontal axis and the perpendicular/electrical coercive force HcJ- is shown on the vertical axis.

この図からHcJ−が7000e以上のCo−Cr膜を
得るには第2薄膜の基Vi温度T s +2)を40℃
以上にすればよいことがわかる。
From this figure, in order to obtain a Co-Cr film with HcJ- of 7000e or more, the base Vi temperature T s +2) of the second thin film must be set at 40°C.
It turns out that you can do the above.

上述の実験により、第14漢形成時の基板温度を120
℃、膜厚を0.02μm以上とし、$2/1膜の基板a
jFをso’c、全厚を0.3μmとすれば垂直方向保
磁力HcJ−が10000e程度となる。
According to the above experiment, the substrate temperature at the time of forming the 14th layer was set to 120℃.
℃, film thickness is 0.02 μm or more, $2/1 film substrate a
If jF is so'c and the total thickness is 0.3 μm, the perpendicular coercive force HcJ- will be about 10,000e.

この様に第1薄膜を基板温度を十分高くして極薄く形成
すれば第2薄膜基板温度を低くしても第24膜は第1薄
膜の上にエビタキシャ〃に結晶成長するため第2薄膜に
おいて高垂直方向保磁力の膜を得ることができる。
In this way, if the first thin film is made extremely thin by raising the substrate temperature sufficiently, even if the second thin film substrate temperature is lowered, the 24th film will crystallize on top of the first thin film in an epitaxy manner, so that the second thin film will not be affected by the second thin film. A film with high perpendicular coercive force can be obtained.

第1薄膜は極薄いため、高エネルギーのスパッタ粒子の
堆積による基板温度の上昇が低く、従ってPET等耐熱
性の低いフィルム上にも基板熱損傷無く膜形成すること
ができる。
Since the first thin film is extremely thin, the rise in substrate temperature due to deposition of high-energy sputtered particles is low, and therefore the film can be formed even on films with low heat resistance such as PET without damaging the substrate due to heat.

製造装置 第1図は、本発明の製造方法を実施する之めの装置の一
実施例を示すものである。この装置は基本的に対向ター
ゲット方式のスパッタリング装置を採用している。
Manufacturing Apparatus FIG. 1 shows an embodiment of an apparatus for carrying out the manufacturing method of the present invention. This apparatus basically employs a facing target type sputtering apparatus.

この装置では、真空4(3)の中央にそれぞれ背面にプ
ラズマ集束用の永久磁石no+ ttofを備えるCo
−Crの対向ターゲラ) +51+51’ft2し、そ
の左右の開口に而して一対のキャンローラr61ief
を配置している。前記各キャンローラの局面を纒周して
移送されるPET(daポリイミド)フイ〃ム11)は
供給ローA/ 171−キャンローラ(6)−案内ロー
ル(川(11)(川(川−・キャンロール+ef−巻取
ロール(8)の径路で略定速で移送される。
In this device, a Co
-Cr facing target roller)
are placed. The PET (da polyimide) film 11) which is wrapped around the surface of each can roller and transferred is fed to the supply row A/171 - can roller (6) - guide roll (river (11) (river (river)). It is transported at a substantially constant speed along the path of can roll + ef - take-up roll (8).

キャンローラ!61 (6どの局面に沿って案内される
PETフィルム(11は、いずれも同じ面がスパッタリ
ング装置(S)の開口側に面する様に案内される3両キ
ャンロール(61!61’へのスパッタ粒子の入射角及
び膜堆積速度は水冷式のキャンマスク、91 :9どに
より調整することが出来る。実施例では、供給ローA/
 (T)側のキャンマスク(9)の初期入射角θi (
a)を5に設定し、巻取りローラ(8)側のキャンマス
ク;9)′の初期入射角θi (b)を45に設定した
Canrolla! 61 (6 Which side of the PET film is guided (11 is a 3-car can roll guided so that the same side faces the opening side of the sputtering device (S) The incident angle of particles and the film deposition rate can be adjusted using a water-cooled can mask, 91:9, etc. In the embodiment, the supply row A/
(T) side can mask (9) initial incident angle θi (
a) was set to 5, and the initial incident angle θi (b) of the can mask; 9)' on the winding roller (8) side was set to 45.

