JPS63247911A - Two-layered film medium for perpendicular magnetic recording - Google Patents

Two-layered film medium for perpendicular magnetic recording

Info

Publication number
JPS63247911A
JPS63247911A JP8199287A JP8199287A JPS63247911A JP S63247911 A JPS63247911 A JP S63247911A JP 8199287 A JP8199287 A JP 8199287A JP 8199287 A JP8199287 A JP 8199287A JP S63247911 A JPS63247911 A JP S63247911A
Authority
JP
Japan
Prior art keywords
film
magnetic
cocr
polymer
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8199287A
Other languages
Japanese (ja)
Inventor
Takeshi Maro
毅 麿
Osamu Kitagami
修 北上
Hideo Fujiwara
英夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP8199287A priority Critical patent/JPS63247911A/en
Publication of JPS63247911A publication Critical patent/JPS63247911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain excellent recording and reproducing characteristics and corrosion resistance by using a ferromagnetic metal and polymer-contg. amorphous soft magnetic film as high magnetic permeability films. CONSTITUTION:A two-layered film medium is obtd. by forming the polymer- contg. amorphous soft magnetic film on a nonmagnetic substrate and further, laminating a perpendicular magnetic anisotropy film thereon. The polymers are distributed at intervals of the extremely proximate distances and exist entirely integrally in the ferromagnetic metal of this amorphous soft magnetic film and, therefore, the crystallization of the ferromagnetic metal is hindered and said metal is converted to the amorphous metal. The polymers to be used for formation of such soft magnetic film have the number of carbon atoms. preferably in a 10-1,000 range. Disturbance in the orientability of the recording magnetic layer to be provided on the high magnetic permeability layer is thereby obviated and, therefore, the two-layered film medium for perpendicular magnetic recording having the excellent recording and reproducing characteristics and corrosion resistance is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、垂直磁気記録用二層膜媒体に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a double-layer film medium for perpendicular magnetic recording.

史に詳細には、本発明は非晶質性軟磁性膜を有する垂直
磁気記録用二層膜媒体に関する。
More specifically, the present invention relates to a two-layer film medium for perpendicular magnetic recording having an amorphous soft magnetic film.

[従来の技術] 原理的に、l、−5密度記録に適した磁気記録方式とし
て垂直磁気記録方式がある。この方式においては、磁性
層として重置磁気異方性を仔する磁性薄膜を用い、磁化
の方向を記録媒体面に屯直な方向に向ける。このように
すると、高密度記録時には、媒体内部の反磁界が減少す
るため優れた+IT生出力出力られる。
[Prior Art] In principle, there is a perpendicular magnetic recording method as a magnetic recording method suitable for l, -5 density recording. In this method, a magnetic thin film having superimposed magnetic anisotropy is used as the magnetic layer, and the direction of magnetization is directed perpendicular to the surface of the recording medium. In this way, during high-density recording, the demagnetizing field inside the medium is reduced, resulting in an excellent +IT raw output.

このような垂直磁気記録用二層膜媒体用の高透磁率材と
してはパーマロイ(NiFe)膜などが知られている(
特公昭58−91号公報)。
Permalloy (NiFe) film is known as a high magnetic permeability material for such double-layer media for perpendicular magnetic recording (
Special Publication No. 58-91).

パーマロイ系を高透磁率材として用いると、パーマロイ
は、fee構造の(111)面を膜面に平行に優先的に
成長させるが、その配向度はよくない。また、パーマロ
イのct 11)而の最短原r間距離2.50人で、C
oCrの(001)面内の最短原r間距i!i12.5
2人に非常に近い。そのため、パーマロイ膜にに直接C
oCrを形成すると、ド地であるパーマロイ膜の配向度
が良くないのでCoCr膜のC軸の配向度も劣化し、C
0Cr膜自体の磁気特性が悪くなる。
When a permalloy-based material is used as a high magnetic permeability material, the (111) plane of the fee structure of permalloy preferentially grows parallel to the film surface, but the degree of orientation is not good. In addition, permalloy's ct 11) The shortest distance between the original r is 2.50 people, and C
The shortest distance i between the original r in the (001) plane of oCr! i12.5
Very close to the two. Therefore, it is possible to directly apply C to the permalloy film.
When oCr is formed, the degree of orientation of the C-axis of the CoCr film also deteriorates because the degree of orientation of the Permalloy film, which is the base layer, is not good.
The magnetic properties of the 0Cr film itself deteriorate.

