JPS6267106A - Production of metallic powder having composite structure - Google Patents

Production of metallic powder having composite structure

Info

Publication number
JPS6267106A
JPS6267106A JP20669185A JP20669185A JPS6267106A JP S6267106 A JPS6267106 A JP S6267106A JP 20669185 A JP20669185 A JP 20669185A JP 20669185 A JP20669185 A JP 20669185A JP S6267106 A JPS6267106 A JP S6267106A
Authority
JP
Japan
Prior art keywords
alloy
electrode
powder
sintered
metallic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20669185A
Other languages
Japanese (ja)
Inventor
Kenji Matsuda
松田 謙治
Toru Tanaka
徹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP20669185A priority Critical patent/JPS6267106A/en
Publication of JPS6267106A publication Critical patent/JPS6267106A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop metallic powder as a new stock for powder metallurgy having excellent characteristics by quickly cooling a molten alloy of a crystallization or precipitation type by a twin roll method, etc. to thin sheets, laminating the sheets and sintering the laminates, then working the sintered alloy to an electrode and forming the powder by a rotating electrode method using such electrode. CONSTITUTION:The crystallization or precipitation type alloy such as Al-8Cr alloy or Al-13Si alloy is melted in an inert gaseous atmosphere of Ar, etc. in a high-frequency induction heating furnace, etc. The molten metal is quickly cooled by a twin roll method or single roll method to produce the thin sheets of the Al alloy solutionized with Cr and Si. Plural sheets of such thin Al alloy are laminated and compressed, then the laminates are pressurized and sintered in a gaseous Ar atmosphere; at the same time the solid soln. phase is finely precipitated as the compd. of Al-Cr and Al-Si. Such sintered body is machined and is worked to a round bar- shaped electrode. The electrode is used as an electrode for a rotating electrode type metallic powder device. The new metallic powder stock having the excellent characteristic as the raw material for powder metallurgy is thus produced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は金属粉末の製造方法に係る。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing metal powder.

(従来技術) 近時新素材分野で高品質の金属粉末に対する需要が高ま
って来ている。
(Prior Art) Demand for high quality metal powders has recently increased in the field of new materials.

これらの粉末は従来はガスアトマイズ法、回転円板法、
回転電極法等によって製造されているほか、溶解鋳造法
では実現できない合金組成の新素材がメカニカルアロイ
ング法で作られるようになってきた。
Conventionally, these powders were produced using gas atomization method, rotating disk method,
In addition to being manufactured using the rotating electrode method, new materials with alloy compositions that cannot be achieved using the melting and casting method are now being manufactured using the mechanical alloying method.

これらのうち回転電極法はチタン等の活性金属の粉末製
造方法として優れているが、例えば50μ以下の微粉末
を得るための高速回転の問題や脆い材料は電極に加工す
るのが困難である等の問題がある。
Among these methods, the rotating electrode method is an excellent method for producing powder of active metals such as titanium, but there are problems with high-speed rotation to obtain fine powder of 50μ or less, and it is difficult to process brittle materials into electrodes. There is a problem.

ガスアトマイズ法はかなりの微粉も製造できるが、耐火
物製のるつぼやノズルと反応する活性な金属や合金の粉
末を製造することが出来ず、また多量のアルゴンガスを
使用する等の問題がある。
Although the gas atomization method can produce quite fine powder, it cannot produce active metal or alloy powder that reacts with refractory crucibles or nozzles, and it also has problems such as using a large amount of argon gas.

回転円板法はこれらの問題点をほぼ解決する優れた方法
であるが、装置が大きく、また大きな冷却速度を得るた
め高価なヘリウムガスを多量に使用する点が問題である
The rotating disk method is an excellent method that almost solves these problems, but the problem is that the apparatus is large and a large amount of expensive helium gas is used to obtain a high cooling rate.