上記PETフィルム(非磁性基板)の温度は前記両キャ
ンローA/ +61 +6どをロールに内蔵するヒータ
等によって加熱しロール温度を調整することにより任意
に設定することが出来る。この実施例では、供給ロー/
L/1711tllIのキャンローラ(6)に巻付けら
れその上に第1薄模が形成されるPETフィルム(1)
の温度を120℃に設定し、巻取ローラαa側のキャン
ローラ(6)′に巻付られその上に第2薄模が形成され
るPETフィルムmの温度を60℃に設定した。
The temperature of the PET film (non-magnetic substrate) can be arbitrarily set by heating both the can rows A/+61 and +6 with a heater built into the roll and adjusting the roll temperature. In this example, the supply row/
PET film (1) wrapped around L/1711tllI can roller (6) and on which the first thin pattern is formed
The temperature of the PET film m, which was wound around the can roller (6)' on the winding roller αa side and on which the second thin pattern was formed, was set at 60°C.

この様な構成で、まず、真空槽内11XIOTorrに
排気した停、Arガスと導入して2X10−8Torr
 とし、PETフィルムを、15cm/minの送り速
度で移動させながら、スパッタ電力密度10w/am2
でCo−Cr膜を形成すると膜厚0.3μm垂直方向保
磁力Hc上が10000eの良好な垂直磁化膜を、PE
Tフィルム上に熱損傷なくかつしわ発生もなく形成する
ことができな。
With this configuration, first, the vacuum chamber was evacuated to 11XIO Torr, and then Ar gas was introduced and the temperature was increased to 2X10-8 Torr.
While moving the PET film at a feed speed of 15 cm/min, the sputtering power density was 10 w/am2.
When a Co-Cr film is formed with a film thickness of 0.3 μm and a good perpendicular magnetization film with a perpendicular coercive force Hc of 10000e, PE
It cannot be formed on the T film without thermal damage and without wrinkles.

発明者等の実験に依れば高性能なCo−Cr垂直磁気記
録謀媒体PETフィルム等の1#熱性の無い基板上でも
製造し得ることが確認できた。
According to experiments conducted by the inventors, it has been confirmed that a high-performance Co--Cr perpendicular magnetic recording medium can be manufactured even on a 1# non-thermal substrate such as PET film.

上記実施例では対向ターゲット式スパッタ法でデラスチ
ックフイ〃ム上にCo−Cr膜を形成する場合について
述べたが、本発明はこれに限定するものでなく、マグネ
トロン式スパッタ法でも、C0−Cr3以外のCo −
Cr −Rh等の垂直磁化、嘆でも同様の効果が得られ
ることが判った。
Although the above embodiment describes the case where a Co-Cr film is formed on a plastic film by facing target sputtering, the present invention is not limited to this, and magnetron sputtering can also be used to form a Co-Cr3 Co − other than
It has been found that similar effects can be obtained with perpendicular magnetization such as Cr-Rh.

上記実施例では、対向ターゲット式スパッタ決でプラス
チックフィ゛yム上にCo−Cr膜を形成する場合につ
いて述べたが、本発明はこれに限定するものではなく、
マグネトロン式スパッタ法でも、Co−Cr膜以外のC
o−Cr−Rh等の垂直磁化膜でも同様の効果が得られ
る。
In the above embodiment, a case was described in which a Co--Cr film was formed on a plastic film by facing target sputtering, but the present invention is not limited to this.
Even with the magnetron sputtering method, carbon other than Co-Cr film
A similar effect can be obtained with a perpendicularly magnetized film such as o-Cr-Rh.

尚上述の実施例では垂直磁気記鐙媒体の製法を例にとっ
て説明したが、本発明はこれに限定されるものでなくそ
の場合スパッタリングの入射角θlを絞り込む必要はな
い。
Although the above-mentioned embodiment has been explained by taking as an example a method for manufacturing a perpendicular magnetic stirrup medium, the present invention is not limited thereto, and in that case, it is not necessary to narrow down the incident angle θl of sputtering.