しかも、このパーマロイなどで作製された軟磁性上地膜
を用いたものは、ltI温高湿ド、空気中に塩分を含む
場所、または、曲硫酸ガスなどの腐食性ガスを含む場所
では、ディスクの外周のエツジ部分から下地膜が侵され
、次第に透磁率が減少し、出力が低下するという問題点
がある。
Moreover, discs using a soft magnetic overlayer made of permalloy or the like cannot be used in places where the temperature and humidity are high, where the air contains salt, or where corrosive gases such as sulfuric acid gas are present. There is a problem in that the base film is eroded from the edge portion of the outer periphery, the magnetic permeability gradually decreases, and the output decreases.

[発明が解決しようとする問題点] この発明は、−11記従来持っていた結晶配向の乱れに
よる磁気特性の劣化や耐食性の欠点を改りし、記録再生
特性および耐食性に優れた高透磁率下地膜を提供するこ
とを1−1的とする。
[Problems to be Solved by the Invention] This invention solves the deterioration of magnetic properties and corrosion resistance caused by disordered crystal orientation as described in item 11 above, and improves magnetic permeability with excellent recording and reproducing properties and corrosion resistance. 1-1 objective is to provide a base film.

[問題点を解決するための手段] 本発明者らが長年にわたり広範な実験と研究を続けた結
果、cocr強磁性金属とポリマーとを、それぞれ別の
ルツボまたはハースから、所定の蒸着レート比で同時に
rt空蒸着することにより、該金属または゛1′−金属
とポリマーとを含有する構造の強磁性金属膜を作製する
と、この強磁性金属膜は非晶質性軟磁性膜となることが
発見された。本発明は斯かる知見に基づき完成された。
[Means for Solving the Problems] As a result of extensive experiments and research carried out by the present inventors over many years, the cocr ferromagnetic metal and the polymer were deposited at a predetermined deposition rate ratio from separate crucibles or hearths. It was discovered that when a ferromagnetic metal film having a structure containing the metal or the ``1'-metal and a polymer is prepared by simultaneous RT dry evaporation, this ferromagnetic metal film becomes an amorphous soft magnetic film. It was done. The present invention was completed based on this knowledge.

非磁性基体−1−にこのポリマ含有非晶質性軟磁性膜を
高透磁率層として形成し、さらにこの1−に重置磁気異
方性膜を積層することにより二層膜媒体が得られる。
A two-layer film medium can be obtained by forming this polymer-containing amorphous soft magnetic film as a high magnetic permeability layer on the non-magnetic substrate -1-, and further laminating a superimposed magnetic anisotropic film on this 1-. .

正確なメカニズムは未だ解明されていないので推測の域
を出ないが、本発明の非晶質性軟磁性膜においては、強
磁性金属中にポリマーが極めて接近した距離間隔で分布
し、渾然一体的に存在することにより、強磁性金属の結
晶化が阻害され、非晶質化するものと思われる。
Although the exact mechanism has not yet been elucidated and remains a matter of speculation, in the amorphous soft magnetic film of the present invention, the polymers are distributed in the ferromagnetic metal at very close distances, creating a harmonious and integrated structure. It is thought that the presence of ferromagnetic metal inhibits the crystallization of the ferromagnetic metal and causes it to become amorphous.

柱状金属粒子の場合、粒子の外表面がポリマーで被覆さ
れることもあるが、その金属社内にポリマーがJTいに
極めて接近した間隔で比較的に均一・に分布しているも
のと推測される。粒軟金属の場合もル情は人体同様であ
ろうと思われる。
In the case of columnar metal particles, the outer surface of the particle may be coated with polymer, but it is assumed that the polymer is relatively uniformly distributed within the metal at very close intervals. . In the case of granular soft metals, the relationship seems to be similar to that of the human body.

本願明細書において°“非晶質性”という用語を使用す
るのは、完全な非晶質体軟磁性膜の他に、非晶質中に一
部結晶性の部分が含まれている軟磁性膜及びX線回折で
は検出されないような微結晶体の集合であるような軟磁
性膜も含めて表現するためである。
In this specification, the term "amorphous" is used to refer to completely amorphous soft magnetic films as well as soft magnetic films containing some crystalline parts in the amorphous state. This is to include a soft magnetic film, which is a collection of microcrystals that cannot be detected by X-ray diffraction.

実際、ポリマーが強磁性金属を非晶質化させることは本
発明が完成されるまで、いかなる当業者にも想到するこ
とができなかった。ポリマーを使用せず、強磁性金属だ
けを単体で11空蒸着しても、強磁性金属が非晶質化す
ることは稀である。
In fact, no one skilled in the art could have imagined that a polymer would cause a ferromagnetic metal to become amorphous until the present invention was completed. Even if a ferromagnetic metal is vapor-deposited alone without using a polymer, the ferromagnetic metal rarely becomes amorphous.