一方、単ロールや双ロールで急冷薄帯または薄片を作り
、これを粉砕して粉末とする方法が提案されており、充
分な量の溶質を固溶した金属粉末を作ることが可能であ
り、更にこの方法によれば非晶質金属の粉末を作ること
も可能である。
On the other hand, a method has been proposed in which a quenched ribbon or flake is made with a single roll or twin rolls and then ground into powder, which makes it possible to make metal powder with a sufficient amount of solute in solid solution. Furthermore, according to this method, it is also possible to produce amorphous metal powder.

また目的の金属成分組成となるように各種純金属の微粉
末を混合する方法はマクロ的には均質に近い混合ができ
るとしても、ミクロ的な均質状態まで実現することは容
易ではなく、これの達成方法としてのメカニカルアロイ
ング法は酸化物分散型合金のような高付加価値材でなけ
れば経済的に採用できない。
In addition, even if the method of mixing fine powders of various pure metals to achieve the desired metal composition allows for a mixture that is close to homogeneous from a macro perspective, it is not easy to achieve micro homogeneity; The mechanical alloying method as a method for achieving this cannot be economically adopted unless the material is a high value-added material such as an oxide-dispersed alloy.

(本発明が解決しようとする問題点) 晶出型または析出型の合金例えばAl−8%CrやAh
−13%Stのごとき合金は通例の溶解鋳造法でインゴ
ットとすると脆くて回転電極法の電極に加工することが
できないか、たとえ加工することができたとしても粉化
時の急速な加熱冷却速度ではインゴット鋳造時に晶出、
析出した相が再溶解できず、晶・析出した相とマトリッ
クスの分離または粗大な相を内包する粉末となるのが通
例である。またこれを機械的に高能率で粉末にするのに
は高エネルギアトライタのごとき特殊なボールミルが必
要になってくる。
(Problems to be solved by the present invention) Crystallization type or precipitation type alloys such as Al-8%Cr and Ah
- When an alloy such as 13%St is made into an ingot by the usual melting and casting method, it is too brittle to be processed into an electrode using the rotating electrode method, or even if it can be processed, the rapid heating and cooling rate during pulverization is too high. Then, crystallization occurs during ingot casting,
Usually, the precipitated phase cannot be redissolved, resulting in separation of the crystallized/precipitated phase from the matrix, or a powder containing a coarse phase. In addition, to mechanically turn this into powder with high efficiency, a special ball mill such as a high-energy grinder is required.

本発明はこのような合金においても微細析出相が均一に
分散した複合組織の金属粉末を公知の回転電極法で容易
に得る方法を提供することを目的とする。
An object of the present invention is to provide a method for easily obtaining a metal powder having a composite structure in which fine precipitated phases are uniformly dispersed even in such an alloy by a known rotating electrode method.

(問題点を解決するための手段) 回転電極式金属粉末製造方法において、晶出型または析
出型の合金溶湯を急冷して過飽和固溶体の薄帯または薄
片とし、積層して焼結したのち、該焼結体を加工して回
転電極法の電極を製作し、該電極を用いて金属粉末を製
造することを特徴とする微細析出相を有する複合組織金
属粉末の製造方法に係る。
(Means for Solving the Problems) In a rotating electrode metal powder production method, a crystallization type or precipitation type molten alloy is rapidly cooled to form a thin strip or flake of a supersaturated solid solution, laminated and sintered, and then The present invention relates to a method for producing a composite metal powder having a fine precipitated phase, characterized in that a sintered body is processed to produce an electrode using a rotating electrode method, and the electrode is used to produce a metal powder.

本発明者は金属の急冷薄帯から粉末を作る方法について
種々研究の結果、つぎの知見を得た。すなわち前記の如
き晶出型または析出型合金系で通例の溶解鋳造法で鋳造
時に晶・析出した相が粉化時の急速な加熱冷却速度で再
溶解されず、晶・析出した相とマトリックスの分離また
は粗大な相を内包する粉末になるものでも、急冷薄帯ま
たは薄片とすればほぼ完全な過飽和固溶体となる。
The inventor of the present invention has obtained the following knowledge as a result of various studies on methods of producing powder from a quenched metal ribbon. In other words, in the above-mentioned crystallization type or precipitation type alloy system, the crystallized/precipitated phase during casting is not remelted by the rapid heating and cooling rate during powdering, and the crystallized/precipitated phase and the matrix are separated. Even if it becomes a powder containing separated or coarse phases, if it is made into a quenched ribbon or flake, it becomes an almost completely supersaturated solid solution.

