JPS61283031A - Production of vertical magnetic recording medium - Google Patents

Production of vertical magnetic recording medium

Info

Publication number
JPS61283031A
JPS61283031A JP10776285A JP10776285A JPS61283031A JP S61283031 A JPS61283031 A JP S61283031A JP 10776285 A JP10776285 A JP 10776285A JP 10776285 A JP10776285 A JP 10776285A JP S61283031 A JPS61283031 A JP S61283031A
Authority
JP
Japan
Prior art keywords
thin film
film
sputtering
incident angle
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10776285A
Other languages
Japanese (ja)
Inventor
Takao Nakatsuka
中塚 能男
Minoru Kume
久米 実
Daisuke Kishimoto
岸本 大助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10776285A priority Critical patent/JPS61283031A/en
Priority to US06/864,357 priority patent/US4767516A/en
Priority to DE8686106807T priority patent/DE3682942D1/en
Priority to EP86106807A priority patent/EP0202645B1/en
Publication of JPS61283031A publication Critical patent/JPS61283031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To mass-produce efficiently the title high-performance recording medium having a high vertical-to-horizontal residual magnetization ratio by separating the vertically magnetized film forming process by sputtering into two stages and forming the first thin film and the second thin film respectively at a specified initial incident angle and in specified film thickness. CONSTITUTION:A feromagnetic metal is coated by sputtering on a nonmagnetic substrate 1 traveling at constant speed at an angle smaller than the incident angle theta1 to form the first thin film 21 having >=1 vertical-to-horizontal residual magnetization ratio and wherein crystals can be epitaxially grown. A ferromagnetic metal is coated by sputtering on the first thin film 21 to form the second thin film 22 at an incident angle of theta2b (theta2>>theta1) and crystals are epitaxially grown at t deposition rate considerably higher than that of the first thin film 21. Besides, the first thin film 21 is preferably formed in >=0.07mum thickness with the initial incident angle theta1 of <=15 deg. and a counter target system is favorably used to sputter the ferromagnetic metal. Since the process for forming a vertically magnetized film by sputtering is thus separated into two stages, a thin film having almost >=1 vertical-to-horizontal residual magnetization ratio can be efficiently formed with a high deposition rate.

Description

【発明の詳細な説明】 げ)産業上の利用分野 本発明は、量産化に適したスパッタ法による垂直磁気記
録媒体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION G) Industrial Application Field The present invention relates to a method of manufacturing a perpendicular magnetic recording medium by sputtering, which is suitable for mass production.

(ロ)従来の技術 第6図に示すようにco−cr、Co−0r−Rhなど
の強磁性金属の垂直磁化膜(2)を非磁性基板(1)上
にスパッタ形成して得られる垂直磁気記録媒体は、残留
磁束密度が大きく高密度記録に適している。
(b) Conventional technology As shown in Fig. 6, a perpendicular Magnetic recording media have a large residual magnetic flux density and are suitable for high-density recording.

例えば、PET、ポリアミド、ポリイミドなどのプラス
チックフィルム等の非磁性基板上に、co−crなどの
磁化膜を高速スパッタ形成する方法として対向ターゲッ
ト式スパッタ法、マグネトロン式スパッタ法を応用する
ことが提案されている。(雑誌「応用物理第48巻第6
Jij第557〜561頁「新しいスパッタ形成技術の
動向」)第7図は一般的な対向ターゲット式スパッタ法
を利用した磁気テープ製造装置の概略図である。
For example, it has been proposed to apply facing target sputtering and magnetron sputtering as a method for forming a magnetized film such as co-cr at high speed on a non-magnetic substrate such as a plastic film such as PET, polyamide, or polyimide. ing. (Magazine “Applied Physics Vol. 48 No. 6
Jij, pp. 557-561, "Trends in New Sputter Forming Technology") FIG. 7 is a schematic diagram of a magnetic tape manufacturing apparatus using a general facing target sputtering method.