前記のように、本発明の方法によれば、強磁性金属とポ
リマーとを、所定の蒸着レート比で同時に1″C空蒸若
させるだけで、非磁性基板上に高透磁率軟磁性膜を10
0%近い確率で積層させることができるので非常に生産
性にすぐれている。
As described above, according to the method of the present invention, a high magnetic permeability soft magnetic film can be formed on a non-magnetic substrate by simply dry-evaporating a ferromagnetic metal and a polymer at a predetermined deposition rate ratio for 1"C at the same time. 10
Since it can be laminated with a probability of close to 0%, productivity is extremely high.

更に、軟磁性膜は非晶質性であるため、この上に積層さ
れる磁性膜が結晶性であれば、その結晶量同性を、また
、非晶質であれば、その非晶質性を乱すことがない。
Furthermore, since the soft magnetic film is amorphous, if the magnetic film laminated on top of it is crystalline, its crystal content is determined, and if it is amorphous, its amorphousness is determined. No disturbance.

高透磁率膜として、この非晶質性軟磁性膜を作製するの
に使用される方法としては、生産性の面から考えて、強
磁性金属とポリマーとの同時11空蒸着法か−・番良い
と考えられるが、強磁性金属とポリマーの同時スパッタ
法1強磁性金属をターゲットとしてArと七ツマ−の混
合ガスもしくは、七ツマ−のみを用いて強磁性金属をス
バ1..りする方法でもよい。また、モノマーガスによ
るプラズマ重合を行いながら、強磁性金属を同時に真空
蒸着してもよい。史に、強磁性金属とモノマーの同時イ
オンブレーティング法も実施できる。
From the viewpoint of productivity, the method used to fabricate this amorphous soft magnetic film as a high magnetic permeability film is simultaneous vapor deposition of a ferromagnetic metal and a polymer. Although it is considered to be good, simultaneous sputtering method of ferromagnetic metal and polymer 1 using ferromagnetic metal as a target and sputtering ferromagnetic metal using a mixed gas of Ar and 7-mer or only 7-mer. .. You can also use the method of Alternatively, a ferromagnetic metal may be vacuum-deposited at the same time as plasma polymerization using monomer gas is performed. Historically, simultaneous ion brating methods for ferromagnetic metals and monomers can also be performed.

強磁性金属としてはN F es COlN iもしく
は、これらの合金、もしくは、Fe%C01Niとその
他の元素間の合金等を用いることができる。
As the ferromagnetic metal, NFesCOINi, an alloy thereof, or an alloy between Fe%C01Ni and other elements can be used.

これらの窒化物または酸化物も同様に使用できる。Nitrides or oxides of these can be used as well.

このような磁性体材料は当業者に周知である。本発明の
方法によれば、従来より磁性体材料として一般に広く使
用されている金属は、単体1合金または化合物のいずれ
の形のものでも、大体、非晶質化させることができる。
Such magnetic materials are well known to those skilled in the art. According to the method of the present invention, metals that have conventionally been widely used as magnetic materials can be made amorphous, whether in the form of a single alloy or a compound.

なお、本発明で使用される軟磁性下地膜としては、1・
、述のような非晶質性軟磁性上地膜が好ましいが、必ず
しも非晶質膜である必然性はなく、保磁力が200e以
下の軟磁性材であればよい。
The soft magnetic underlayer used in the present invention includes 1.
Although an amorphous soft magnetic overlayer film as described above is preferable, it is not necessarily an amorphous film, and any soft magnetic material having a coercive force of 200e or less may be used.

本発明の軟磁性膜の形成に使用できるポリマーは炭素原
r数が10〜1000、好ましくは、30〜500、史
に好ましくは70〜200の範囲内の線状あるいは網状
重合体である。r:′L体的には、例えば、ポリエチレ
ン、ポリプロピレン、ポリスチレン、ポリブタジェン、
ポリカーボネイト、ポリアミド、ポリイシド、ポリ塩化
ビニル、ポリ酢酸ビニル、ポリウレタン、などのポリマ
の他、ポリテトラフロロエチレンなどのフロン系のポリ
マや、Siを基本としたシリコン系ポリマでもよい。
The polymer that can be used to form the soft magnetic film of the present invention is a linear or network polymer having a carbon atom number in the range of 10 to 1000, preferably 30 to 500, more preferably 70 to 200. r:'L-isomer, for example, polyethylene, polypropylene, polystyrene, polybutadiene,
In addition to polymers such as polycarbonate, polyamide, polyide, polyvinyl chloride, polyvinyl acetate, and polyurethane, fluorocarbon-based polymers such as polytetrafluoroethylene, and silicon-based polymers based on Si may be used.

