JPS63291214A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPS63291214A
JPS63291214A JP12556487A JP12556487A JPS63291214A JP S63291214 A JPS63291214 A JP S63291214A JP 12556487 A JP12556487 A JP 12556487A JP 12556487 A JP12556487 A JP 12556487A JP S63291214 A JPS63291214 A JP S63291214A
Authority
JP
Japan
Prior art keywords
recording medium
perpendicular magnetic
magnetic recording
film
perpendicularly magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12556487A
Other languages
Japanese (ja)
Other versions
JP2546268B2 (en
Inventor
Kazuharu Iwasaki
和春 岩崎
Yasuo Tateno
舘野 安夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62125564A priority Critical patent/JP2546268B2/en
Publication of JPS63291214A publication Critical patent/JPS63291214A/en
Application granted granted Critical
Publication of JP2546268B2 publication Critical patent/JP2546268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain excellent perpendicular magnetic anisotropy and to improve electromagnetic conversion characteristics by specifying the squareness ratio of a perpendicularly magnetized film to >=0.83. CONSTITUTION:Rs* is specified to >=0.83 when the magnetization at the intersected point N of a straight line S having an inclination theta2 equal to an inclination theta1 in the part where the hysteresis curve of the perpendicularly magnetized film in the direction perpendicular to the film plane intersects with the abscissa X and passing an origin O and the hysteresis curve H is designated as Mr and the value Mr/Ms obtd. by dividing this Mr by the saturation magnetization Ms is designated as squareness ratio Rs*. The perpendicularly magnetized Co-O film having the excellent perpendicular magnetic anisotropy is, therefore, produced. The recording medium having the excellent electromagnetic conversion characteristics of a perpendicular magnetic recording medium is thereby easily obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度記録化に対応する垂直磁気記録媒体に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a perpendicular magnetic recording medium that is compatible with high-density recording.

〔発明の概要〕[Summary of the invention]

本発明は、非磁性支持体上にCo−0系垂直磁化膜を形
成してなる垂直磁気記録媒体において、角形比Rs“を
所定の範囲とすることにより、電磁変換特性の向上を図
り、機械的耐久性に優れ、生産性の高い垂直磁気記録媒
体を提供しようとするものである。
The present invention aims to improve electromagnetic conversion characteristics by setting the squareness ratio Rs' within a predetermined range in a perpendicular magnetic recording medium formed by forming a Co-0 perpendicularly magnetized film on a non-magnetic support. The objective is to provide a perpendicular magnetic recording medium with excellent physical durability and high productivity.

〔従来の技術〕[Conventional technology]

近年、磁気記録における短波長化と狭トランク化による
記録密度の向上は目覚ましく、光記録に近い面記録密度
の実用化が膜面の垂直方向に磁化可能な、所謂垂直磁化
膜を利用した垂直磁気記録媒体を用いることで期待され
ている。このような状況の中にあって、垂直磁化膜とし
てCo−Cr系垂直磁化膜を用いた垂直磁気記録媒体と
Co−0系垂直磁化膜を用いた垂直磁気記録媒体が提案
されている。上記Co−0系垂直磁化膜を用いた垂直磁
気記録媒体は、上記Co−Cr系垂直磁化膜を利用した
垂直磁気記録媒体と比較した場合、製造上は有利である
ものの、その磁気特性においては、電磁変換特性が充分
ではなく、特に短波長域での記録・再生特性が充分では
ないという問題がある。
In recent years, there has been a remarkable improvement in recording density due to shorter wavelengths and narrower trunks in magnetic recording, and perpendicular magnetism using so-called perpendicular magnetization films, which can be magnetized in the perpendicular direction of the film surface, has put into practical use an areal recording density close to that of optical recording. It is expected that this will be achieved by using recording media. Under these circumstances, perpendicular magnetic recording media using a Co-Cr-based perpendicular magnetization film and a perpendicular magnetic recording medium using a Co-0-based perpendicular magnetization film as the perpendicular magnetization film have been proposed. Although the perpendicular magnetic recording medium using the Co-0 perpendicular magnetization film is advantageous in manufacturing compared to the perpendicular magnetic recording medium using the Co-Cr perpendicular magnetization film, its magnetic properties are However, there is a problem that the electromagnetic conversion characteristics are not sufficient, especially the recording/reproducing characteristics in the short wavelength range are not sufficient.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のようにGo−0系垂直磁気記録媒体は、垂直磁気
記録媒体として従来提案されているG。
As mentioned above, the Go-0-based perpendicular magnetic recording medium is a G type perpendicular magnetic recording medium that has been conventionally proposed as a perpendicular magnetic recording medium.

−Cr系垂直磁気記録媒体よりもその磁気特性は劣ると
いう問題がある。
There is a problem in that the magnetic properties are inferior to -Cr-based perpendicular magnetic recording media.