この装置に詔いて、まず真空槽を十分排気した後、Ar
ガスを導入し、スパッタ電源(4)によりターゲット+
51 [5)’ (例えばco−ar合会合板sc負ノ
高電圧を印加するとArガスがイオン化してプラズマ放
電が起る。この正に帯電したArイオンが前記ターゲッ
トに衝突すると、ターゲット表面の粒子がスパッタされ
てキャンローラ(6)によって定速移送される非磁性基
板(1)上にCo−0rなどの磁化膜が形成される。そ
してキャンローラ(6)の局面の一部をキャンマスク(
9)で被覆し、キャンローラ(6)に線屑案内される非
磁性基板(1)に対するスパッタ金属の入射角度を規制
すると、基板上に垂直磁化膜が形成される。
After using this device, first evacuate the vacuum chamber sufficiently, then use the Ar
Introduce gas and use sputtering power source (4) to target +
51 [5)' (For example, when a negative high voltage is applied to the co-ar joining plate sc, Ar gas is ionized and a plasma discharge occurs. When these positively charged Ar ions collide with the target, the surface of the target is A magnetized film such as Co-0r is formed on a non-magnetic substrate (1) where particles are sputtered and transferred at a constant speed by a can roller (6).A part of the surface of the can roller (6) is then used as a can mask. (
When the angle of incidence of the sputtered metal on the non-magnetic substrate (1) coated with 9) and guided by the can roller (6) as wire scraps is controlled, a perpendicularly magnetized film is formed on the substrate.

第7図において、(7)は供給ローラ、(8)は巻取ロ
ーラ、αI(11’!iプラズマ収束用の磁石を示す。
In FIG. 7, (7) indicates a supply roller, (8) a take-up roller, and αI(11'!i) a magnet for plasma convergence.

非磁性基板(1)上に堆積するスパッタ粒子の初期入射
角θ1を一定値以下に制限することは、高性能な垂直磁
化膜を形成する上で不可欠である。
Limiting the initial incident angle θ1 of sputtered particles deposited on the nonmagnetic substrate (1) to a certain value or less is essential for forming a high-performance perpendicularly magnetized film.

一方、初期入射角θ1を小さくすると、スパッタ金属(
粒子)の非磁性基板上への堆積率が悪くなり、量産効率
が著しく低下するという問題を残すことになる。
On the other hand, if the initial incident angle θ1 is made small, the sputtered metal (
This leaves the problem that the rate of deposition of particles) on the non-magnetic substrate deteriorates, resulting in a significant drop in mass production efficiency.

(/埼  発明が解決しようとする問題点本発明は、ス
パッタ粒子の初期入射角θ1の制限による非磁性基板へ
の堆積効率の低下を防ぐことにより、高性能な垂直磁気
記録媒体を量産性よく製造するための方法を提供するも
のである。
(/Sai Problems to be Solved by the Invention The present invention provides high-performance perpendicular magnetic recording media that can be mass-produced by preventing a decrease in deposition efficiency on a non-magnetic substrate due to limitations on the initial incident angle θ1 of sputtered particles. A method for manufacturing the same is provided.

に)問題点を解決するための手段 定速移送される前記非磁性基板に対しスパッタされた強
磁性金属を入射角01以下の角度で被着せしめ、垂直対
水平残留磁化比が1以上でエピタキシャルな結晶成長を
可能とする第1薄膜を形成すると共に、前記第1薄膜上
に、スパッタされた強磁性金属を入射角θ2 (但しθ
雪〉〉θ1)の角度で被着せしめ、前記第1薄膜よりも
相当高い堆積率でエピタキシャルに結晶成長させて第2
薄膜を形成する。
2) Means for solving the problem: Sputtered ferromagnetic metal is deposited on the non-magnetic substrate, which is transported at a constant speed, at an incident angle of 01 or less, and the vertical to horizontal remanent magnetization ratio is 1 or more. At the same time, a sputtered ferromagnetic metal is formed on the first thin film at an incident angle θ2 (however, θ
The second thin film is deposited at an angle of θ1) and grown epitaxially at a considerably higher deposition rate than the first thin film.
Forms a thin film.

より具体的には、垂直磁化膜をスパッタ形成するに際し
、この成膜工程を2段階に分け、まず、第1薄膜を初期
入射角0115°以内で膜厚0.07μm以上形成し、
その上に第2薄膜を初期入射角0115°以上で所要の
膜厚tになるよう形成する。
More specifically, when forming a perpendicularly magnetized film by sputtering, this film forming process is divided into two steps: first, a first thin film is formed with a thickness of 0.07 μm or more at an initial incident angle of 0115° or less;
A second thin film is formed thereon to have a required film thickness t at an initial incident angle of 0115° or more.