強磁性金属とポリマーとの混合比率は一般的にポリマー
が5v01%以上(3Qvo1%以下、望ましくは12
VO1%以十、で、40vo1%以下である。ポリマー
が5vol%以下では所期の高透磁率性非晶質軟磁性膜
が形成されない。一方、(3Qvo1%以」ユではポリ
マーによる強磁性金属粒子の分離が大きくなり磁気特性
は次第にハードになり好ましくない。
The mixing ratio of the ferromagnetic metal and the polymer is generally such that the polymer is 5v01% or more (3Qvo1% or less, preferably 12
VO 1% or more, and 40 VO 1% or less. If the polymer content is less than 5 vol %, the desired high permeability amorphous soft magnetic film will not be formed. On the other hand, if it is (3Qvo1% or more), the separation of the ferromagnetic metal particles by the polymer becomes large, and the magnetic properties gradually become hard, which is not preferable.

[実施例コ 以下、図面を参照しながら本発明の実施例について史に
詳細に説明する。しかし、本発明は下記の実施例に限定
されるものではない。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following examples.

光廉旌1 第1図に示されるようなバッチ式1′〔空蒸着装置を使
用し、以下に、」(シた条件により高透磁率膜及び高透
磁率膜−1−にCoCr膜を形成し、二層膜媒体を作製
した。
Using a batch method 1' [empty evaporation apparatus] as shown in Fig. 1, a CoCr film was formed on a high magnetic permeability film and a high magnetic permeability film-1- under the following conditions. Then, a two-layer membrane medium was prepared.

作製条件 (1)基板:ポリイミドフィルム(膜厚40μm)(2
)基板温度=150℃ (3)強磁性金属: CoCr (1”[、”!蒸着に
使用したインゴットは、Cr濃度が16 vt%) (4)ポリマー:ポリエチレン (平均分子1a:1000) (5) 3’j、空度:到達真空度4X 10− ’ 
Torr高透磁率膜であるCoCr−ポリエ チレン膜作製時は2X 10− S TorrCoCr
屯直磁気異方性膜作製時は 2X l O−6Torr (6)蒸行レート:CoCr  15人/see (高
透磁率膜作製時、重直磁気人方性膜 作製時とも同じ) :ポリエチレン4.5人/5ee CoCrは電r銃加熱法により11空蒸着し、ポリエチ
レンは、抵抗加熱法により真空蒸着した。
Preparation conditions (1) Substrate: Polyimide film (film thickness 40 μm) (2
) Substrate temperature = 150°C (3) Ferromagnetic metal: CoCr (1"[,"!The ingot used for vapor deposition has a Cr concentration of 16 vt%) (4) Polymer: Polyethylene (average molecular 1a: 1000) (5 ) 3'j, emptyness: ultimate vacuum 4X 10-'
When producing a CoCr-polyethylene film, which is a Torr high magnetic permeability film, 2X 10-S TorrCoCr
2X l O-6 Torr when producing a vertical magnetic anisotropic film (6) Evaporation rate: CoCr 15 people/see (same when producing a high magnetic permeability film and a vertical magnetic anisotropic film): Polyethylene 4 .5 people/5ee CoCr was vacuum-deposited using an electric gun heating method, and polyethylene was vacuum-deposited using a resistance heating method.

CoCr−ポリエチレン蒸着膜(CoCr−PE膜)だ
けを膜厚8000人で作製した。比較のためCo Cr
 単体膜も同じ条件で作製した。(ただし真空度は1〜
2x 10− ’ Torrに設定した。)前記のよう
にして得られた本発明のCoCr+ポリエチレン膜が非
晶質になっているかどうかを調べるため、X線及び電子
線回折をおこなったところ、X線回折では20=206
〜100’の範囲でピークが見られず、電子線回折では
、2木のハローリングあられれるだけで、非晶質である
ことが分かった。
Only a CoCr-polyethylene vapor-deposited film (CoCr-PE film) was fabricated with a film thickness of 8,000 yen. For comparison, CoCr
A single film was also produced under the same conditions. (However, the degree of vacuum is 1~
It was set at 2x 10-' Torr. ) In order to investigate whether the CoCr+polyethylene film of the present invention obtained as described above is amorphous, X-ray and electron diffraction were performed, and the X-ray diffraction revealed that 20=206
No peak was observed in the range of ~100', and electron diffraction revealed only two halo rings, indicating that the material was amorphous.