そこで、本発明は上述の実情に鑑みて提案されたもので
あって、Co−0系垂直磁気記録媒体の磁気特性の向上
を図ることを目的とし、これにより電磁変換特性、機械
的耐久性に優れ、生産性の高い垂直磁気記録媒体を提供
することを目的とするものである。
The present invention was proposed in view of the above-mentioned circumstances, and aims to improve the magnetic properties of a Co-0 perpendicular magnetic recording medium, thereby improving electromagnetic conversion properties and mechanical durability. The object of the present invention is to provide an excellent perpendicular magnetic recording medium with high productivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上述の目的を達成するために鋭意研究の
結果、Go−0系垂直磁気記録媒体を製造する際の垂直
磁気記録媒体の垂直磁気異方性の目安となるRs”を所
定の値とすることにより、磁気特性に優れたCo−〇系
垂直磁気記録媒体を得ることができるとの知見を得るに
至った。
In order to achieve the above-mentioned object, the present inventors have conducted extensive research and have determined Rs'', which is a standard for the perpendicular magnetic anisotropy of a perpendicular magnetic recording medium when manufacturing a Go-0 perpendicular magnetic recording medium. It has been found that a Co-0-based perpendicular magnetic recording medium with excellent magnetic properties can be obtained by setting the value of .

本発明は、上述の知見に基づいて提案されたもので、第
1図に示すように、非磁性支持体上にco−0系垂直磁
化膜を形成してなる垂直磁気記録媒体において、前記垂
直磁化膜の膜面に垂直方向のヒステリシス曲線(H)が
横軸(X)と交わる部分おける傾き(θI)と等しい傾
き(θ2)を有し且つ原点(0)を通る直線(S)とヒ
ステリシス曲線(H)との交点(N)における磁化をM
「とし、このMrを飽和磁化Msで割った値M r /
 M sをR311と定義したとき、R3°が0.83
以上であることを特徴とするものである。
The present invention was proposed based on the above-mentioned findings, and as shown in FIG. A straight line (S) that has a slope (θ2) equal to the slope (θI) at the point where the hysteresis curve (H) perpendicular to the film surface of the magnetized film intersects with the horizontal axis (X) and passes through the origin (0) and hysteresis The magnetization at the intersection (N) with the curve (H) is M
``Then, the value M r /
When M s is defined as R311, R3° is 0.83
It is characterized by the above.

ここで、上記R3*とは、本発明において本発明者等が
新たに導入した垂直磁気記録媒体の垂直磁気異方性を評
価する手法の一つである。
Here, the above R3* is one of the methods for evaluating the perpendicular magnetic anisotropy of a perpendicular magnetic recording medium newly introduced by the inventors in the present invention.

一般に面内磁化膜を評価する手法の一つとしてヒステリ
シスループの角形比を用いることは広く知られている。
Generally, it is widely known that the squareness ratio of a hysteresis loop is used as one of the methods for evaluating an in-plane magnetized film.

上記面内磁化膜はこの角形比が高い程良好な面内配向性
を示していると判断されている。これに対して、垂直磁
気記録媒体の垂直磁化膜の垂直磁気異方性を評価する場
合においても上記角形比を適用することができる。しか
しながらこの場合、反磁界の働きによりヒステリシス曲
線が見掛は上1頃いてしまうため、角形比を求めるにあ
ったでは補正をする必要がある。上記補正の手法の一つ
として、反磁界Hd−4πMで補正する方法が提案され
ている。しかし反磁界Hd−4πMで補正するという手
法では、充分な補正を施すことができず、垂直磁気異方
性の正確な評価をすることができない。
It is determined that the above-mentioned in-plane magnetized film exhibits better in-plane orientation as the squareness ratio increases. On the other hand, the above squareness ratio can also be applied when evaluating the perpendicular magnetic anisotropy of a perpendicularly magnetized film of a perpendicular magnetic recording medium. However, in this case, the hysteresis curve appears to be around 1 above due to the action of the demagnetizing field, so it is necessary to make corrections when determining the squareness ratio. As one of the above correction methods, a method of correction using a demagnetizing field Hd-4πM has been proposed. However, with the method of correcting using a demagnetizing field Hd-4πM, sufficient correction cannot be made, and the perpendicular magnetic anisotropy cannot be accurately evaluated.

そこで、第1図に示すように、垂直磁化膜の垂直方向ヒ
ステリシス曲線(H)が横軸(X)と交わる部分におけ
る傾き(θ1)と等しい傾き(θ2)を有し、且つ原点
(,0)を通る直線(S)とヒステリシス曲線(H)と
の交点(N)における磁化をMrとし、このMrを飽和
磁化Msで割った値M r / M sを角形比R31
と定義して、垂直磁化膜の垂直磁気異方性を評価するこ
ととした。
Therefore, as shown in FIG. 1, the vertical hysteresis curve (H) of the perpendicularly magnetized film has a slope (θ2) equal to the slope (θ1) at the intersection with the horizontal axis (X), and the origin (,0 ) The magnetization at the intersection (N) of the straight line (S) passing through
We decided to evaluate the perpendicular magnetic anisotropy of the perpendicularly magnetized film.