(ホ)作 用 ポリイミドフィルム等のテープベース上に第1薄膜を形
成する際に、強磁性金属を入射角01以下でスパッタリ
ングすることにより、堆積率を多少犠牲にして垂直対水
平残留磁化比が1以上でエピタキシャルな結晶成長を可
能とする薄膜を形成する。
(e) Effect When forming the first thin film on a tape base such as a polyimide film, by sputtering a ferromagnetic metal at an incident angle of 01 or less, the vertical to horizontal remanent magnetization ratio is increased at some sacrifice of the deposition rate. 1 or more to form a thin film that enables epitaxial crystal growth.

その後、lJ*>>θl の関係にある入射角θりで第
1薄膜上に高堆積率で強磁性金属をスパッタリングしエ
ピタキシャルに結晶成長させて第2薄膜を形成させると
、垂直対水平残留磁化比が1以上の薄膜が高堆積率で効
率よく形成される。
After that, when a ferromagnetic metal is sputtered at a high deposition rate on the first thin film at an incident angle θ in the relationship lJ*>>θl and a second thin film is formed by epitaxial crystal growth, the vertical to horizontal residual magnetization A thin film with a ratio of 1 or more can be efficiently formed at a high deposition rate.

(へ)実施例 本発明の基礎となる実験 (1)第7図の対向ターゲット式スパッタ装置を用いて
、ポリイミドフィルムベース上にCo−Crをスパッタ
リングする際に、初期入射角θ1とフィルムベース上に
形成されたco−Cr膜の残留磁化比MY/MEとの関
係を測定した。第2図は、測定結果を初期入射角θ1を
横軸に、残留磁化比MY/MHを縦軸にとって表わした
ものである。
(f) Examples Experiments that form the basis of the present invention (1) When sputtering Co-Cr onto a polyimide film base using the facing target sputtering apparatus shown in FIG. The relationship between the residual magnetization ratio MY/ME of the co-Cr film formed in the above was measured. FIG. 2 shows the measurement results with the initial incident angle θ1 on the horizontal axis and the residual magnetization ratio MY/MH on the vertical axis.

この図から明らかなように初期入射角θ1が小さい程、
co−Cr膜の残留磁化比MY/MHが大きくなる。M
V/MHが1以上であることが垂直磁化膜の条件である
から、第2図から明らかな様に、co−Orr直磁化膜
を得るには初期入射角θ1を15°以内に制限する必要
があることが分る。
As is clear from this figure, the smaller the initial incident angle θ1, the
The residual magnetization ratio MY/MH of the co-Cr film increases. M
Since the condition for a perpendicularly magnetized film is that V/MH is 1 or more, as is clear from Figure 2, it is necessary to limit the initial incident angle θ1 to within 15° in order to obtain a co-Orr directly magnetized film. It turns out that there is.

(2)同様に、@7図の装置を用いて、ポリイミドフィ
ルムベース上に、co−Crをスパッタリングスる際に
、初期入射角θ1とフィルムベース上に形成されるco
−Cr膜の堆積効率の関係を測定した。第3図に初期入
射角θ1(横軸)とco−Cr膜の堆積効率(縦軸)と
の関係を示す。
(2) Similarly, when sputtering co-Cr onto a polyimide film base using the apparatus shown in Figure @7, the initial incident angle θ1 and the co
-The relationship between the deposition efficiency of the Cr film was measured. FIG. 3 shows the relationship between the initial incident angle θ1 (horizontal axis) and the deposition efficiency of the co-Cr film (vertical axis).