・方、CoCr単体膜では20=44.2°にhcp構
造の(002)而による鋭いピークがあられれ、電r−
線回折では、hcp構造により回折パターンが得られ、
Co Cr ’F一体膜では結晶質となることが判明し
た。
・On the other hand, in the CoCr single film, there is a sharp peak at 20=44.2° due to the (002) structure of the hcp structure, and the electric current r-
In line diffraction, a diffraction pattern is obtained due to the hcp structure,
It was found that the CoCr'F integral film becomes crystalline.

本発明によるCoCr+ポリエチレン膜と対照例のCo
 Cr ’11一体膜の磁気特性を測定した。飽和磁束
密度Bsおよび保磁力Heは試↑1振動型磁力計で測定
し、異方性磁界Hkはトルクメータにより測定した。4
!11定結果をド記の表1にンj<す。
CoCr+polyethylene film according to the present invention and Co of the control example
The magnetic properties of the Cr'11 monolithic film were measured. The saturation magnetic flux density Bs and the coercive force He were measured with a test↑1 vibrating magnetometer, and the anisotropic magnetic field Hk was measured with a torque meter. 4
! The results are shown in Table 1 below.

及1 表中、保磁力は面内における測定値であり、異方性磁界
はGo−Cr−PE膜については面内の、また、Go−
Cr膜については東向方向における測定値である。
and 1 In the table, the coercive force is the in-plane measurement value, and the anisotropic magnetic field is the in-plane measurement value for the Go-Cr-PE film.
For the Cr film, the values are measured in the east direction.

表1にントされた結果から明らかなように、本発明の非
晶質性CoCr+ポリエトレン膜は軟磁気特性をイ「す
る。従って、二層膜媒体の、z:1透磁率膜として使用
することができる。
As is clear from the results listed in Table 1, the amorphous CoCr+polyethylene film of the present invention exhibits soft magnetic properties. Therefore, it can be used as a z:1 magnetic permeability film in a two-layer media. Can be done.

次に、ポリイミドフィルム」二にCoCr−ポリエチレ
ン膜を8000人の厚みで作製し、その−1−に、Co
Cr膜を2000人の厚みで作製し、二層膜媒体を作製
した。
Next, a CoCr-polyethylene film with a thickness of 8000 mm was prepared on the polyimide film 2, and the CoCr-polyethylene film was
A Cr film with a thickness of 2000 mm was fabricated to produce a two-layer film medium.

比較のため、ポリイミドフィルム1−にパーマロイ膜(
N i −F e膜)を8000人の厚みで蒸着し、そ
のl−にCoCr膜を2000人の厚みで蒸着した二層
膜媒体も作製した。
For comparison, permalloy film (
A two-layer film medium was also prepared in which a Ni-Fe film was deposited to a thickness of 8000 nm and a CoCr film was deposited to a thickness of 2000 nm.

高透磁率層として、この本発明によるCoCrとボリエ
羊しンの同時真空蒸着法により得られる非晶質性軟磁性
膜を用いた場合とパーマロイ膜を用いた場合のCoCr
膜のC軸配向度をCoCr膜の(002)而のロッキン
グ曲線の半値ltJΔθs。
As a high magnetic permeability layer, a CoCr film is used, one is an amorphous soft magnetic film obtained by the simultaneous vacuum evaporation method of CoCr and Borier thin film according to the present invention, and the other is a permalloy film.
The degree of C-axis orientation of the film is the half value ltJΔθs of the rocking curve of the (002) CoCr film.

により比較してみると、CoCr−ポリエチレン膜1−
にCoCr膜を形成したときのCoCr膜のΔIsOは
、IO″〜15°であるが、パーマロイ膜1〕にCoC
r膜を形成したときの、CoCr膜のΔ05θは20°
以]−もある。
When compared with CoCr-polyethylene film 1-
ΔIsO of the CoCr film when the CoCr film is formed on the permalloy film 1 is IO''~15°, but when the CoCr film is formed on the permalloy film
Δ05θ of CoCr film is 20° when r film is formed.
There is also -.

記録再生特性を調べるため、高透磁率膜として、CoC
r−ポリエチレン膜を用いた媒体と、パーマロイ膜を用
いた媒体から5インチフロッピーディスクを作製し、J
E磁極厚0.8μm1主磁極+1300μm、コイル巻
数407の補助磁極励磁型ヘッドにより測定した。得ら
れた結果を下記の表2に認約して示す。
CoC was used as a high permeability film to investigate the recording and reproducing characteristics.
A 5-inch floppy disk was made from a medium using r-polyethylene film and a medium using permalloy film, and J
The measurement was carried out using an auxiliary magnetic pole excitation type head with an E magnetic pole thickness of 0.8 μm, 1 main magnetic pole + 1300 μm, and a coil winding number of 407. The results obtained are shown in Table 2 below.