この薄帯または薄片は非晶質または疑似非晶質なのでか
なりの靭性を有し、機械的に粉砕するのには特殊なボー
ルミル等を使用しなければ能率的に粉末とすることがで
きない。
Since this ribbon or flake is amorphous or pseudo-amorphous, it has considerable toughness and cannot be mechanically pulverized into powder efficiently without using a special ball mill or the like.

ところで過飽和固溶体の急冷薄帯または薄片は焼結性に
優れているので比較的低温で焼結することができるから
、薄帯や薄片を積層して焼結すると微細な析出相が均一
に分散した焼結体が得られる。この焼結体から丸棒を削
りだし、電極として回転電極法によって粉状化すれば微
細な析出相が均一に分散した複合組織の球状粉末が得ら
れる。
By the way, rapidly quenched ribbons or flakes of supersaturated solid solutions have excellent sintering properties and can be sintered at relatively low temperatures, so when thin strips or flakes are laminated and sintered, the fine precipitated phases are uniformly dispersed. A sintered body is obtained. By carving a round bar from this sintered body and pulverizing it using a rotating electrode method, a spherical powder with a composite structure in which fine precipitated phases are uniformly dispersed can be obtained.

この球状粉は粉末自身も短繊維強化複合材料と同程度の
強度を持つから、金属系繊維強化複合材料用の素材とし
ても興味ある新素材である。
This spherical powder itself has the same strength as short fiber-reinforced composite materials, so it is an interesting new material for metal-based fiber-reinforced composite materials.

(実施態様) 次に添付図面に示すフローシートを参照しながら本発明
の方法の実施態様について述べる。
(Embodiments) Next, embodiments of the method of the present invention will be described with reference to the flow sheets shown in the attached drawings.

晶出型或いは析出型合金としてAl−8Cr  合金を
使用し、アルゴン雰囲気中で高周波誘導溶解炉で溶解し
、1000°Cで双ロールに供給し、通例の方法で急冷
薄帯とした。薄帯中のCrは第2図のX線マイクロアナ
ライザによるCrKα特性X線像を示す面分析結果に見
られるように基地中に一様に溶は込んでいる。
An Al-8Cr alloy was used as the crystallization type or precipitation type alloy, melted in a high frequency induction melting furnace in an argon atmosphere, fed to twin rolls at 1000°C, and quenched into a ribbon in a conventional manner. Cr in the ribbon is uniformly dissolved into the matrix, as seen in the area analysis result showing the CrKα characteristic X-ray image by the X-ray microanalyzer in FIG.

この薄片または薄帯を金型を使用して積層圧縮し、アル
ゴンガス雰囲気の電気加熱炉中で2気圧の圧力をかけて
450℃、90分間加熱して焼結した。この際同時に固
溶相がAl−Cr化合物として析出し、温度が比較的低
いのでこの析出物は微細であり、また結晶化が進んでい
るのが認められた。
This thin piece or ribbon was laminated and compressed using a mold, and sintered by heating at 450° C. for 90 minutes under a pressure of 2 atmospheres in an electric heating furnace in an argon gas atmosphere. At the same time, a solid solution phase was precipitated as an Al-Cr compound, and since the temperature was relatively low, this precipitate was fine and it was observed that crystallization was progressing.

この焼結体を25鶴径の丸棒に機械切削して公知の回転
電極式金属粉末製造装置の電極とし、粉状化した。その
主な作業条件は次の通りである。
This sintered body was mechanically cut into a round bar with a diameter of 25mm, used as an electrode for a known rotating electrode type metal powder manufacturing apparatus, and then pulverized. The main working conditions are as follows.

雰囲気  ヘリウムガス 電流電圧 40V、120A 回転速度 20.00Or、p、m。Atmosphere Helium gas Current voltage 40V, 120A Rotation speed: 20.00 Or, p, m.