上記角形比R3*は、Co−0系垂直磁化膜を作製する
際、導入する酸素濃度により影響を受けろ飽和磁束密度
Bsの変化に伴って変化するものである。したがって、
Co−0系垂直磁化膜を作製する際の導入酸素濃度によ
り所定の飽和磁束密度13sを得ることが重要となり、
作製するCo−〇の磁性層が垂直磁気異方性を示すのは
、飽和東密度Bsが5000<Bs<12000の時で
ある。従って、あまり酸素の導入量が多くてもBsの値
が小さくなることになってしまい好ましくない0本発明
者等の実験によれば、CO金含有f185原子%、酸素
含有1t15原子%となるときのC。
The above-mentioned squareness ratio R3* is influenced by the oxygen concentration introduced and changes with changes in the saturation magnetic flux density Bs when producing a Co-0 perpendicularly magnetized film. therefore,
It is important to obtain a predetermined saturation magnetic flux density of 13 s by the introduced oxygen concentration when producing the Co-0 perpendicular magnetization film.
The magnetic layer of Co-0 to be produced exhibits perpendicular magnetic anisotropy when the saturation east density Bs is 5000<Bs<12000. Therefore, even if the amount of oxygen introduced is too large, the value of Bs will become small, which is not preferable.According to experiments by the present inventors, when CO gold content is f185 at% and oxygen content is 1t15 at%, C.

−〇系垂直磁化膜が最も磁気特性に優れたものであった
The −〇-based perpendicular magnetization film had the best magnetic properties.

本発明において上記角形比Rs”は、0.83以上であ
ることが好ましい、角形比Rs0が0.83より小さい
場合には、所定の垂直磁気異方性を得ることができない
In the present invention, the squareness ratio Rs" is preferably 0.83 or more. If the squareness ratio Rs0 is smaller than 0.83, a predetermined perpendicular magnetic anisotropy cannot be obtained.

本発明において、垂直磁気記録媒体を作製する際には、
導入する酸素は00発蒸気流の入射角に近い状態で入射
させ、Co−0垂直磁化膜の垂直磁気異方性を乱さない
ようにすることが好ましく、0″くψ≦45″′の範囲
内とすることが好ましい。
In the present invention, when producing a perpendicular magnetic recording medium,
It is preferable that the introduced oxygen be introduced at an incident angle close to that of the 00 steam flow so as not to disturb the perpendicular magnetic anisotropy of the Co-0 perpendicularly magnetized film, and within the range of 0" to ψ≦45"'. It is preferable to keep it within.

酸素ガスの入射角が0°の場合には、Co 5発蒸気流
の非磁性支持体上への入射角と同一となってしまい実用
上の問題から不適当である。又、酸素ガスの入射角が4
5°より大きい場合には、CO蒸発蒸気流の非磁性支持
体上への入射の状態を乱すことになり、Co−0垂直磁
化膜の垂直磁気異方性が乱れやすく、電磁変換特性等の
磁気特性の低下を招く虞があるためである。
If the incident angle of oxygen gas is 0°, it will be the same as the incident angle of the Co 5 vapor flow onto the non-magnetic support, which is unsuitable for practical reasons. Also, the incident angle of oxygen gas is 4
If it is larger than 5°, the incident state of the CO evaporation vapor flow onto the non-magnetic support will be disturbed, the perpendicular magnetic anisotropy of the Co-0 perpendicularly magnetized film will be easily disturbed, and the electromagnetic conversion characteristics etc. This is because there is a risk of deterioration of magnetic properties.

また、酸素ガスは、非磁性支持体移動方向の上流側(第
2図中矢印A方向)から導入しても、又非磁性支持体移
動方向の下流側(第2図中匁印B方向)から導入しても
よく、垂直磁気記録媒体の垂直磁気異方性、電磁変換特
性等の磁気特性には全く影響はないが、好ましくは非磁
性支持体移動方向の上流側から導入する方がよい、非磁
性支持体移動方向の上流側から酸素ガスを導入した場合
には、酸素ガスの濃度勾配が作製されるCo−0垂直磁
化膜の下層部分に酸素が多く存在することになり、Co
−0垂直磁化膜と非磁性支持体との剥離強度を高めるこ
とができ、Co−0垂直磁化膜表面の強度も高くなる。
In addition, oxygen gas can be introduced from the upstream side in the direction of movement of the non-magnetic support (direction of arrow A in Figure 2), or from the downstream side of the direction of movement of the non-magnetic support (direction of arrow mark B in Figure 2). Although it may be introduced from the upstream side in the direction of movement of the nonmagnetic support, it is preferable to introduce it from the upstream side in the direction of movement of the nonmagnetic support, although it has no effect on the magnetic properties such as perpendicular magnetic anisotropy and electromagnetic conversion characteristics of the perpendicular magnetic recording medium. If oxygen gas is introduced from the upstream side in the direction of movement of the non-magnetic support, a large amount of oxygen will exist in the lower layer of the Co-0 perpendicularly magnetized film where a concentration gradient of oxygen gas is created.
The peel strength between the -0 perpendicular magnetization film and the nonmagnetic support can be increased, and the strength of the surface of the Co-0 perpendicular magnetization film can also be increased.