表中、7kfciとは1インチ当たり7000回磁化反
転がある記録状態を、α味し、Dsθは、この7kfc
iでの+M生出出力値半分になったところの記録密度を
意味し、この050の値が大きい程、高密度記録ができ
る可能性があることを示している。
In the table, 7kfci refers to the recording state in which magnetization is reversed 7000 times per inch, and Dsθ refers to this 7kfci.
It means the recording density when the +M output value at i is reduced to half, and the larger the value of 050, the higher the possibility of high-density recording.

このように、CoCrとポリエチレンの同時真空蒸着に
よる非晶質性軟磁性膜を高透磁率膜として用いることに
より、パーマロイ膜に比べ、同じ真空蒸着法を用いても
その1−のCoCr膜の結晶配向度がよくなり、そのた
め、記録I11生特性に優れた小商磁気記録媒体が得ら
れる。
In this way, by using an amorphous soft magnetic film formed by simultaneous vacuum deposition of CoCr and polyethylene as a high magnetic permeability film, compared to a permalloy film, even when the same vacuum deposition method is used, the crystallization of the CoCr film is reduced. The degree of orientation is improved, and therefore a commercial magnetic recording medium with excellent recording I11 characteristics can be obtained.

K五叶λ 第2図に示されるような連続真空蒸着装置により、基板
−1−にCoCr−ポリエチレン膜を高透磁率層として
形成し、史にその1ユにCoCr膜を形成した垂直磁気
記録用二層膜媒体を作製した。
Perpendicular magnetic recording in which a CoCr-polyethylene film is formed as a high magnetic permeability layer on the substrate-1- using a continuous vacuum evaporation apparatus as shown in Fig. 2, and a CoCr film is formed on the first layer. A two-layer membrane medium was prepared.

薄青条件 (1)ノ、(&:ポリイミドフィルム(膜厚40μm)
(2)キャン温度:150℃ (3)1°〔空度:CoCr−ポリエチレン膜形成室内
5xlO−5Torr CoCr膜形成室内 4xlO°−6Torr (4)蒸着レート: Co Cr−ポリエチL/7膜6
00人/5ee CoCr膜180人/5ee (5)膜圧: CoCr−ポリエチレン膜5000人C
oCr膜2000人 比較のため、高透磁率膜としてパーマロイ非晶質膜を用
いたニ一層膜媒体を第3図に示されるような連続スパッ
タ装置により作製した。
Light blue condition (1) (&: polyimide film (film thickness 40 μm)
(2) Can temperature: 150°C (3) 1° [Evacuation degree: CoCr-polyethylene film forming chamber 5xlO-5 Torr CoCr film-forming chamber 4xlO°-6 Torr (4) Vapor deposition rate: CoCr-polyethylene L/7 film 6
00 people/5ee CoCr membrane 180 people/5ee (5) Membrane pressure: CoCr-polyethylene membrane 5000 peopleC
For comparison of 2,000 oCr films, a double-layer film medium using a permalloy amorphous film as a high magnetic permeability film was fabricated using a continuous sputtering apparatus as shown in FIG.

スパッタ条件 (1)基板:ポリイミドフィルム(g厚40μm)(2
)キャン温度=150℃ (3)アルゴン圧: 10 mTorr(4)スパッタ
レート:パーマロイ  10人/5eeCoCr   
  10人/5ec (5)膜圧:パーマロイ  5000人CoCr   
 2000人 ド記の表3に高透磁率膜として従来技術のパーマロイ膜
を用いた場合と、本発明のCoCr−ポリエチレン膜を
用いた場合の二層膜媒体の特性を比較して示す。また、
記録再生特性を実施例1と同様に5インチフロッピーデ
ィスクにより調べた。
Sputtering conditions (1) Substrate: Polyimide film (g thickness 40 μm) (2
) Can temperature = 150°C (3) Argon pressure: 10 mTorr (4) Sputter rate: Permalloy 10 people/5eeCoCr
10 people/5ec (5) Membrane pressure: Permalloy 5000 people CoCr
Table 3 of the 2,000-person record compares the characteristics of two-layer media when a conventional permalloy film is used as a high magnetic permeability film and when a CoCr-polyethylene film of the present invention is used. Also,
Recording and reproducing characteristics were examined using a 5-inch floppy disk in the same manner as in Example 1.

その結果も併せて表3に示す。The results are also shown in Table 3.