得られた粉末の粒度分布は 一150メソシュ 90% +150メソシユ 10% 粉末は球状で成形性が良好であった。The particle size distribution of the obtained powder is 1150 mesosh 90% +150 mesoyu 10% The powder was spherical and had good moldability.

この粉末を金型に充填し、0.3トン/C−の圧力で加
圧成形して450℃で焼結した焼結体から採取した試験
片の300°C引張試験成績は引張強さ  14 kg
f/mJ 耐力    11 kgf/− 伸び     4% で、sic繊維と混合して用いれば更に優れた高温引張
特性を有する複合材料が得られ、その用途はきわめて興
味深いものである。
This powder was filled into a mold, pressure-molded at a pressure of 0.3 tons/C-, and sintered at 450°C. The results of a 300°C tensile test of a test piece taken from the sintered body showed that the tensile strength was 14 kg
f/mJ proof stress 11 kgf/- elongation 4%, and when mixed with SIC fibers a composite material with even better high temperature tensile properties is obtained, the application of which is very interesting.

(効果) 以上説明したように本発明の金属粉末製造方法は通例の
溶解鋳造法で得られるインゴットが跪く或いは析出相が
粗大であるような晶出型または析出型合金でも、過飽和
固溶体の急冷薄帯または急冷薄片とし、これを積層して
焼結するので、析出相が一様に析出した焼結体となり、
これを電極に加工して回転電権法で粉状化するので粉状
化が容易であり、また析出相が焼結体において微細に析
出しているため粉状化後も微細に分散した均質な粉末を
得ることができる。
(Effects) As explained above, the metal powder manufacturing method of the present invention can be applied to crystallization type or precipitation type alloys in which the ingot obtained by the usual melting and casting method is bent or the precipitated phase is coarse. Since the strips or rapidly cooled flakes are layered and sintered, the precipitated phase becomes a uniformly precipitated sintered body.
This is processed into an electrode and pulverized using the rotating electric power method, so it is easy to pulverize, and since the precipitated phase is finely precipitated in the sintered body, even after pulverization, it remains finely dispersed and homogeneous. A fine powder can be obtained.

また急冷薄帯とするときは過飽和固溶体組織とすればよ
く、非晶質または疑僚非晶質&11織とする必要は特に
ないので、急冷条件もそれほど岐しくない。
Further, when forming a quenched ribbon, it is sufficient to have a supersaturated solid solution structure, and there is no particular need to use an amorphous or slightly amorphous &11 weave structure, so the quenching conditions are not so varied.

この粉末を用いて成形、焼結した焼結体は高温引張特性
の点で優れ、S i C”、短繊維強化複合’rA F
!1に相当する高温強さを有する優れた材料が得られる
等その用途も広く、きわめて大きな効果を奏する。
The sintered body formed and sintered using this powder has excellent high-temperature tensile properties, and has excellent high-temperature tensile properties.
! It has a wide range of uses, such as the ability to obtain an excellent material with high-temperature strength equivalent to 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を示すフローシート、第2図は急
冷薄帯のX線マイクロアナライザによる面分析結果(C
r Kα線)を示す写真である。 出願人代理人 弁理士 鴨志FI+  次男第1図 第2図
Figure 1 is a flow sheet showing the method of the present invention, and Figure 2 is the result of surface analysis of the quenched ribbon using an X-ray microanalyzer (C
It is a photograph showing rKα radiation). Applicant's agent Patent attorney Kamoshi FI+ Second son Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 回転電極式金属粉末製造方法において、 晶出型または析出型の合金溶湯を急冷して過飽和固溶体
の薄帯または薄片とし、積層して焼結したのち、該焼結
体を加工して回転電極法の電極を製作し、該電極を用い
て金属粉末を製造することを特徴とする微細析出相を有
する複合組織金属粉末の製造方法
[Claims] In a rotating electrode type metal powder production method, a crystallization type or precipitation type molten alloy is rapidly cooled to form a thin strip or flake of a supersaturated solid solution, layered and sintered, and then the sintered body is formed. A method for producing a metal powder with a composite structure having a fine precipitated phase, characterized by manufacturing an electrode using a rotating electrode method and producing a metal powder using the electrode.
JP20669185A 1985-09-20 1985-09-20 Production of metallic powder having composite structure Pending JPS6267106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20669185A JPS6267106A (en) 1985-09-20 1985-09-20 Production of metallic powder having composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20669185A JPS6267106A (en) 1985-09-20 1985-09-20 Production of metallic powder having composite structure