これに対して非磁性支持体移動方向の下流側から酸素ガ
スを導入した場合には、酸素ガスの濃度勾配が作製され
るCo−0垂直磁化膜の上層部分に酸素が多く存在する
ことになり、Go−0垂直磁化膜表面が傷付き易くなる
虞がある。
On the other hand, if oxygen gas is introduced from the downstream side in the direction of movement of the nonmagnetic support, a large amount of oxygen will exist in the upper layer of the Co-0 perpendicularly magnetized film where a concentration gradient of oxygen gas is created. , the surface of the Go-0 perpendicular magnetization film may be easily damaged.

本発明で使用される非磁性支持体の材料としては、通常
の磁気記録媒体の非磁性支持体として使用されている材
料であれば何れの材料をも使用することができる。特に
加工性、成形性、可撓性等の点で、有機重合体材料が適
しており、中でもポリエチレンテレフタレート、ポリエ
チレンナフタレート等のポリエステル、ポリエチレン、
ポリプロピレン等のポリオレフィン、ポリメチルメタア
クリレート、ポリカーボネート、ポリスルフォン、ポリ
アミド、芳香族ポリアミド、ポリフェニレンスルフィド
、ポリフェニレンオキサイド、ポリアミドイミド、ポリ
イミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフ
ッ化ビニリデン、ポリテトラフルオロエチレン、酢酸セ
ルロース、メチルセルロース、エチルセルロース、エポ
キシ樹脂、ウレタン樹脂或いはこれらの混合物、共重合
物等が適している。又、非磁性支持体の形状としては、
ドラム状、ディスク状、シート状、テープ状、カード状
等いずれでもよい、これら非磁性支持体は、磁気記録層
を形成するに先立ち、易接着化、平面性改良、着色、帯
電防止、耐摩耗性付与等の目的で表面処理や前処理が行
われてもよい。
As the material for the nonmagnetic support used in the present invention, any material that is used as a nonmagnetic support for ordinary magnetic recording media can be used. Organic polymer materials are particularly suitable in terms of processability, moldability, flexibility, etc. Among them, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethylene,
Polyolefins such as polypropylene, polymethyl methacrylate, polycarbonate, polysulfone, polyamide, aromatic polyamide, polyphenylene sulfide, polyphenylene oxide, polyamideimide, polyimide, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, acetic acid Cellulose, methylcellulose, ethylcellulose, epoxy resin, urethane resin, or mixtures and copolymers thereof are suitable. In addition, the shape of the non-magnetic support is as follows:
These nonmagnetic supports, which may be in the form of drums, disks, sheets, tapes, cards, etc., are treated to facilitate adhesion, improve flatness, be colored, be antistatic, and have resistance to abrasion before forming the magnetic recording layer. Surface treatment or pretreatment may be performed for the purpose of imparting properties or the like.

本発明で垂直磁気記録媒体を製造する際に適用される真
空蒸着法としては、抵抗加熱蒸着、誘導加熱蒸着、電子
ビーム蒸着、イオンビーム蒸着、イオンブレーティング
、レーザービーム蒸着、アーク放電蒸着等の真空蒸着法
のいずれもが実施可能であるが、垂直磁気記録媒体の保
磁力、異方性磁界等の磁気特性を向上させる上で、又速
い蒸着速度を得るために電子ビーム蒸着、イオンブレー
ティング等の方法が適しており、さらに操作性、量産性
の工業的観点からは電子ビーム蒸着法が最も適している
Vacuum deposition methods that are applied in manufacturing perpendicular magnetic recording media in the present invention include resistance heating deposition, induction heating deposition, electron beam deposition, ion beam deposition, ion brating, laser beam deposition, arc discharge deposition, etc. Although any of the vacuum deposition methods can be performed, electron beam deposition and ion blating are used to improve the magnetic properties of the perpendicular magnetic recording medium, such as coercive force and anisotropic magnetic field, and to obtain a high deposition rate. The following methods are suitable, and the electron beam evaporation method is most suitable from the industrial viewpoint of operability and mass production.

〔作用〕[Effect]

本発明によれば、垂直磁化膜の角形比R3″を0.83
以上とすることにより、垂直磁気異方性に優れたCo−
0系垂直磁化膜が作製できるため、垂直磁気記録媒体の
電磁変換特性の向上を図ることが可能となる。
According to the present invention, the squareness ratio R3'' of the perpendicularly magnetized film is 0.83
By doing the above, Co-
Since a 0-system perpendicular magnetization film can be produced, it is possible to improve the electromagnetic conversion characteristics of a perpendicular magnetic recording medium.

また、導入する酸素濃度を調整することによって飽和磁
束密度や角形比を調整することができるため、所定の磁
気特性を有する垂直磁気記録媒体が容易に作製される。
Further, since the saturation magnetic flux density and squareness ratio can be adjusted by adjusting the oxygen concentration introduced, a perpendicular magnetic recording medium having predetermined magnetic properties can be easily produced.

〔実施例〕〔Example〕

以下、本発明を適用した実施例について図面を参考にし
て説明する。
Embodiments to which the present invention is applied will be described below with reference to the drawings.