本発明を垂直磁気記録媒体の製法に応用する場合にはス
パッタリングする強磁性金属の堆積効率を向上するため
に第1薄膜形成時の入射角σ!分絞り、第2薄膜形成時
の入射角θ2を出来るだけ開放することが望ましい。
When the present invention is applied to a method for manufacturing perpendicular magnetic recording media, the incident angle σ! at the time of forming the first thin film is required to improve the deposition efficiency of the ferromagnetic metal to be sputtered. It is desirable to open the incident angle θ2 as much as possible when forming the second thin film.

(ト)  発明の効果 本発明によれば、PET等の#熱性の低いフィルム基板
上に高保磁力の磁性層を能率よく形成出来、特に、垂直
対水平残留磁化率の高い高性能な垂直磁気記録媒体の量
産効率の良い製造法を提供することができる。
(G) Effects of the Invention According to the present invention, a magnetic layer with high coercive force can be efficiently formed on a film substrate with low thermal properties such as PET, and in particular, high-performance perpendicular magnetic recording with high vertical to horizontal residual magnetic susceptibility can be achieved. It is possible to provide a manufacturing method that is efficient in mass production of media.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第8図は本発明に係り、第1図は製造装置の
概略図、第2図は初期入射角θi対C0−Cr膜の残留
磁化比の関係を示す図、第3図は初期入射角θi対Co
−Cr膜の堆債効率比の間流を示′t″図、!!4図I
i磁気媒体の部分断面図、第5図はCo−Crの第1薄
膜厚対G o −Cr dcJl、f#膜膜部第2薄膜
のM v / M Hの関係を示す図、第6図は基板温
度対保持磁力Hcの関係を示す図、第7図はCo−Cr
(第1薄膜の膜厚)対C。 −Cr(第1薄膜十第2薄膜)の保磁力の関係を示f図
、第8図は@2薄膜の基板温度対Co−Cr喚の保磁力
の関係を示す図である。 第9図及び第10図は従来例に係り、第9図は磁気記録
媒体の部分断面図、第10図は製造装置の概略図である
。 (1)・・・PETフィルム、[) +6+・・・ギャ
シローラ、(6)(5)・・・対向ターゲラ)、(T1
・・・供給ローラ、H・・・巻取ロー 7 、i9)・
・キャンマスク。 第1図 第5図 (λ) 冨111(Co−Cr)al!!厚(μm)第6図 第7図 ↑ Co−Cr5J1t Nl d Tg−6(pm)第8
図 121#co(:4’f濫7t Ts+2+(’C)第
和図 手  続  補  正  書(自発) 昭和60年10月31日 1、事件の表示 昭和60年特許願第209578  号2、発明の名称 磁気記録媒体の製造方法 3、補正をする者 事件との関係 特 許 出 願 人 名体 (188)三洋電機株式会社 4、代 理 人 住所 守口市京阪本通2丁目18番地 予、′I 〔倶、1 。 5、補正の対象 明細書の「発明の詳細な説明」の欄。 6、補正の内容 O明細書第9頁第9行目中、「0.07μm以、辷」を
[0゜02μmll上」と訂正する。 O同第9頁第10行目中、rO,1pm以上」を「0.
05メLm以上」と訂正する。 O明細書第12頁第20行口中、「50℃」を「60℃
」と訂正する。 以上
1 to 8 relate to the present invention, FIG. 1 is a schematic diagram of the manufacturing apparatus, FIG. 2 is a diagram showing the relationship between the initial incident angle θi and the residual magnetization ratio of the C0-Cr film, and FIG. Initial incidence angle θi vs. Co
- Figure 't'' shows the interflow of the deposit efficiency ratio of Cr film, !!4 Figure I
i A partial cross-sectional view of the magnetic medium, FIG. 5 is a diagram showing the relationship between the first thin film thickness of Co-Cr vs. G o -Cr dcJl, and M v / MH of the second thin film of the f# film portion, FIG. 6 is a diagram showing the relationship between substrate temperature and holding magnetic force Hc, and Figure 7 is a diagram showing the relationship between substrate temperature and holding magnetic force Hc.
(Thickness of first thin film) vs. C. Fig. 8 is a diagram showing the relationship between the coercive force of -Cr (first thin film and second thin film), and Fig. 8 is a diagram showing the relationship between the substrate temperature of the @2 thin film and the coercive force of Co--Cr. 9 and 10 relate to a conventional example, where FIG. 9 is a partial sectional view of a magnetic recording medium, and FIG. 10 is a schematic diagram of a manufacturing apparatus. (1)...PET film, [) +6+...Gashiro roller, (6) (5)...Opposing targetera), (T1
...supply roller, H...take-up row 7, i9)
・Can mask. Figure 1 Figure 5 (λ) Tomi 111 (Co-Cr) al! ! Thickness (μm) Fig. 6 Fig. 7 ↑ Co-Cr5J1t Nl d Tg-6 (pm) No. 8
Figure 121 #co (: 4'f 7t Ts + 2 + ('C) No. 1 Procedural Amendment (Spontaneous) October 31, 1985 1. Indication of the case 1985 Patent Application No. 209578 2. Invention Name of Manufacturing Method for Magnetic Recording Media 3, Relationship with the Amendment Person Case Patent Application Name (188) Sanyo Electric Co., Ltd. 4, Agent Address 2-18 Keihan Hondori, Moriguchi City, 'I [1. 0゜02μml or above.'' In the same page 9, line 10, ``rO, 1pm or more'' should be corrected to ``0.
05m Lm or more,” he corrected. O Specification, page 12, line 20, "50℃" is changed to "60℃
” he corrected. that's all