に1 このように、C0Cr−ポリエチレン膜を高透磁率膜と
して用いることにより真空蒸着法によってもスパッタ法
とほぼ同様の記録11生特性を有する垂直磁気記録媒体
を作製することができる。
As described above, by using a C0Cr-polyethylene film as a high magnetic permeability film, a perpendicular magnetic recording medium having almost the same recording characteristics as the sputtering method can be manufactured by the vacuum evaporation method.

尖五肚1 前記の実施例2の比較例で製造されたパーマロイ膜と本
発明のCoCr−ポリエチレン膜を用いた二層膜媒体か
ら5インチフロッピーディスクを作製し、耐食性を調べ
た。
Five-inch floppy disk 1 A 5-inch floppy disk was prepared from a two-layer film medium using the permalloy film produced in the comparative example of Example 2 and the CoCr-polyethylene film of the present invention, and its corrosion resistance was examined.

最外周トラックに50kBPIの記録密度で予め記録し
ておき、1%NaC1水溶液を一様に噴霧し、その後3
0℃の恒温槽内に放置した。このディスクを111毎に
取り出し、111生を行い、その+rg生信号強度の変
化を調べた。11)生信吋強度を調べるためフロンビー
ディスク装置にかけるときには、表面についている塩水
を拭き取り、評価後また塩水を噴霧してから恒温槽に戻
した。
Recording was performed on the outermost track in advance at a recording density of 50 kBPI, and a 1% NaCl aqueous solution was uniformly sprayed, and then 3
It was left in a constant temperature bath at 0°C. This disk was taken out every 111 times, 111 raw was performed, and the change in the +rg raw signal intensity was examined. 11) When subjecting the sample to the Fremby disk device to examine raw strength, the salt water on the surface was wiped off, and after the evaluation, salt water was sprayed again and the sample was returned to the constant temperature bath.

測定結果を第4図に示す。The measurement results are shown in Figure 4.

添付第4図から明らかなように、本発明のC。As is clear from the attached FIG. 4, C of the present invention.

Cr−ポリエチレンアモルファス膜からなる下地高透磁
率層は再生出力に殆ど変化がないのに対して、従来のス
パッタ法により作製されたパーマロイ膜は時間の経過と
ともにFIT生出力出力ドする。
The base high permeability layer made of a Cr-polyethylene amorphous film shows almost no change in reproduction output, whereas the FIT raw output of a permalloy film produced by a conventional sputtering method changes over time.

従って、下地高透磁率層として本発明のCoCr−ポリ
エチレンアモルファス膜を用いたほうが耐食性に優れて
いる。
Therefore, it is better to use the CoCr-polyethylene amorphous film of the present invention as the base high permeability layer in terms of corrosion resistance.

[発明の効果コ 以に説明したように、本発明は、強磁性金属とポリマの
同時ペーパーデポジション法によす得うれるポリマ含打
非晶質・性軟磁性膜を高透磁率膜として用いることによ
り、その1−に説ける記録磁性層の配向性を乱すことが
なくなるため記録iI生生性性よび耐食性にすぐれた垂
直磁気記録用二層膜媒体を実現でき、また、非常に高い
生産性も実現できる。
[Effects of the Invention] As explained below, the present invention uses a polymer-impregnated amorphous soft magnetic film obtained by a simultaneous paper deposition method of a ferromagnetic metal and a polymer as a high magnetic permeability film. As a result, the orientation of the recording magnetic layer explained in 1-1 is not disturbed, so it is possible to realize a two-layer film medium for perpendicular magnetic recording that has excellent recording properties and corrosion resistance, and also has extremely high productivity. realizable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ、本発明の二層膜媒体を
製造するのに使用されるバッチ式および連続式真空蒸着
装置の一例を示す概要図、第3図は本発明の二層膜媒体
を製造するのに使用される連続スパッタ装置の一例を示
す概要図、第4図は実施例2で製造された本発明の下地
高透磁率層と従来のスパッタ法により作製された下地膜
の耐食性を比較するための塩水曝露日数に対する出力の
変化を示す特性図である。 1.15および24・・・強−磁性金属用ルツボ。 2および14・・・ポリマ用ルツボ、3・・・基板。 4・・・基板ホルダ、5・・・基板加熱ヒータ。 6・・・1″〔空槽、7.18および26・・・真空排
気系。 8・・・ベースフィルム、10・・・高透磁率膜作製室
。 11・・・送出ロール、12および22・・・キャンロ
ール、13および23・・・マスク、20・・・垂直磁
気異方性膜作製室、31・・・高透磁率材ターゲット。
FIGS. 1 and 2 are schematic diagrams illustrating examples of batch and continuous vacuum deposition equipment used to produce the bilayer membrane of the present invention, respectively, and FIG. FIG. 4 is a schematic diagram showing an example of a continuous sputtering apparatus used for manufacturing the medium. FIG. It is a characteristic diagram showing the change in output with respect to the number of days of exposure to salt water for comparing corrosion resistance. 1.15 and 24...Crucibles for ferromagnetic metals. 2 and 14... Polymer crucible, 3... Substrate. 4... Substrate holder, 5... Substrate heater. 6...1'' [Empty tank, 7.18 and 26... Vacuum exhaust system. 8... Base film, 10... High magnetic permeability film production room. 11... Delivery roll, 12 and 22 ...Can roll, 13 and 23...Mask, 20...Perpendicular magnetic anisotropic film production room, 31...High magnetic permeability material target.

Claims (3)

【特許請求の範囲】[Claims] (1)非磁性基板上に軟磁性高透磁率層を有し、その上
に垂直磁気異方性膜が積層された垂直磁気記録用二層膜
媒体において、前記軟磁性高透磁率層は強磁性金属とポ
リマーとを含む軟磁性膜であることを特徴とする垂直磁
気記録用二層膜媒体。
(1) In a two-layer medium for perpendicular magnetic recording in which a soft magnetic high permeability layer is provided on a nonmagnetic substrate and a perpendicular magnetic anisotropic film is laminated thereon, the soft magnetic high permeability layer is A two-layer film medium for perpendicular magnetic recording, characterized in that it is a soft magnetic film containing a magnetic metal and a polymer.
(2)ポリマーは炭素原子数が10〜1000の範囲内
のものである特許請求の範囲第1項に記載の垂直磁気記
録用二層膜媒体。
(2) The two-layer film medium for perpendicular magnetic recording according to claim 1, wherein the polymer has a carbon atom number in the range of 10 to 1000.
(3)ポリマーを5vol%以上60vol%以下の量
で含有する特許請求の範囲第1項に記載の垂直磁気記録
用二層膜媒体。
(3) The two-layer film medium for perpendicular magnetic recording according to claim 1, which contains a polymer in an amount of 5 vol% or more and 60 vol% or less.
JP8199287A 1987-04-01 1987-04-01 Two-layered film medium for perpendicular magnetic recording Pending JPS63247911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8199287A JPS63247911A (en) 1987-04-01 1987-04-01 Two-layered film medium for perpendicular magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8199287A JPS63247911A (en) 1987-04-01 1987-04-01 Two-layered film medium for perpendicular magnetic recording

Publications (1)

Publication Number Publication Date
JPS63247911A true JPS63247911A (en) 1988-10-14

Family

ID=13761971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8199287A Pending JPS63247911A (en) 1987-04-01 1987-04-01 Two-layered film medium for perpendicular magnetic recording

Country Status (1)

Country Link
JP (1) JPS63247911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109358A (en) * 2005-10-17 2007-04-26 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109358A (en) * 2005-10-17 2007-04-26 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium
JP4527645B2 (en) * 2005-10-17 2010-08-18 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ Perpendicular magnetic recording medium

Similar Documents

Publication Publication Date Title
JPH0414411B2 (en)
JPH0262890B2 (en)
JPH0669033A (en) Cobalt platinum magnetic film and its manufacture
JPS63247911A (en) Two-layered film medium for perpendicular magnetic recording
JPH0647722B2 (en) Method of manufacturing magnetic recording medium
JPS60195737A (en) Magnetic recording body and its manufacture
JPS59157828A (en) Magnetic recording medium
JPS5868229A (en) Magnetic recording medium
JPS63124213A (en) Perpendicular magnetic recording medium
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPH04188427A (en) Magnetic disk
JPH1011735A (en) Magnetic recording medium
JPH0196823A (en) Production of magnetic recording medium
JPH01124115A (en) Magnetic recording medium and its production
JPH05101378A (en) Magnetic recording hard disk and manufacture thereof and method for controlling magnetism of thin-film magnetic recording layer
JPH0661130B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH0823929B2 (en) Perpendicular magnetic recording media
JPS61227222A (en) Magnetic recording medium
JPS63291214A (en) Perpendicular magnetic recording medium
JPS59191130A (en) Base material for magnetic recording medium and magnetic recording medium
JPS59148126A (en) Magnetic recording medium for vertical recording
JPS61115244A (en) Production of magnetic recording medium
JPS59203223A (en) Thin metallic film type magnetic recording medium
JPH0479043B2 (en)
JPS6126938A (en) Production of vertically magnetized recording medium