大施桝工 第2図は、本発明に係る垂直磁気記録媒体の製造方法を
実施する電子ビーム蒸着装置の一例である。上記電子ビ
ーム蒸着装置は、排気系(5)と電子銃(8)を備えた
チャンバー(6)中に非磁性支持体(9)の供給ローラ
ー(2)、冷却キャン(1)、垂直磁気記録媒体(9)
の巻き取りローラー(3)からなる長尺状非磁性支持体
(9)の走行系と、Coを備えたルツボ(4)と酸素ガ
ス導入管(7)からなる蒸着系とを備えてなるものであ
る。
Figure 2 shows an example of an electron beam evaporation apparatus for carrying out the method of manufacturing a perpendicular magnetic recording medium according to the present invention. The above electron beam evaporation apparatus includes a chamber (6) equipped with an exhaust system (5) and an electron gun (8), a supply roller (2) for a non-magnetic support (9), a cooling can (1), a perpendicular magnetic recording Medium (9)
A running system of a long non-magnetic support (9) consisting of a winding roller (3), and a vapor deposition system consisting of a crucible (4) equipped with Co and an oxygen gas introduction pipe (7). It is.

Co−0系垂直磁化膜が蒸着形成される非磁性支持体(
9)は、非磁性支持体(9)の供給ローラー(2)から
供給され、冷却キャン(1)上でCo−0系垂直磁化膜
が形成された後、巻き取りローラー(3)によって巻き
取られる。尚、Co−0系垂直磁化膜を蒸着形成する冷
却キャン(1)は、その表面温度が0℃付近に1118
1されるように図示されない冷却機能を有している。
A non-magnetic support (on which a Co-0 perpendicular magnetization film is deposited)
9) is supplied from the supply roller (2) of the non-magnetic support (9), and after a Co-0 perpendicularly magnetized film is formed on the cooling can (1), it is wound up by the take-up roller (3). It will be done. Note that the cooling can (1) in which the Co-0 perpendicular magnetization film is deposited has a surface temperature of 1118°C near 0°C.
1, it has a cooling function (not shown).

上記Co−0系垂直磁化膜を蒸着形成する冷却キャン(
1)とCoを備えたルツボ(4) との間には遮蔽板(
10) 、 (10)が備えられ、ルツボ(4)からの
Co蒸発蒸気流の蒸着状態と酸素ガス導入管(7)から
の酸素ガスの導入状態を制御するようになっている。
The cooling can (
A shielding plate (
10) and (10) are provided to control the deposition state of the Co vapor flow from the crucible (4) and the introduction state of oxygen gas from the oxygen gas introduction pipe (7).

Goを備えたルツボ(4)は、チャンバー(6)に備え
た電子銃(8)からの電子ビームによって加熱され蒸発
しCo蒸発蒸気流として冷却キャン(1)上に走行する
非磁性支持体(9)表面に蒸着する。
A crucible (4) equipped with Go is heated by an electron beam from an electron gun (8) provided in a chamber (6), and a non-magnetic support ( 9) Deposit on the surface.

その際、非磁性支持体移動方向上流側に備えられた酸素
ガス導入管(7)から酸素ガスも同時に導入され、Co
−0系垂直磁化膜が非磁性支持体(9)上に蒸着形成さ
れる。尚、電子銃(8)からの電子ビームによって加熱
され蒸発するCoは、その蒸着速度を任意に制御して蒸
着することができる。
At this time, oxygen gas is also introduced from the oxygen gas introduction pipe (7) provided on the upstream side in the direction of movement of the non-magnetic support, and the Co
A -0 perpendicular magnetization film is deposited on the non-magnetic support (9). Note that Co, which is heated and evaporated by the electron beam from the electron gun (8), can be deposited by controlling the deposition rate as desired.

又、Coを蒸着形成する際に酸素導入管(7)から導入
される酸素ガスの導入量を制御することにより所定の酸
素濃度勾配を有したGo−0系垂直磁化膜を形成するこ
とができる。
Furthermore, by controlling the amount of oxygen gas introduced from the oxygen introduction tube (7) when depositing Co, it is possible to form a Go-0 perpendicular magnetization film having a predetermined oxygen concentration gradient. .

尚、本発明の製造方法に使用される装置は、上述の装置
に限定されるものではない。
Note that the apparatus used in the manufacturing method of the present invention is not limited to the above-mentioned apparatus.

上述のような装置を使用して垂直磁気記録媒体を作製し
た。このとき、ルツボ(4)には純度99゜9%のGo
を用意し、蒸着速度3600人/sec s非磁性支持
体(9)の走行速度16m/sinとし、膜厚が200
0人となろようにした。また、酸素導入管(7) は非
磁性支持体移動方向の上流側に設置し、導入酸素ガスの
入射角を30′″、酸素ガス流量を300cc/sin
に設定した。蒸着中の雰囲気ガス圧は2 X L O−
’Torrであった0以上のようにしてサンプルテープ
を作製した。
A perpendicular magnetic recording medium was manufactured using the apparatus described above. At this time, the crucible (4) contains Go with a purity of 99.9%.
was prepared, the deposition rate was 3600 people/sec, the running speed of the nonmagnetic support (9) was 16 m/sin, and the film thickness was 200 m/sin.
I tried to get 0 people. In addition, the oxygen introduction pipe (7) was installed on the upstream side in the direction of movement of the nonmagnetic support, and the incident angle of the introduced oxygen gas was set to 30'', and the oxygen gas flow rate was set to 300 cc/sin.
It was set to The atmospheric gas pressure during vapor deposition was 2 X L O-
A sample tape was prepared as described above.