第7図のスパッタ装置の構造上、初期入射角θ1=45
° はキャンマスク(9)を取外した状態と同等である
。ここではキャンマスク(9)を取外したときの堆積効
率を1として規格化した。この図から分るように初期入
射角θ1=15°(即ちMv/MH=1)のとき堆積効
率は0.7となる。MY/MHが1.5以上の更に高性
能なCo−0r垂直磁化膜(MY/MHが大きい程、高
記録密度に適する)を得るためには、第2図から初期入
射角θ1を5°以内に制限する必要があるが、このとき
堆積効率は0゜5以下に低下する。
Due to the structure of the sputtering device shown in Fig. 7, the initial incident angle θ1 = 45
° is equivalent to the state with the can mask (9) removed. Here, the deposition efficiency when the can mask (9) was removed was standardized as 1. As can be seen from this figure, when the initial incident angle θ1=15° (ie, Mv/MH=1), the deposition efficiency is 0.7. In order to obtain a higher performance Co-0r perpendicular magnetization film with MY/MH of 1.5 or more (the larger MY/MH is, the more suitable it is for high recording density), the initial incident angle θ1 is set to 5° as shown in Figure 2. However, in this case, the deposition efficiency decreases to 0.5 or less.

前述の2つの実験(11+21から、高速スパッタ法に
より高性能な垂直磁化膜を移動する非磁性基板上に形成
するには、スパッタ粒子の初期入射角θ1を小さくする
必要があり、その結果スパッタ粒子の堆積効率が低下す
るという背反する要因があることが判うた。
From the above two experiments (11+21), in order to form a high-performance perpendicularly magnetized film on a moving non-magnetic substrate by high-speed sputtering, it is necessary to reduce the initial incident angle θ1 of the sputtered particles, and as a result, the sputtered particles It turns out that there are contradictory factors that reduce the deposition efficiency.

(3)上述の実験結果に基づいて、本発明者等はポリイ
ミドフィルムベース上にCo−Orをスパッタリング被
着させる際に、第1薄膜@(第4図)を小さい初期入射
角でスパッタリング被着せしめ1垂直対水平残留磁化比
が1以上でエピタキシャルな結晶成長を可能とする第1
薄膜を形成し、その上θ鵞〉〉θl の角度で第2薄膜
@(第4図)をスパッタリング被着させれば垂直対水平
残留磁化比が1以上の薄膜が効率よく形成されるのでは
ないかという予測を基に、初期入射角θ1=5°でCo
−0r膜の第1薄膜■を種々の膜厚で形成し、更にその
上に初期入射角61.=45°でCo−0r膜の第2薄
膜@を全厚tが0.3μmになるように形成したときの
第1薄膜の膜厚と全層Co−Cr膜の残留磁化比MY/
MHとの関係を求めた。第5図は、第1薄膜(社)の厚
みを横軸、垂直対水平残留磁化比MV/MHを縦軸にと
り、実験(3)の結果を示すものである。
(3) Based on the above experimental results, the present inventors deposited the first thin film @ (Fig. 4) by sputtering at a small initial incident angle when sputtering Co-Or onto a polyimide film base. Seshime 1 The first method that enables epitaxial crystal growth with a vertical to horizontal residual magnetization ratio of 1 or more.
If a thin film is formed and then a second thin film (Fig. 4) is deposited on top of it by sputtering at an angle of θ〉〉θl, a thin film with a vertical to horizontal residual magnetization ratio of 1 or more can be efficiently formed. Based on the prediction that Co
A first thin film ① of -0r film is formed with various thicknesses, and further thereon is formed at an initial incidence angle of 61. When the second thin film @ of the Co-0r film is formed at =45° so that the total thickness t is 0.3 μm, the film thickness of the first thin film and the residual magnetization ratio of the full-layer Co-Cr film MY/
I sought a relationship with MH. FIG. 5 shows the results of experiment (3), with the horizontal axis representing the thickness of the first thin film and the vertical axis representing the vertical to horizontal residual magnetization ratio MV/MH.

コノ図からMY/MHが1以上(F)Co−Cr膜を得
るには第1薄膜の膜厚を0.07μm以上にすればよい
ことが分る。第1薄膜の膜厚が0.1μm以上でMV/
MHが最大値1,5になる。このように第1薄膜を初期
入射角θ1を十分小さくして形成すれば結晶粒子が膜面
に垂直に成長し易(なり更にその上に第2薄膜を初期入
射角θ1を極力大きくして形成しても、第2薄膜の膜は
W11薄膜の上にエビタクシャルに結晶成長するため、
第2薄膜も垂直配向性のよい結晶粒子層となり、その結
果残留磁化比MY/MEの大きい膜を得ることができる
。従って、第2薄膜を高い堆積効率で形成することがで
きるので高性能な垂直磁気記録媒体の量産性が向上する
From the diagram, it can be seen that in order to obtain a (F)Co-Cr film with MY/MH of 1 or more, the thickness of the first thin film should be 0.07 μm or more. When the thickness of the first thin film is 0.1 μm or more, MV/
MH becomes maximum value 1.5. In this way, if the first thin film is formed with a sufficiently small initial angle of incidence θ1, the crystal grains will easily grow perpendicular to the film surface (and furthermore, the second thin film will be formed on top of it with the initial angle of incidence θ1 as large as possible). However, since the second thin film grows epitaxially on top of the W11 thin film,
The second thin film also becomes a crystal grain layer with good vertical orientation, and as a result, a film with a large residual magnetization ratio MY/ME can be obtained. Therefore, since the second thin film can be formed with high deposition efficiency, mass productivity of high-performance perpendicular magnetic recording media is improved.

製造装置 第1図は、本発明の製造方法を実施するための装置の一
実施例を示すものである。この装置は基本的に対向ター
ゲット方式のスパッタリング装置を採用している。
Manufacturing Apparatus FIG. 1 shows an embodiment of an apparatus for carrying out the manufacturing method of the present invention. This apparatus basically employs a facing target type sputtering apparatus.

この装置では、真空槽(3)の中央にそれぞれ背面にプ
ラズマ集束用の永久磁石α00G′を備えるCo−Cr
の対向ターゲット(5H5どを配し、その左右の開口に
面して一対のキャンローラ+6)+61’を配置してい
る。前記各キャンローラの局面を線屑して移送されるポ
リイミドフィルム(1)は供給ロール(7)−キャンロ
ーラ(6)−案内ロール011(Ill(111(11
1−キャンロール(6)′−巻取ロール(8)の経路で
略定速で移送される。
In this device, a Co-Cr magnet is provided in the center of the vacuum chamber (3) with a permanent magnet α00G' for plasma focusing on the back side.
An opposing target (5H5, etc.) is arranged, and a pair of can rollers +6) +61' are arranged facing the left and right openings. The polyimide film (1) that is transferred by scraping the surface of each can roller is a supply roll (7) - a can roller (6) - a guide roll 011 (Ill (111 (11)).
It is transported at a substantially constant speed along the path of 1-can roll (6)'-take-up roll (8).

キャンローラ161 f6)’の局面に沿って案内され
るポリイミドフィルム(1)は、いずれも同じ面がスパ
ッタリング装置<S>の開口側に面する様に案内される
The polyimide film (1) guided along the curved surface of the can roller 161 f6)' is guided such that the same surface faces the opening side of the sputtering device <S>.

両キャンロールfil T6どへのスパッタ粒子の入射
角はキャンマスク(91(91′&こより調整すること
が出来る。
The angle of incidence of the sputtered particles onto both can rolls fil T6 can be adjusted using the can mask (91 (91')).

実施例では、供給ロール(7)側のキャンマスク(9)
の初期入射角θ1(a)を5°に設定し、巻取りローラ
(8)側のキャンマスク(9)′の初期入射角θ1(旬
を45°に設定した。この様な構成で、まず、真空槽内
をlX10   T−orrに排気した後、Arガスを
導入して2X10   ’rorr  とし、キャンロ
ーラ+61 +61’の温度を170℃とした状態でポ
リアミドフィルムを60cII/mi、nの送り速度で
移動させながら、スパッタ電力密度38W/dで0o−
Cr膜をスパッタ形成すると、膜厚0,3μm1残留磁
化比MV/MHが1.5)良好なCo−Cr垂直磁化膜
が得られる。
In the embodiment, the can mask (9) on the supply roll (7) side
The initial incident angle θ1(a) of the can mask (9)' on the winding roller (8) side was set to 45°. After evacuating the inside of the vacuum chamber to lX10 T-orr, Ar gas was introduced to make the temperature 2X10'rorr, and the temperature of the can roller +61 +61' was set to 170°C, and the polyamide film was fed at a feeding rate of 60 cII/mi, n. While moving at a sputtering power density of 38 W/d,
When a Cr film is formed by sputtering, a Co--Cr perpendicular magnetization film with a film thickness of 0.3 μm and a residual magnetization ratio MV/MH of 1.5 is obtained.