Claims (4)

【特許請求の範囲】[Claims] (1)スパッタ法により非磁性基板上に強磁性金属膜を
形成する磁気記録媒体の製造方法において、定速移送さ
れる前記非磁性基板を比較的高温(T1℃以上)に保ち
、その上に強磁性金属をスパッタ法により被着して少く
とも7000e以上の高保磁力を呈し後の工程でその上
に被着するスパッタ粒子のエピタキシャルな結晶成長を
可能とする第1薄膜を形成すると共に、前記第1薄膜上
にスパッタされた強磁性金属を上記非磁性基板の温度を
比較的低温(T2℃以下、但しT2<T1)に保ち乍ら
被着せしめ第2薄膜をエピタキシャルに成長形成するこ
とを特徴とする磁気記録媒体の製造方法。
(1) In a method for manufacturing a magnetic recording medium in which a ferromagnetic metal film is formed on a non-magnetic substrate by sputtering, the non-magnetic substrate, which is transferred at a constant speed, is kept at a relatively high temperature (T1°C or higher), and Depositing a ferromagnetic metal by sputtering to form a first thin film exhibiting a high coercive force of at least 7000e or more and enabling epitaxial crystal growth of sputtered particles deposited thereon in a later step, and The sputtered ferromagnetic metal is deposited on the first thin film while keeping the temperature of the non-magnetic substrate at a relatively low temperature (T2°C or lower, however, T2<T1), and a second thin film is epitaxially grown. A method for manufacturing a magnetic recording medium.
(2)上記第1薄膜を入射角θ1(但しθ1≧15°)
で、厚み0.02μm以上に、上記第2薄膜を入射角θ
2(θ2≫θ1)の角度でそれぞれ被着させることを特
徴とする特許請求の範囲第1項記載の垂直磁気記録媒体
の製造方法。
(2) The first thin film is placed at an incident angle of θ1 (however, θ1≧15°)
Then, the second thin film is attached to a thickness of 0.02 μm or more at an incident angle θ.
2. The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the perpendicular magnetic recording medium is deposited at an angle of 2 (θ2≫θ1).
(3)上記非磁性基板としてPETフィルムを用い前記
温度T1℃を100℃、T2℃を70℃としたことを特
徴とする特許請求の範囲第1項若しくは第2項記載の垂
直磁気記録媒体の製造方法。
(3) The perpendicular magnetic recording medium according to claim 1 or 2, characterized in that a PET film is used as the nonmagnetic substrate, and the temperature T1°C is 100°C and the temperature T2°C is 70°C. Production method.
(4)強磁性金属をスパッタするために対向ターゲット
方式を採用したことを特徴とする特許請求の範囲第1項
或は第2項若しくは第3項記載の垂直磁気記録媒体の製
造方法。
(4) A method for manufacturing a perpendicular magnetic recording medium according to claim 1, 2, or 3, characterized in that a facing target method is adopted for sputtering the ferromagnetic metal.
JP20937885A 1985-05-20 1985-09-20 Production of magnetic recording medium Granted JPS6267729A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20937885A JPS6267729A (en) 1985-09-20 1985-09-20 Production of magnetic recording medium
US06/864,357 US4767516A (en) 1985-05-20 1986-05-19 Method for making magnetic recording media
DE8686106807T DE3682942D1 (en) 1985-05-20 1986-05-20 METHOD AND DEVICE FOR PRODUCING MAGNETIC RECORDING CARRIERS.
EP86106807A EP0202645B1 (en) 1985-05-20 1986-05-20 Method and apparatus for making magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20937885A JPS6267729A (en) 1985-09-20 1985-09-20 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6267729A true JPS6267729A (en) 1987-03-27
JPH0555930B2 JPH0555930B2 (en) 1993-08-18