止孤■土 上述のような装置を使用して垂直磁気記録媒体を作製し
た。このとき、ルツボ(4)には純度99゜9%のCo
を用意し、蒸着速度3600人/ see s非磁性支
持体(9)の走行速度15m/+ginとし、膜厚が2
000人となるようにした。また、酸素導入管(7)は
非磁性支持体移動方向の上流側に設置し、導入酸素ガス
の入射角を50″、酸素ガス流量を500cc/win
に設定した。蒸着中の雰囲気ガス圧は2 X 10−’
Torrであった0以上のようにしてサンプルテープを
作製した。
A perpendicular magnetic recording medium was fabricated using the apparatus described above. At this time, Co with a purity of 99.9% is placed in the crucible (4).
was prepared, the deposition rate was 3600 persons/see, the running speed of the nonmagnetic support (9) was 15 m/+gin, and the film thickness was 2.
000 people. In addition, the oxygen introduction pipe (7) is installed on the upstream side in the direction of movement of the non-magnetic support, and the incident angle of the introduced oxygen gas is 50'' and the oxygen gas flow rate is 500cc/win.
It was set to The atmospheric gas pressure during vapor deposition was 2 x 10-'
A sample tape was prepared as described above with a Torr of 0 or more.

止較握又 第3図は、比較例2において使用される電子ビーム蒸着
装置の一例である。上記電子ビーム蒸着装置は、排気系
(20)と電子銃(18) 、 (19)を備えたチャ
ンバー(11)中に非磁性支持体(22)の供給ローラ
ー(12)、第1の冷却キャン(11)、中間ローラー
(14)、第2の冷却キャン(12)、垂直磁気記録媒
体(22)の巻き取りローラー(15)からなる長尺状
非磁性支持体(22)の走行系と、Tiを備えた第1の
ルツボ(16)とCo−Crを備えた第2のルツボ(1
7)からなる蒸着系とを備えてなるものである。
FIG. 3 shows an example of an electron beam evaporation apparatus used in Comparative Example 2. The electron beam evaporation apparatus described above includes a chamber (11) equipped with an exhaust system (20) and electron guns (18) and (19), a supply roller (12) for a non-magnetic support (22), and a first cooling can. (11), a running system for a long non-magnetic support (22) consisting of an intermediate roller (14), a second cooling can (12), and a take-up roller (15) for a perpendicular magnetic recording medium (22); A first crucible (16) with Ti and a second crucible (16) with Co-Cr.
7).

上述のような装置を使用して垂直磁気記録媒体を作製し
た。このとき、第1のルツボ(16)には純度99.9
%のTiを用意し、蒸着速度900人/31IC、非磁
性支持体の走行速度15 m /winとし、膜厚が5
00人となるように成膜した。続いて、第2のルツボ(
17)にGo−20重量%Crを用意し、蒸着速度27
00人/see 、非磁性支持体の走行速度16m/s
inとし、膜厚が1500人となるように成膜した。こ
の時の蒸着中の雰囲気ガス圧は3 X 10−’Tor
rであった0以上のようにしてサンプルテープを作製し
た。
A perpendicular magnetic recording medium was manufactured using the apparatus described above. At this time, the first crucible (16) has a purity of 99.9.
% Ti was prepared, the deposition rate was 900 people/31 IC, the running speed of the nonmagnetic support was 15 m/win, and the film thickness was 5 m/win.
The film was formed so that there were 00 people. Next, the second crucible (
17) Prepare Go-20 wt% Cr and set the deposition rate to 27
00 people/see, running speed of non-magnetic support 16 m/s
The film was formed to have a thickness of 1,500 layers. The atmospheric gas pressure during vapor deposition at this time was 3 x 10-'Tor.
A sample tape was prepared in the same manner as above.