第3図より初期入射角θ1が5°のときの膜の堆積効率
はθ1=45°のときの172になることから、上記実
施例において、θi、 +11 = 5°で形成される
第1薄膜と01−45°で形成される第2薄膜との膜厚
はそれぞれ0.1μm、0.2μmとなる。これは第6
図の結果と一致している。発明者等の実験に依れば、高
性能なCo−0r垂直磁気記録媒体ヲ十分高いベースフ
ィルム送り速度で製造4得ることが確認された。
From FIG. 3, the film deposition efficiency when the initial incident angle θ1 is 5° is 172 when θ1 = 45°, so in the above example, the first thin film formed at θi, +11 = 5°. The film thicknesses of the second thin film formed at an angle of 01-45° are 0.1 μm and 0.2 μm, respectively. This is the 6th
This is consistent with the results shown in the figure. According to experiments conducted by the inventors, it has been confirmed that a high-performance Co-0r perpendicular magnetic recording medium can be manufactured at a sufficiently high base film feeding speed.

上記実施例では、対向ターゲット式スパッタ法でプラス
チックフィルム上にCo−0r膜を形成する場合につい
て述べたが、本発明はこれに限定するものではなく、マ
グネトロン式スパッタ法でも、Co−0r膜以外のCo
−Cjr−Rh等の垂直磁化膜でも同様の効果が得られ
る。
In the above embodiment, a case has been described in which a Co-0r film is formed on a plastic film by a facing target sputtering method, but the present invention is not limited to this. Co
A similar effect can be obtained with a perpendicular magnetization film such as -Cjr-Rh.

(ト)  発明の効果 本発明によれば、垂直対水平残留磁化率の高い高性能な
垂直磁気記録媒体の量産効率の良い製造法を提供するこ
とができる。
(g) Effects of the Invention According to the present invention, it is possible to provide a method for mass-producing a high-performance perpendicular magnetic recording medium with a high vertical to horizontal residual magnetic susceptibility with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図はいずれも本発明に係り、第1図は本
発明方法を実施する装置の略図、第2図は初期入射角θ
1で対垂直対水平残留磁化比の関係を示す図、第3図は
初期入射角01対薄膜堆積効率の関係を示す図、第4図
は第1薄膜厚対C0−crの垂直対水平残留磁化比の関
係を示す図、第5図は磁気記録媒体の断面図である。 第6図及び第7図は従来例に係り、第6図は磁気記録媒
体の断面図、第7図は対向ターゲット方式のスパッタリ
ング装置の略図である。
Figures 1 to 5 all relate to the present invention; Figure 1 is a schematic diagram of an apparatus for carrying out the method of the present invention, and Figure 2 is an initial incident angle θ.
Figure 3 is a diagram showing the relationship between the initial incidence angle 01 and thin film deposition efficiency, and Figure 4 is the relationship between vertical and horizontal remanent magnetization ratios for the first thin film thickness vs. C0-cr. FIG. 5, which is a diagram showing the relationship between magnetization ratios, is a cross-sectional view of a magnetic recording medium. 6 and 7 relate to a conventional example, with FIG. 6 being a sectional view of a magnetic recording medium, and FIG. 7 being a schematic diagram of a facing target type sputtering apparatus.

Claims (3)