Family

ID=16571927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20937885A Granted JPS6267729A (en) 1985-05-20 1985-09-20 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6267729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059528A (en) * 2008-09-08 2010-03-18 Fujifilm Corp Method for producing gas barrier film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680831A (en) * 1979-11-30 1981-07-02 Toshiba Corp Producing device for magnetic recording medium
JPS59129944A (en) * 1983-01-12 1984-07-26 Anelva Corp Method and device for manufacturing magnetic recording medium
JPS59210531A (en) * 1983-05-16 1984-11-29 Teijin Ltd Magnetic recording medium and its reproduction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680831A (en) * 1979-11-30 1981-07-02 Toshiba Corp Producing device for magnetic recording medium
JPS59129944A (en) * 1983-01-12 1984-07-26 Anelva Corp Method and device for manufacturing magnetic recording medium
JPS59210531A (en) * 1983-05-16 1984-11-29 Teijin Ltd Magnetic recording medium and its reproduction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059528A (en) * 2008-09-08 2010-03-18 Fujifilm Corp Method for producing gas barrier film
US8236388B2 (en) 2008-09-08 2012-08-07 Fujifilm Corporation Method of producing gas barrier film

Also Published As

Publication number Publication date
JPH0555930B2 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
US4767516A (en) Method for making magnetic recording media
US4407894A (en) Method for producing a perpendicular magnetic recording medium
US4842708A (en) Perpendicular magnetic recording medium, method for producing the same, and sputtering device
JPH02161617A (en) Production of magnetic recording medium
JPS6267729A (en) Production of magnetic recording medium
JPH0721560A (en) Production of magnetic recording medium
JPS60182711A (en) Method and apparatus for forming magnetic thin-film
US5863661A (en) Method of enhancing the c-axis perpendicular orientation of barium hexaferrite thin films and barium hexaferrite thin film recording media produced thereby
JP2949875B2 (en) Manufacturing method of magnetic recording medium
JPS6280832A (en) Manufacture of magnetic recording medium
JPH01155520A (en) Production of perpendicular magnetic recording medium
JPS61192032A (en) Production of magnetic recording medium
JPS61196430A (en) Production of magnetic recording medium
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPH0335422A (en) Production of magnetic recording medium
JPS5845375A (en) Formation of thin film by vapor deposition
JPH081710B2 (en) Method for manufacturing magneto-optical recording medium
JPH052731A (en) Perpendicular magnetic recording medium
JP2003100543A (en) Method of forming magnetic film
JPS621866A (en) Sputtering device
JPS61283031A (en) Production of vertical magnetic recording medium
JPS58108035A (en) Manufacture of flexible magnetic recording medium
JPH0991698A (en) Production of magnetic recording medium
JPS6138530B2 (en)
JPH01169719A (en) Magnetic disk and its manufacture