上述のようにして作製した各サンプルテープについて、
飽和磁束密度Bs、垂直方向保磁力Hc s異方性磁界
Hk、角形比R3“、機械的耐久性について測定を行っ
た。尚、機械的耐久性については、磁性層表面にリン酸
エステル潤滑剤を塗布し、スチル耐久性及びスチル耐久
性測定後の目視観察による表面状態を評価した0表面状
態は、スチル耐久性測定後の磁性層表面に傷の発生がな
いものをQ印で、又スチル耐久性測定後の磁性層表面に
傷の発生があったものをx印で表した。その結果を第1
表に示す、また、実施例1.実施例2及び比較例1につ
いての記録波長と再生出力の関係を第4図に示す、尚、
第4図中記号!は実施例1に、記号■は比較例1に、記
号■は比較例2にそれぞれ対応している。
For each sample tape produced as described above,
The saturation magnetic flux density Bs, perpendicular coercive force Hc, anisotropic magnetic field Hk, squareness ratio R3'', and mechanical durability were measured.For mechanical durability, phosphate ester lubricant was applied to the surface of the magnetic layer. The 0 surface condition was evaluated by visual observation after measuring the still durability and the still durability. Those with scratches on the surface of the magnetic layer after durability measurement are indicated with an x mark.The results are shown in
Also shown in the table is Example 1. The relationship between recording wavelength and reproduction output for Example 2 and Comparative Example 1 is shown in FIG. 4.
Symbol in Figure 4! The symbol ■ corresponds to Example 1, the symbol ■ corresponds to Comparative Example 1, and the symbol ■ corresponds to Comparative Example 2.

第1表 第1表及び第4図より明らかなように、Co−0系垂直
磁化膜からなる実施例1とCo−Cr系垂直磁化膜から
なる比較例2の垂直磁気記録媒体は、R3″の値につい
ては本発明の範囲内に含まれており、又電磁変換特性に
ついてもあまり変わりないものであるが、飽和磁束密度
Bs、スチル耐久性、垂直磁気記録媒体の表面性等の点
でC。
As is clear from Table 1 and FIG. 4, the perpendicular magnetic recording media of Example 1 comprising a Co-0 perpendicular magnetization film and Comparative Example 2 comprising a Co-Cr perpendicular magnetization film had R3″ The value of C is included within the scope of the present invention, and the electromagnetic conversion characteristics do not change much, but C .

−〇系垂直磁化膜からなる実施例1に比べCo−Cr系
垂直磁化膜からなる比較例2は劣っていることがわかる
It can be seen that Comparative Example 2, which is made of a Co-Cr-based perpendicular magnetization film, is inferior to Example 1, which is made of a -〇-based perpendicular magnetization film.

したがって、これらの結果より本発明による垂直磁気記
録媒体は、優れた磁気特性、電磁変換特性、機械的耐久
性を兼ね備えていることがわかる。
Therefore, these results show that the perpendicular magnetic recording medium according to the present invention has excellent magnetic properties, electromagnetic conversion properties, and mechanical durability.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明を適用した垂直
磁気記録媒体は、垂直磁化膜の角形比Rs”を0.83
以上とすることにより、垂直磁気・   異方性に優れ
たCo−0系垂直磁化膜とすることができるため、電磁
変換特性に優れた垂直磁気記録媒体とすることができる
As is clear from the above description, the perpendicular magnetic recording medium to which the present invention is applied has a perpendicular magnetization film with a squareness ratio Rs'' of 0.83.
By doing the above, it is possible to obtain a Co-0 perpendicularly magnetized film having excellent perpendicular magnetism and anisotropy, thereby providing a perpendicular magnetic recording medium having excellent electromagnetic conversion characteristics.

又、導入する酸素濃度を調整することによって飽和磁束
密度や角形比を調整することができるため、所定の磁気
特性を存する垂直磁気記録媒体が容易に作製される。
Furthermore, since the saturation magnetic flux density and squareness ratio can be adjusted by adjusting the oxygen concentration introduced, a perpendicular magnetic recording medium having predetermined magnetic properties can be easily produced.

さらに、酸素ガスの導入箇所を非磁性支持体移動方向の
上流側に設定することにより、酸素濃度がCo−0系垂
直磁化膜の下層部分で高くなるため、Co−0系垂直磁
化膜と非磁性支持体との剥離強度が増し、機械的強度に
優れたCo−0系垂直磁化膜を形成することができる。
Furthermore, by setting the introduction point of oxygen gas on the upstream side in the moving direction of the non-magnetic support, the oxygen concentration becomes higher in the lower layer of the Co-0 perpendicularly magnetized film, so that It is possible to form a Co-0 perpendicularly magnetized film with increased peel strength from the magnetic support and excellent mechanical strength.