【特許請求の範囲】[Claims] (1)スパッタ法により非磁性基板上に強磁性金属膜を
形成する垂直磁気記録媒体の製造方法において、定速移
送される前記非磁性基板に対しスパッタされた強磁性金
属を入射角θ_1以下の角度で被着せしめ、垂直対水平
残留磁化比が1以上で、その上に後の工程で被着するス
パッタ粒子のエピタキシャルな結晶成長を可能とする第
1薄膜を形成すると共に、前記第1薄膜上に、スパッタ
された強磁性金属を入射角θ_2(但しθ_2≫θ_1
)の角度で被着せしめ、前記第1薄膜よりも相当高い堆
積率でエピタキシャルに結晶成長させて第2薄膜を形成
することを特徴とする垂直磁気記録媒体の製造方法。
(1) In a method of manufacturing a perpendicular magnetic recording medium in which a ferromagnetic metal film is formed on a non-magnetic substrate by sputtering, the sputtered ferromagnetic metal is transferred to the non-magnetic substrate at a constant speed at an incident angle of θ_1 or less. forming a first thin film that is deposited at an angle, has a vertical to horizontal residual magnetization ratio of 1 or more, and enables epitaxial crystal growth of sputtered particles deposited thereon in a later step; Sputtered ferromagnetic metal is placed on top at an incident angle of θ_2 (where θ_2≫θ_1
), and the second thin film is formed by epitaxial crystal growth at a considerably higher deposition rate than the first thin film.
(2)θ_1≦15°の初期入射角で形成される第1薄
膜の厚みを0.07μ以上としたことを特徴とする特許
請求の範囲第1項記載の垂直磁気記録媒体の製造方法。
(2) The method for manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the first thin film formed at an initial incidence angle of θ_1≦15° has a thickness of 0.07 μm or more.
(3)強磁性金属をスパッタするために対向ターゲット
方式を採用したことを特徴とする特許請求の範囲第1項
若しくは第2項記載の垂直磁気記録媒体の製造方法。
(3) A method for manufacturing a perpendicular magnetic recording medium according to claim 1 or 2, characterized in that a facing target method is adopted for sputtering the ferromagnetic metal.
JP10776285A 1985-05-20 1985-05-20 Production of vertical magnetic recording medium Pending JPS61283031A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10776285A JPS61283031A (en) 1985-05-20 1985-05-20 Production of vertical magnetic recording medium
US06/864,357 US4767516A (en) 1985-05-20 1986-05-19 Method for making magnetic recording media
DE8686106807T DE3682942D1 (en) 1985-05-20 1986-05-20 METHOD AND DEVICE FOR PRODUCING MAGNETIC RECORDING CARRIERS.
EP86106807A EP0202645B1 (en) 1985-05-20 1986-05-20 Method and apparatus for making magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10776285A JPS61283031A (en) 1985-05-20 1985-05-20 Production of vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61283031A true JPS61283031A (en) 1986-12-13

Family

ID=14467348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10776285A Pending JPS61283031A (en) 1985-05-20 1985-05-20 Production of vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61283031A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680831A (en) * 1979-11-30 1981-07-02 Toshiba Corp Producing device for magnetic recording medium
JPS56165933A (en) * 1980-05-27 1981-12-19 Toshiba Corp Production of magnetic recording body
JPS60167123A (en) * 1984-02-09 1985-08-30 Fujitsu Ltd Production of vertical magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680831A (en) * 1979-11-30 1981-07-02 Toshiba Corp Producing device for magnetic recording medium
JPS56165933A (en) * 1980-05-27 1981-12-19 Toshiba Corp Production of magnetic recording body
JPS60167123A (en) * 1984-02-09 1985-08-30 Fujitsu Ltd Production of vertical magnetic recording medium

Similar Documents

Publication Publication Date Title
EP0202645B1 (en) Method and apparatus for making magnetic recording media
JPH02161617A (en) Production of magnetic recording medium
US4990361A (en) Method for producing magnetic recording medium
JPS61283031A (en) Production of vertical magnetic recording medium
JPH0721560A (en) Production of magnetic recording medium
JPH03290808A (en) Magnetic head
JPH0555930B2 (en)
JPS59147422A (en) Formation of magnetic layer
JPS59162622A (en) Vertical magnetic recording material and its production
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPS61242321A (en) Magnetic recording medium
JP2894253B2 (en) Manufacturing method of highly functional thin film
JPS59157828A (en) Magnetic recording medium
JP2794662B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS6199936A (en) Manufacture of magnetic recording medium
JPS6280832A (en) Manufacture of magnetic recording medium
JPH0528487A (en) Production of magnetic recording medium
JPS58137135A (en) Manufacture of magnetic recording medium
JPS60201521A (en) Magnetic recording medium
JPS592226A (en) Magnetic recording medium
JPS63247911A (en) Two-layered film medium for perpendicular magnetic recording
JPS59148126A (en) Magnetic recording medium for vertical recording
JPS58125235A (en) Manufacture of magnetic recording medium
JPH11161952A (en) Production of magnetic recording medium
JPH04132015A (en) Perpendicular magnetic recording tape consisting of cocr and production thereof