Publications (1)

Publication Number Publication Date
JPS6267106A true JPS6267106A (en) 1987-03-26

Family

ID=16527514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20669185A Pending JPS6267106A (en) 1985-09-20 1985-09-20 Production of metallic powder having composite structure

Country Status (1)

Country Link
JP (1) JPS6267106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209694A (en) * 2012-03-30 2013-10-10 Japan Atomic Energy Agency Apparatus for producing beryllide pebble

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920723A (en) * 1982-07-24 1984-02-02 Nissan Motor Co Ltd Sun-visor for vehicle
JPS5943802A (en) * 1982-08-30 1984-03-12 マ−コ・マテリアルズ・インコ−ポレ−テツド Aluminum-transition metal alloy from quick coagulating powder and manufacture
JPS5947346A (en) * 1982-09-13 1984-03-17 Teikoku Piston Ring Co Ltd Production of high alloy powder and sintered alloy and sintered alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920723A (en) * 1982-07-24 1984-02-02 Nissan Motor Co Ltd Sun-visor for vehicle
JPS5943802A (en) * 1982-08-30 1984-03-12 マ−コ・マテリアルズ・インコ−ポレ−テツド Aluminum-transition metal alloy from quick coagulating powder and manufacture
JPS5947346A (en) * 1982-09-13 1984-03-17 Teikoku Piston Ring Co Ltd Production of high alloy powder and sintered alloy and sintered alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209694A (en) * 2012-03-30 2013-10-10 Japan Atomic Energy Agency Apparatus for producing beryllide pebble

Similar Documents

Publication Publication Date Title
EP0219628B1 (en) Rapidly solidified high strength, corrosion resistant magnesium base metal alloys
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
Ružić et al. Synthesis, microstructure and mechanical properties of ZrB2 nano and microparticle reinforced copper matrix composite by in situ processings
JPS61130451A (en) Aluminum/iron/vanadium alloy having high strength at high temperature
CA1309882C (en) Powder particles for fine-grained hard material alloys and a process for the preparation of such particles
US4400208A (en) Process for the production of iron, phosphorus, carbon and chromium based amorphous metal alloys, and the alloys obtained
US5397533A (en) Process for producing TiB2 -dispersed TiAl-based composite material
EP0668806B1 (en) Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon alloy
US20090311123A1 (en) Method for producing metal alloy and intermetallic products
NO156117B (en) PROCEDURE FOR THE MANUFACTURE OF METAL POWDER.
CN116397128A (en) Rare earth copper chromium alloy material and preparation method thereof
US20030185701A1 (en) Process for the production of Al-Fe-V-Si alloys
JPS6311639A (en) Silicon-containing quick solidified heat resistant aluminum base alloy
US4908182A (en) Rapidly solidified high strength, ductile dispersion-hardened tungsten-rich alloys
JPS6267106A (en) Production of metallic powder having composite structure
JPS5935642A (en) Production of mo alloy ingot
DE10064056B9 (en) A process for producing a sintered body of high-hardness, high-chromium-content cast iron
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JP2749165B2 (en) TiA-based composite material and method for producing the same
JPS6267103A (en) Production of metallic powder having fine precipitation phase
JP4140176B2 (en) Low thermal expansion heat resistant alloy and method for producing the same
CN114734048B (en) Preparation method of high-chromium aluminum alloy powder
CN115323244B (en) High-entropy alloy material and preparation method thereof
JPS62256902A (en) Intermetallic al3ti powder and its production
CN108044124B (en) Preparation method of near-eutectic Nb-Si-Mo alloy with lamellar structure oriented arrangement characteristic