従って、本発明を適用することによって、垂直磁気異方
性及び電磁変換特性に優れ、機械的強度の高いCo−0
系垂直磁化膜を有する垂直磁気記録媒体を提供すること
ができる。
Therefore, by applying the present invention, Co-0, which has excellent perpendicular magnetic anisotropy and electromagnetic conversion characteristics and has high mechanical strength, can be used.
A perpendicular magnetic recording medium having a perpendicular magnetization film can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、角形比R3°を説明するための説明図である
。 第2図は本発明を適用した垂直磁気記録媒体を作製する
際に使用される真空蒸着装置の一例を示す概略図である
。 第3図は比較例となる垂直磁気記録媒体を作製する際に
使用される真空蒸着装置の一例を示す概略図である。 第4図は本発明を適用した垂直磁気記録媒体の記録波長
と再生出力との関係を示す特性図である。 H・・・ヒステリシス曲線 θ1.θ8 ・・・傾き 0・・・原点 S・・・直線 N・・・交点 Ms・・・飽和磁化 Mr・・・磁化 Rs”  ・・・角形比 特許出願人   ソニー株式会社 代理人  弁理士  小池  晃 同   円相 榮− 同   佐藤  勝 tυ 第3図 第4図
FIG. 1 is an explanatory diagram for explaining the squareness ratio R3°. FIG. 2 is a schematic diagram showing an example of a vacuum evaporation apparatus used when manufacturing a perpendicular magnetic recording medium to which the present invention is applied. FIG. 3 is a schematic diagram showing an example of a vacuum evaporation apparatus used in manufacturing a perpendicular magnetic recording medium as a comparative example. FIG. 4 is a characteristic diagram showing the relationship between recording wavelength and reproduction output of a perpendicular magnetic recording medium to which the present invention is applied. H...Hysteresis curve θ1. θ8...Inclination 0...Origin S...Line N...Intersection Ms...Saturation magnetization Mr...Magnetization Rs"...Square ratio patent applicant Sony Corporation representative Patent attorney Akira Koike Sakae Enso - Masaru Sato tυ Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 非磁性支持体上にCo−O系垂直磁化膜を形成してなる
垂直磁気記録媒体において、 前記垂直磁化膜の膜面に垂直方向のヒステリシス曲線が
横軸と交わる部分おける傾きと等しい傾きを有し且つ原
点を通る直線とヒステリシス曲線との交点における磁化
をM_rとし、このM_rを飽和磁化M_sで割った値
M_r/M_sをR_s^*と定義したとき、R_s^
*が0.83以上であることを特徴とする垂直磁気記録
媒体。
[Claims] In a perpendicular magnetic recording medium comprising a Co--O perpendicularly magnetized film formed on a non-magnetic support, a hysteresis curve perpendicular to the film surface of the perpendicularly magnetized film intersects with the horizontal axis. The magnetization at the intersection of the hysteresis curve and a straight line that has the same slope and passes through the origin is M_r, and when the value M_r/M_s obtained by dividing this M_r by the saturation magnetization M_s is defined as R_s^*, R_s^
A perpendicular magnetic recording medium characterized in that * is 0.83 or more.
JP62125564A 1987-05-22 1987-05-22 Perpendicular magnetic recording media Expired - Fee Related JP2546268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125564A JP2546268B2 (en) 1987-05-22 1987-05-22 Perpendicular magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125564A JP2546268B2 (en) 1987-05-22 1987-05-22 Perpendicular magnetic recording media

Publications (2)

Publication Number Publication Date
JPS63291214A true JPS63291214A (en) 1988-11-29
JP2546268B2 JP2546268B2 (en) 1996-10-23

Family

ID=14913313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125564A Expired - Fee Related JP2546268B2 (en) 1987-05-22 1987-05-22 Perpendicular magnetic recording media

Country Status (1)

Country Link
JP (1) JP2546268B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173926A (en) * 1988-12-26 1990-07-05 Hitachi Ltd Perpendicular magnetic recording medium, its production, and recording and reproducing device using this medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162622A (en) * 1983-03-08 1984-09-13 Ulvac Corp Vertical magnetic recording material and its production
JPS60211618A (en) * 1984-04-05 1985-10-24 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS6150211A (en) * 1984-08-20 1986-03-12 Res Dev Corp Of Japan Vertical magnetic recording medium and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162622A (en) * 1983-03-08 1984-09-13 Ulvac Corp Vertical magnetic recording material and its production
JPS60211618A (en) * 1984-04-05 1985-10-24 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS6150211A (en) * 1984-08-20 1986-03-12 Res Dev Corp Of Japan Vertical magnetic recording medium and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173926A (en) * 1988-12-26 1990-07-05 Hitachi Ltd Perpendicular magnetic recording medium, its production, and recording and reproducing device using this medium

Also Published As

Publication number Publication date
JP2546268B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
JPS63291214A (en) Perpendicular magnetic recording medium
JP2794662B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2508711B2 (en) Perpendicular magnetic recording media
JP2785272B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2970219B2 (en) Magnetic recording medium and manufacturing method thereof
JP2977618B2 (en) Magnetic recording method
JPH01303623A (en) Magnetic recording medium
JP2004326888A (en) Magnetic recording medium
JPH01109531A (en) Production of perpendicular magnetic recording medium
KR940007791A (en) Magnetic recording medium and manufacturing method thereof
JPS63247911A (en) Two-layered film medium for perpendicular magnetic recording
JPH01307914A (en) Perpendicular magnetic recording medium
JPH0258725A (en) Perpendicular magnetic recording medium
JPH033118A (en) Production of magnetic recording medium
JPH0237525A (en) Production of magnetic recording medium
JP2001143236A (en) Magnetic recording medium and its manufacturing method
JPS60251509A (en) Magnetic recording medium
JP2003051111A (en) Magnetic recording medium
JPH02216610A (en) Magnetic recording medium and its production
JPS62214521A (en) Production of magnetic recording medium
JPS6194237A (en) Preparation of vertical magnetic recording medium
JPS6267728A (en) Production of magnetic recording medium
JPH04132015A (en) Perpendicular magnetic recording tape consisting of cocr and production thereof
JPS6378340A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees